Previously the memory would occasionally be collected during eval since
the GC doesn't consider the member variable as alive / doesn't scan the
region of memory where the pointer lives.
By using the traceable_allocator<T> allocator provided by Boehm GC we
can ensure the memory isn't collected. It should be properly freed when
SourceExprCommand goes out of scope.
This provides a pluggable mechanism for defining new fetchers. It adds
a builtin function 'fetchTree' that generalizes existing fetchers like
'fetchGit', 'fetchMercurial' and 'fetchTarball'. 'fetchTree' takes a
set of attributes, e.g.
fetchTree {
type = "git";
url = "https://example.org/repo.git";
ref = "some-branch";
rev = "abcdef...";
}
The existing fetchers are just wrappers around this. Note that the
input attributes to fetchTree are the same as flake input
specifications and flake lock file entries.
All fetchers share a common cache stored in
~/.cache/nix/fetcher-cache-v1.sqlite. This replaces the ad hoc caching
mechanisms in fetchGit and download.cc (e.g. ~/.cache/nix/{tarballs,git-revs*}).
This also adds support for Git worktrees (c169ea5904).
Most functions now take a StorePath argument rather than a Path (which
is just an alias for std::string). The StorePath constructor ensures
that the path is syntactically correct (i.e. it looks like
<store-dir>/<base32-hash>-<name>). Similarly, functions like
buildPaths() now take a StorePathWithOutputs, rather than abusing Path
by adding a '!<outputs>' suffix.
Note that the StorePath type is implemented in Rust. This involves
some hackery to allow Rust values to be used directly in C++, via a
helper type whose destructor calls the Rust type's drop()
function. The main issue is the dynamic nature of C++ move semantics:
after we have moved a Rust value, we should not call the drop function
on the original value. So when we move a value, we set the original
value to bitwise zero, and the destructor only calls drop() if the
value is not bitwise zero. This should be sufficient for most types.
Also lots of minor cleanups to the C++ API to make it more modern
(e.g. using std::optional and std::string_view in some places).
The intent of the code was that if the window size cannot be determined,
it would be treated as having the maximum possible size. Because of a
missing assignment, it was actually treated as having a width of 0.
The reason the width could not be determined was because it was obtained
from stdout, not stderr, even though the printing was done to stderr.
This commit addresses both issues.
Add missing docstring on InstallableCommand. Also, some of these were wrapped
when they're right next to a line longer than the unwrapped line, so we can just
unwrap them to save vertical space.
This allows to have a repl-centric workflow to working on nixpkgs.
Usage:
:edit <package> - heuristic that find the package file path
:edit <path> - just open the editor on the file path
Once invoked, `nix repl` will open $EDITOR on that file path. Once the
editor exits, `nix repl` will automatically reload itself.