lix/src/libexpr/nixexpr.hh

465 lines
12 KiB
C++
Raw Normal View History

#pragma once
2003-10-30 16:11:24 +00:00
#include <map>
#include <vector>
#include "value.hh"
#include "symbol-table.hh"
2020-05-11 21:52:15 +00:00
#include "error.hh"
2022-04-22 08:01:02 +00:00
#include "chunked-vector.hh"
namespace nix {
2003-10-30 16:11:24 +00:00
MakeError(EvalError, Error);
MakeError(ParseError, Error);
MakeError(AssertionError, EvalError);
MakeError(ThrownError, AssertionError);
MakeError(Abort, EvalError);
MakeError(TypeError, EvalError);
MakeError(UndefinedVarError, Error);
MakeError(MissingArgumentError, EvalError);
MakeError(RestrictedPathError, Error);
/* Position objects. */
struct Pos
{
std::string file;
FileOrigin origin;
uint32_t line;
uint32_t column;
explicit operator bool() const { return line > 0; }
};
class PosIdx {
friend class PosTable;
private:
uint32_t id;
explicit PosIdx(uint32_t id): id(id) {}
public:
PosIdx() : id(0) {}
explicit operator bool() const { return id > 0; }
bool operator<(const PosIdx other) const { return id < other.id; }
};
class PosTable
{
public:
class Origin {
friend PosTable;
private:
// must always be invalid by default, add() replaces this with the actual value.
// subsequent add() calls use this index as a token to quickly check whether the
// current origins.back() can be reused or not.
mutable uint32_t idx = std::numeric_limits<uint32_t>::max();
explicit Origin(uint32_t idx): idx(idx), file{}, origin{} {}
public:
const std::string file;
const FileOrigin origin;
Origin(std::string file, FileOrigin origin): file(std::move(file)), origin(origin) {}
};
struct Offset {
uint32_t line, column;
};
private:
std::vector<Origin> origins;
ChunkedVector<Offset, 8192> offsets;
public:
PosTable(): offsets(1024)
{
origins.reserve(1024);
}
PosIdx add(const Origin & origin, uint32_t line, uint32_t column)
2014-04-04 19:14:11 +00:00
{
const auto idx = offsets.add({line, column}).second;
if (origins.empty() || origins.back().idx != origin.idx) {
origin.idx = idx;
origins.push_back(origin);
}
return PosIdx(idx + 1);
2014-04-04 19:14:11 +00:00
}
Pos operator[](PosIdx p) const
{
if (p.id == 0 || p.id > offsets.size())
return {};
const auto idx = p.id - 1;
/* we want the last key <= idx, so we'll take prev(first key > idx).
this is guaranteed to never rewind origin.begin because the first
key is always 0. */
const auto pastOrigin = std::upper_bound(
origins.begin(), origins.end(), Origin(idx),
[] (const auto & a, const auto & b) { return a.idx < b.idx; });
const auto origin = *std::prev(pastOrigin);
const auto offset = offsets[idx];
return {origin.file, origin.origin, offset.line, offset.column};
}
};
inline PosIdx noPos = {};
2010-04-12 21:21:24 +00:00
std::ostream & operator << (std::ostream & str, const Pos & pos);
struct Env;
struct Value;
2014-01-21 17:29:55 +00:00
class EvalState;
struct StaticEnv;
/* An attribute path is a sequence of attribute names. */
struct AttrName
{
Symbol symbol;
Expr * expr;
AttrName(Symbol s) : symbol(s) {};
AttrName(Expr * e) : expr(e) {};
};
typedef std::vector<AttrName> AttrPath;
std::string showAttrPath(const SymbolTable & symbols, const AttrPath & attrPath);
/* Abstract syntax of Nix expressions. */
struct Expr
{
2014-01-21 17:29:55 +00:00
virtual ~Expr() { };
virtual void show(const SymbolTable & symbols, std::ostream & str) const;
virtual void bindVars(const EvalState & es, const StaticEnv & env);
2010-04-12 22:03:27 +00:00
virtual void eval(EvalState & state, Env & env, Value & v);
virtual Value * maybeThunk(EvalState & state, Env & env);
virtual void setName(Symbol name);
};
#define COMMON_METHODS \
void show(const SymbolTable & symbols, std::ostream & str) const; \
void eval(EvalState & state, Env & env, Value & v); \
void bindVars(const EvalState & es, const StaticEnv & env);
struct ExprInt : Expr
{
NixInt n;
Value v;
2022-01-04 17:40:39 +00:00
ExprInt(NixInt n) : n(n) { v.mkInt(n); };
COMMON_METHODS
Value * maybeThunk(EvalState & state, Env & env);
};
struct ExprFloat : Expr
{
NixFloat nf;
Value v;
2022-01-04 17:40:39 +00:00
ExprFloat(NixFloat nf) : nf(nf) { v.mkFloat(nf); };
COMMON_METHODS
Value * maybeThunk(EvalState & state, Env & env);
};
struct ExprString : Expr
{
std::string s;
Value v;
don't use Symbols for strings string expressions by and large do not need the benefits a Symbol gives us, instead they pollute the symbol table and cause unnecessary overhead for almost all strings. the one place we can think of that benefits from them (attrpaths with expressions) extracts the benefit in the parser, which we'll have to touch anyway when changing ExprString to hold strings. this gives a sizeable improvement on of 3-5% on all benchmarks we've run. before nix search --no-eval-cache --offline ../nixpkgs hello Time (mean ± σ): 8.844 s ± 0.045 s [User: 6.750 s, System: 1.663 s] Range (min … max): 8.758 s … 8.922 s 20 runs nix eval -f ../nixpkgs/pkgs/development/haskell-modules/hackage-packages.nix Time (mean ± σ): 367.4 ms ± 3.3 ms [User: 332.3 ms, System: 35.2 ms] Range (min … max): 364.0 ms … 375.2 ms 20 runs nix eval --raw --impure --expr 'with import <nixpkgs/nixos> {}; system' Time (mean ± σ): 2.810 s ± 0.030 s [User: 2.517 s, System: 0.225 s] Range (min … max): 2.742 s … 2.854 s 20 runs after nix search --no-eval-cache --offline ../nixpkgs hello Time (mean ± σ): 8.533 s ± 0.068 s [User: 6.485 s, System: 1.642 s] Range (min … max): 8.404 s … 8.657 s 20 runs nix eval -f ../nixpkgs/pkgs/development/haskell-modules/hackage-packages.nix Time (mean ± σ): 347.6 ms ± 3.1 ms [User: 313.1 ms, System: 34.5 ms] Range (min … max): 343.3 ms … 354.6 ms 20 runs nix eval --raw --impure --expr 'with import <nixpkgs/nixos> {}; system' Time (mean ± σ): 2.709 s ± 0.032 s [User: 2.414 s, System: 0.232 s] Range (min … max): 2.655 s … 2.788 s 20 runs
2022-01-19 13:31:30 +00:00
ExprString(std::string s) : s(std::move(s)) { v.mkString(this->s.data()); };
COMMON_METHODS
Value * maybeThunk(EvalState & state, Env & env);
};
struct ExprPath : Expr
{
std::string s;
Value v;
ExprPath(std::string s) : s(std::move(s)) { v.mkPath(this->s.c_str()); };
COMMON_METHODS
Value * maybeThunk(EvalState & state, Env & env);
};
2020-02-24 13:33:01 +00:00
typedef uint32_t Level;
typedef uint32_t Displacement;
2013-10-08 12:24:53 +00:00
struct ExprVar : Expr
{
PosIdx pos;
Symbol name;
/* Whether the variable comes from an environment (e.g. a rec, let
or function argument) or from a "with". */
bool fromWith;
2013-09-02 14:29:15 +00:00
/* In the former case, the value is obtained by going `level'
levels up from the current environment and getting the
`displ'th value in that environment. In the latter case, the
value is obtained by getting the attribute named `name' from
the set stored in the environment that is `level' levels up
from the current one.*/
2020-02-24 13:33:01 +00:00
Level level;
Displacement displ;
ExprVar(Symbol name) : name(name) { };
ExprVar(const PosIdx & pos, Symbol name) : pos(pos), name(name) { };
COMMON_METHODS
Value * maybeThunk(EvalState & state, Env & env);
};
struct ExprSelect : Expr
{
PosIdx pos;
Expr * e, * def;
AttrPath attrPath;
ExprSelect(const PosIdx & pos, Expr * e, const AttrPath & attrPath, Expr * def) : pos(pos), e(e), def(def), attrPath(attrPath) { };
ExprSelect(const PosIdx & pos, Expr * e, Symbol name) : pos(pos), e(e), def(0) { attrPath.push_back(AttrName(name)); };
COMMON_METHODS
};
2010-04-12 21:21:24 +00:00
struct ExprOpHasAttr : Expr
{
Expr * e;
AttrPath attrPath;
ExprOpHasAttr(Expr * e, const AttrPath & attrPath) : e(e), attrPath(attrPath) { };
2010-04-12 21:21:24 +00:00
COMMON_METHODS
};
struct ExprAttrs : Expr
{
bool recursive;
PosIdx pos;
struct AttrDef {
bool inherited;
Expr * e;
PosIdx pos;
2020-02-24 13:33:01 +00:00
Displacement displ; // displacement
AttrDef(Expr * e, const PosIdx & pos, bool inherited=false)
: inherited(inherited), e(e), pos(pos) { };
AttrDef() { };
};
typedef std::map<Symbol, AttrDef> AttrDefs;
AttrDefs attrs;
Dynamic attrs This adds new syntax for attribute names: * attrs."${name}" => getAttr name attrs * attrs ? "${name}" => isAttrs attrs && hasAttr attrs name * attrs."${name}" or def => if attrs ? "${name}" then attrs."${name}" else def * { "${name}" = value; } => listToAttrs [{ inherit name value; }] Of course, it's a bit more complicated than that. The attribute chains can be arbitrarily long and contain combinations of static and dynamic parts (e.g. attrs."${foo}".bar."${baz}" or qux), which is relatively straightforward for the getAttrs/hasAttrs cases but is more complex for the listToAttrs case due to rules about duplicate attribute definitions. For attribute sets with dynamic attribute names, duplicate static attributes are detected at parse time while duplicate dynamic attributes are detected when the attribute set is forced. So, for example, { a = null; a.b = null; "${"c"}" = true; } will be a parse-time error, while { a = {}; "${"a"}".b = null; c = true; } will be an eval-time error (technically that case could theoretically be detected at parse time, but the general case would require full evaluation). Moreover, duplicate dynamic attributes are not allowed even in cases where they would be with static attributes ({ a.b.d = true; a.b.c = false; } is legal, but { a."${"b"}".d = true; a."${"b"}".c = false; } is not). This restriction might be relaxed in the future in cases where the static variant would not be an error, but it is not obvious that that is desirable. Finally, recursive attribute sets with dynamic attributes have the static attributes in scope but not the dynamic ones. So rec { a = true; "${"b"}" = a; } is equivalent to { a = true; b = true; } but rec { "${"a"}" = true; b = a; } would be an error or use a from the surrounding scope if it exists. Note that the getAttr, getAttr or default, and hasAttr are all implemented purely in the parser as syntactic sugar, while attribute sets with dynamic attribute names required changes to the AST to be implemented cleanly. This is an alternative solution to and closes #167 Signed-off-by: Shea Levy <shea@shealevy.com>
2013-09-21 03:25:30 +00:00
struct DynamicAttrDef {
Expr * nameExpr, * valueExpr;
PosIdx pos;
DynamicAttrDef(Expr * nameExpr, Expr * valueExpr, const PosIdx & pos)
: nameExpr(nameExpr), valueExpr(valueExpr), pos(pos) { };
Dynamic attrs This adds new syntax for attribute names: * attrs."${name}" => getAttr name attrs * attrs ? "${name}" => isAttrs attrs && hasAttr attrs name * attrs."${name}" or def => if attrs ? "${name}" then attrs."${name}" else def * { "${name}" = value; } => listToAttrs [{ inherit name value; }] Of course, it's a bit more complicated than that. The attribute chains can be arbitrarily long and contain combinations of static and dynamic parts (e.g. attrs."${foo}".bar."${baz}" or qux), which is relatively straightforward for the getAttrs/hasAttrs cases but is more complex for the listToAttrs case due to rules about duplicate attribute definitions. For attribute sets with dynamic attribute names, duplicate static attributes are detected at parse time while duplicate dynamic attributes are detected when the attribute set is forced. So, for example, { a = null; a.b = null; "${"c"}" = true; } will be a parse-time error, while { a = {}; "${"a"}".b = null; c = true; } will be an eval-time error (technically that case could theoretically be detected at parse time, but the general case would require full evaluation). Moreover, duplicate dynamic attributes are not allowed even in cases where they would be with static attributes ({ a.b.d = true; a.b.c = false; } is legal, but { a."${"b"}".d = true; a."${"b"}".c = false; } is not). This restriction might be relaxed in the future in cases where the static variant would not be an error, but it is not obvious that that is desirable. Finally, recursive attribute sets with dynamic attributes have the static attributes in scope but not the dynamic ones. So rec { a = true; "${"b"}" = a; } is equivalent to { a = true; b = true; } but rec { "${"a"}" = true; b = a; } would be an error or use a from the surrounding scope if it exists. Note that the getAttr, getAttr or default, and hasAttr are all implemented purely in the parser as syntactic sugar, while attribute sets with dynamic attribute names required changes to the AST to be implemented cleanly. This is an alternative solution to and closes #167 Signed-off-by: Shea Levy <shea@shealevy.com>
2013-09-21 03:25:30 +00:00
};
typedef std::vector<DynamicAttrDef> DynamicAttrDefs;
DynamicAttrDefs dynamicAttrs;
ExprAttrs(const PosIdx &pos) : recursive(false), pos(pos) { };
ExprAttrs() : recursive(false) { };
COMMON_METHODS
};
struct ExprList : Expr
{
std::vector<Expr *> elems;
ExprList() { };
COMMON_METHODS
};
2003-10-30 16:11:24 +00:00
struct Formal
{
PosIdx pos;
Symbol name;
Expr * def;
};
struct Formals
{
defer formals duplicate check for incresed efficiency all round if we defer the duplicate argument check for lambda formals we can use more efficient data structures for the formals set, and we can get rid of the duplication of formals names to boot. instead of a list of formals we've seen and a set of names we'll keep a vector instead and run a sort+dupcheck step before moving the parsed formals into a newly created lambda. this improves performance on search and rebuild by ~1%, pure parsing gains more (about 4%). this does reorder lambda arguments in the xml output, but the output is still stable. this shouldn't be a problem since argument order is not semantically important anyway. before nix search --no-eval-cache --offline ../nixpkgs hello Time (mean ± σ): 8.550 s ± 0.060 s [User: 6.470 s, System: 1.664 s] Range (min … max): 8.435 s … 8.666 s 20 runs nix eval -f ../nixpkgs/pkgs/development/haskell-modules/hackage-packages.nix Time (mean ± σ): 346.7 ms ± 2.1 ms [User: 312.4 ms, System: 34.2 ms] Range (min … max): 343.8 ms … 353.4 ms 20 runs nix eval --raw --impure --expr 'with import <nixpkgs/nixos> {}; system' Time (mean ± σ): 2.720 s ± 0.031 s [User: 2.415 s, System: 0.231 s] Range (min … max): 2.662 s … 2.780 s 20 runs after nix search --no-eval-cache --offline ../nixpkgs hello Time (mean ± σ): 8.462 s ± 0.063 s [User: 6.398 s, System: 1.661 s] Range (min … max): 8.339 s … 8.542 s 20 runs nix eval -f ../nixpkgs/pkgs/development/haskell-modules/hackage-packages.nix Time (mean ± σ): 329.1 ms ± 1.4 ms [User: 296.8 ms, System: 32.3 ms] Range (min … max): 326.1 ms … 330.8 ms 20 runs nix eval --raw --impure --expr 'with import <nixpkgs/nixos> {}; system' Time (mean ± σ): 2.687 s ± 0.035 s [User: 2.392 s, System: 0.228 s] Range (min … max): 2.626 s … 2.754 s 20 runs
2022-01-19 15:49:02 +00:00
typedef std::vector<Formal> Formals_;
Formals_ formals;
bool ellipsis;
defer formals duplicate check for incresed efficiency all round if we defer the duplicate argument check for lambda formals we can use more efficient data structures for the formals set, and we can get rid of the duplication of formals names to boot. instead of a list of formals we've seen and a set of names we'll keep a vector instead and run a sort+dupcheck step before moving the parsed formals into a newly created lambda. this improves performance on search and rebuild by ~1%, pure parsing gains more (about 4%). this does reorder lambda arguments in the xml output, but the output is still stable. this shouldn't be a problem since argument order is not semantically important anyway. before nix search --no-eval-cache --offline ../nixpkgs hello Time (mean ± σ): 8.550 s ± 0.060 s [User: 6.470 s, System: 1.664 s] Range (min … max): 8.435 s … 8.666 s 20 runs nix eval -f ../nixpkgs/pkgs/development/haskell-modules/hackage-packages.nix Time (mean ± σ): 346.7 ms ± 2.1 ms [User: 312.4 ms, System: 34.2 ms] Range (min … max): 343.8 ms … 353.4 ms 20 runs nix eval --raw --impure --expr 'with import <nixpkgs/nixos> {}; system' Time (mean ± σ): 2.720 s ± 0.031 s [User: 2.415 s, System: 0.231 s] Range (min … max): 2.662 s … 2.780 s 20 runs after nix search --no-eval-cache --offline ../nixpkgs hello Time (mean ± σ): 8.462 s ± 0.063 s [User: 6.398 s, System: 1.661 s] Range (min … max): 8.339 s … 8.542 s 20 runs nix eval -f ../nixpkgs/pkgs/development/haskell-modules/hackage-packages.nix Time (mean ± σ): 329.1 ms ± 1.4 ms [User: 296.8 ms, System: 32.3 ms] Range (min … max): 326.1 ms … 330.8 ms 20 runs nix eval --raw --impure --expr 'with import <nixpkgs/nixos> {}; system' Time (mean ± σ): 2.687 s ± 0.035 s [User: 2.392 s, System: 0.228 s] Range (min … max): 2.626 s … 2.754 s 20 runs
2022-01-19 15:49:02 +00:00
bool has(Symbol arg) const
{
defer formals duplicate check for incresed efficiency all round if we defer the duplicate argument check for lambda formals we can use more efficient data structures for the formals set, and we can get rid of the duplication of formals names to boot. instead of a list of formals we've seen and a set of names we'll keep a vector instead and run a sort+dupcheck step before moving the parsed formals into a newly created lambda. this improves performance on search and rebuild by ~1%, pure parsing gains more (about 4%). this does reorder lambda arguments in the xml output, but the output is still stable. this shouldn't be a problem since argument order is not semantically important anyway. before nix search --no-eval-cache --offline ../nixpkgs hello Time (mean ± σ): 8.550 s ± 0.060 s [User: 6.470 s, System: 1.664 s] Range (min … max): 8.435 s … 8.666 s 20 runs nix eval -f ../nixpkgs/pkgs/development/haskell-modules/hackage-packages.nix Time (mean ± σ): 346.7 ms ± 2.1 ms [User: 312.4 ms, System: 34.2 ms] Range (min … max): 343.8 ms … 353.4 ms 20 runs nix eval --raw --impure --expr 'with import <nixpkgs/nixos> {}; system' Time (mean ± σ): 2.720 s ± 0.031 s [User: 2.415 s, System: 0.231 s] Range (min … max): 2.662 s … 2.780 s 20 runs after nix search --no-eval-cache --offline ../nixpkgs hello Time (mean ± σ): 8.462 s ± 0.063 s [User: 6.398 s, System: 1.661 s] Range (min … max): 8.339 s … 8.542 s 20 runs nix eval -f ../nixpkgs/pkgs/development/haskell-modules/hackage-packages.nix Time (mean ± σ): 329.1 ms ± 1.4 ms [User: 296.8 ms, System: 32.3 ms] Range (min … max): 326.1 ms … 330.8 ms 20 runs nix eval --raw --impure --expr 'with import <nixpkgs/nixos> {}; system' Time (mean ± σ): 2.687 s ± 0.035 s [User: 2.392 s, System: 0.228 s] Range (min … max): 2.626 s … 2.754 s 20 runs
2022-01-19 15:49:02 +00:00
auto it = std::lower_bound(formals.begin(), formals.end(), arg,
[] (const Formal & f, const Symbol & sym) { return f.name < sym; });
defer formals duplicate check for incresed efficiency all round if we defer the duplicate argument check for lambda formals we can use more efficient data structures for the formals set, and we can get rid of the duplication of formals names to boot. instead of a list of formals we've seen and a set of names we'll keep a vector instead and run a sort+dupcheck step before moving the parsed formals into a newly created lambda. this improves performance on search and rebuild by ~1%, pure parsing gains more (about 4%). this does reorder lambda arguments in the xml output, but the output is still stable. this shouldn't be a problem since argument order is not semantically important anyway. before nix search --no-eval-cache --offline ../nixpkgs hello Time (mean ± σ): 8.550 s ± 0.060 s [User: 6.470 s, System: 1.664 s] Range (min … max): 8.435 s … 8.666 s 20 runs nix eval -f ../nixpkgs/pkgs/development/haskell-modules/hackage-packages.nix Time (mean ± σ): 346.7 ms ± 2.1 ms [User: 312.4 ms, System: 34.2 ms] Range (min … max): 343.8 ms … 353.4 ms 20 runs nix eval --raw --impure --expr 'with import <nixpkgs/nixos> {}; system' Time (mean ± σ): 2.720 s ± 0.031 s [User: 2.415 s, System: 0.231 s] Range (min … max): 2.662 s … 2.780 s 20 runs after nix search --no-eval-cache --offline ../nixpkgs hello Time (mean ± σ): 8.462 s ± 0.063 s [User: 6.398 s, System: 1.661 s] Range (min … max): 8.339 s … 8.542 s 20 runs nix eval -f ../nixpkgs/pkgs/development/haskell-modules/hackage-packages.nix Time (mean ± σ): 329.1 ms ± 1.4 ms [User: 296.8 ms, System: 32.3 ms] Range (min … max): 326.1 ms … 330.8 ms 20 runs nix eval --raw --impure --expr 'with import <nixpkgs/nixos> {}; system' Time (mean ± σ): 2.687 s ± 0.035 s [User: 2.392 s, System: 0.228 s] Range (min … max): 2.626 s … 2.754 s 20 runs
2022-01-19 15:49:02 +00:00
return it != formals.end() && it->name == arg;
}
std::vector<Formal> lexicographicOrder(const SymbolTable & symbols) const
defer formals duplicate check for incresed efficiency all round if we defer the duplicate argument check for lambda formals we can use more efficient data structures for the formals set, and we can get rid of the duplication of formals names to boot. instead of a list of formals we've seen and a set of names we'll keep a vector instead and run a sort+dupcheck step before moving the parsed formals into a newly created lambda. this improves performance on search and rebuild by ~1%, pure parsing gains more (about 4%). this does reorder lambda arguments in the xml output, but the output is still stable. this shouldn't be a problem since argument order is not semantically important anyway. before nix search --no-eval-cache --offline ../nixpkgs hello Time (mean ± σ): 8.550 s ± 0.060 s [User: 6.470 s, System: 1.664 s] Range (min … max): 8.435 s … 8.666 s 20 runs nix eval -f ../nixpkgs/pkgs/development/haskell-modules/hackage-packages.nix Time (mean ± σ): 346.7 ms ± 2.1 ms [User: 312.4 ms, System: 34.2 ms] Range (min … max): 343.8 ms … 353.4 ms 20 runs nix eval --raw --impure --expr 'with import <nixpkgs/nixos> {}; system' Time (mean ± σ): 2.720 s ± 0.031 s [User: 2.415 s, System: 0.231 s] Range (min … max): 2.662 s … 2.780 s 20 runs after nix search --no-eval-cache --offline ../nixpkgs hello Time (mean ± σ): 8.462 s ± 0.063 s [User: 6.398 s, System: 1.661 s] Range (min … max): 8.339 s … 8.542 s 20 runs nix eval -f ../nixpkgs/pkgs/development/haskell-modules/hackage-packages.nix Time (mean ± σ): 329.1 ms ± 1.4 ms [User: 296.8 ms, System: 32.3 ms] Range (min … max): 326.1 ms … 330.8 ms 20 runs nix eval --raw --impure --expr 'with import <nixpkgs/nixos> {}; system' Time (mean ± σ): 2.687 s ± 0.035 s [User: 2.392 s, System: 0.228 s] Range (min … max): 2.626 s … 2.754 s 20 runs
2022-01-19 15:49:02 +00:00
{
std::vector<Formal> result(formals.begin(), formals.end());
std::sort(result.begin(), result.end(),
[&] (const Formal & a, const Formal & b) {
std::string_view sa = symbols[a.name], sb = symbols[b.name];
return sa < sb;
defer formals duplicate check for incresed efficiency all round if we defer the duplicate argument check for lambda formals we can use more efficient data structures for the formals set, and we can get rid of the duplication of formals names to boot. instead of a list of formals we've seen and a set of names we'll keep a vector instead and run a sort+dupcheck step before moving the parsed formals into a newly created lambda. this improves performance on search and rebuild by ~1%, pure parsing gains more (about 4%). this does reorder lambda arguments in the xml output, but the output is still stable. this shouldn't be a problem since argument order is not semantically important anyway. before nix search --no-eval-cache --offline ../nixpkgs hello Time (mean ± σ): 8.550 s ± 0.060 s [User: 6.470 s, System: 1.664 s] Range (min … max): 8.435 s … 8.666 s 20 runs nix eval -f ../nixpkgs/pkgs/development/haskell-modules/hackage-packages.nix Time (mean ± σ): 346.7 ms ± 2.1 ms [User: 312.4 ms, System: 34.2 ms] Range (min … max): 343.8 ms … 353.4 ms 20 runs nix eval --raw --impure --expr 'with import <nixpkgs/nixos> {}; system' Time (mean ± σ): 2.720 s ± 0.031 s [User: 2.415 s, System: 0.231 s] Range (min … max): 2.662 s … 2.780 s 20 runs after nix search --no-eval-cache --offline ../nixpkgs hello Time (mean ± σ): 8.462 s ± 0.063 s [User: 6.398 s, System: 1.661 s] Range (min … max): 8.339 s … 8.542 s 20 runs nix eval -f ../nixpkgs/pkgs/development/haskell-modules/hackage-packages.nix Time (mean ± σ): 329.1 ms ± 1.4 ms [User: 296.8 ms, System: 32.3 ms] Range (min … max): 326.1 ms … 330.8 ms 20 runs nix eval --raw --impure --expr 'with import <nixpkgs/nixos> {}; system' Time (mean ± σ): 2.687 s ± 0.035 s [User: 2.392 s, System: 0.228 s] Range (min … max): 2.626 s … 2.754 s 20 runs
2022-01-19 15:49:02 +00:00
});
return result;
}
};
struct ExprLambda : Expr
{
PosIdx pos;
Symbol name;
Symbol arg;
Formals * formals;
Expr * body;
ExprLambda(PosIdx pos, Symbol arg, Formals * formals, Expr * body)
: pos(pos), arg(arg), formals(formals), body(body)
{
2020-04-29 16:14:32 +00:00
};
ExprLambda(PosIdx pos, Formals * formals, Expr * body)
: pos(pos), formals(formals), body(body)
{
}
void setName(Symbol name);
std::string showNamePos(const EvalState & state) const;
inline bool hasFormals() const { return formals != nullptr; }
COMMON_METHODS
};
struct ExprCall : Expr
{
Expr * fun;
std::vector<Expr *> args;
PosIdx pos;
ExprCall(const PosIdx & pos, Expr * fun, std::vector<Expr *> && args)
: fun(fun), args(args), pos(pos)
{ }
COMMON_METHODS
};
struct ExprLet : Expr
{
ExprAttrs * attrs;
Expr * body;
ExprLet(ExprAttrs * attrs, Expr * body) : attrs(attrs), body(body) { };
COMMON_METHODS
};
struct ExprWith : Expr
{
PosIdx pos;
Expr * attrs, * body;
2018-05-02 11:56:34 +00:00
size_t prevWith;
ExprWith(const PosIdx & pos, Expr * attrs, Expr * body) : pos(pos), attrs(attrs), body(body) { };
COMMON_METHODS
};
struct ExprIf : Expr
{
PosIdx pos;
Expr * cond, * then, * else_;
ExprIf(const PosIdx & pos, Expr * cond, Expr * then, Expr * else_) : pos(pos), cond(cond), then(then), else_(else_) { };
COMMON_METHODS
};
2010-04-12 21:21:24 +00:00
struct ExprAssert : Expr
{
PosIdx pos;
2010-04-12 21:21:24 +00:00
Expr * cond, * body;
ExprAssert(const PosIdx & pos, Expr * cond, Expr * body) : pos(pos), cond(cond), body(body) { };
2010-04-12 21:21:24 +00:00
COMMON_METHODS
};
struct ExprOpNot : Expr
{
Expr * e;
ExprOpNot(Expr * e) : e(e) { };
COMMON_METHODS
};
#define MakeBinOp(name, s) \
struct name : Expr \
{ \
PosIdx pos; \
Expr * e1, * e2; \
name(Expr * e1, Expr * e2) : e1(e1), e2(e2) { }; \
name(const PosIdx & pos, Expr * e1, Expr * e2) : pos(pos), e1(e1), e2(e2) { }; \
void show(const SymbolTable & symbols, std::ostream & str) const \
{ \
str << "("; e1->show(symbols, str); str << " " s " "; e2->show(symbols, str); str << ")"; \
} \
void bindVars(const EvalState & es, const StaticEnv & env) \
{ \
e1->bindVars(es, env); e2->bindVars(es, env); \
} \
void eval(EvalState & state, Env & env, Value & v); \
};
MakeBinOp(ExprOpEq, "==")
MakeBinOp(ExprOpNEq, "!=")
MakeBinOp(ExprOpAnd, "&&")
MakeBinOp(ExprOpOr, "||")
MakeBinOp(ExprOpImpl, "->")
MakeBinOp(ExprOpUpdate, "//")
MakeBinOp(ExprOpConcatLists, "++")
2010-04-12 21:21:24 +00:00
struct ExprConcatStrings : Expr
{
PosIdx pos;
bool forceString;
std::vector<std::pair<PosIdx, Expr *> > * es;
ExprConcatStrings(const PosIdx & pos, bool forceString, std::vector<std::pair<PosIdx, Expr *> > * es)
: pos(pos), forceString(forceString), es(es) { };
2010-04-12 21:21:24 +00:00
COMMON_METHODS
};
struct ExprPos : Expr
{
PosIdx pos;
ExprPos(const PosIdx & pos) : pos(pos) { };
COMMON_METHODS
};
2010-04-08 11:41:19 +00:00
/* Static environments are used to map variable names onto (level,
displacement) pairs used to obtain the value of the variable at
runtime. */
struct StaticEnv
{
bool isWith;
const StaticEnv * up;
// Note: these must be in sorted order.
typedef std::vector<std::pair<Symbol, Displacement>> Vars;
Vars vars;
StaticEnv(bool isWith, const StaticEnv * up, size_t expectedSize = 0) : isWith(isWith), up(up) {
vars.reserve(expectedSize);
};
void sort()
{
std::stable_sort(vars.begin(), vars.end(),
[](const Vars::value_type & a, const Vars::value_type & b) { return a.first < b.first; });
}
void deduplicate()
{
auto it = vars.begin(), jt = it, end = vars.end();
while (jt != end) {
*it = *jt++;
while (jt != end && it->first == jt->first) *it = *jt++;
it++;
}
vars.erase(it, end);
}
Vars::const_iterator find(Symbol name) const
{
Vars::value_type key(name, 0);
auto i = std::lower_bound(vars.begin(), vars.end(), key);
if (i != vars.end() && i->first == name) return i;
return vars.end();
}
};
}