This is required on systemd, which mounts filesystems as "shared"
subtrees. Changes to shared trees in a private mount namespace are
propagated to the outside world, which is bad.
This is a problem because one process may set the immutable bit before
the second process has created its link.
Addressed random Hydra failures such as:
error: cannot rename `/nix/store/.tmp-link-17397-1804289383' to
`/nix/store/rsvzm574rlfip3830ac7kmaa028bzl6h-nixos-0.1pre-git/upstart-interface-version':
Operation not permitted
Since SubstitutionGoal::finished() in build.cc computes the hash
anyway, we can prevent the inefficiency of computing the hash twice by
letting the substituter tell Nix about the expected hash, which can
then verify it.
Incremental optimisation requires creating links in /nix/store/.links
to all files in the store. However, this means that if we delete a
store path, no files are actually deleted because links in
/nix/store/.links still exists. So we need to check /nix/store/.links
for files with a link count of 1 and delete them.
optimiseStore() now creates persistent, content-addressed hard links
in /nix/store/.links. For instance, if it encounters a file P with
hash H, it will create a hard link
P' = /nix/store/.link/<H>
to P if P' doesn't already exist; if P' exist, then P is replaced by a
hard link to P'. This is better than the previous in-memory map,
because it had the tendency to unnecessarily replace hard links with a
hard link to whatever happened to be the first file with a given hash
it encountered. It also allows on-the-fly, incremental optimisation.
To implement binary caches efficiently, Hydra needs to be able to map
the hash part of a store path (e.g. "gbg...zr7") to the full store
path (e.g. "/nix/store/gbg...kzr7-subversion-1.7.5"). (The binary
cache mechanism uses hash parts as a key for looking up store paths to
ensure privacy.) However, doing a search in the Nix store for
/nix/store/<hash>* is expensive since it requires reading the entire
directory. queryPathFromHashPart() prevents this by doing a cheap
database lookup.
queryValidPaths() combines multiple calls to isValidPath() in one.
This matters when using the Nix daemon because it reduces latency.
For instance, on "nix-env -qas \*" it reduces execution time from 5.7s
to 4.7s (which is indistinguishable from the non-daemon case).
Instead make a single call to querySubstitutablePathInfo() per
derivation output. This is faster and prevents having to implement
the "have" function in the binary cache substituter.