forked from lix-project/lix
c5baaafae6
parser (roughly 80x faster). The absolutely latest version of Bison (1.875c) is required for reentrant GLR support, as well as a recent version of Flex (say, 2.5.31). Note that most Unix distributions ship with the prehistoric Flex 2.5.4, which doesn't support reentrancy.
270 lines
7.6 KiB
C++
270 lines
7.6 KiB
C++
#include "eval.hh"
|
|
#include "parser.hh"
|
|
#include "primops.hh"
|
|
|
|
|
|
EvalState::EvalState()
|
|
: normalForms(32768, 75)
|
|
{
|
|
blackHole = ATmake("BlackHole()");
|
|
if (!blackHole) throw Error("cannot build black hole");
|
|
nrEvaluated = nrCached = 0;
|
|
}
|
|
|
|
|
|
/* Substitute an argument set into the body of a function. */
|
|
static Expr substArgs(Expr body, ATermList formals, Expr arg)
|
|
{
|
|
ATMatcher m;
|
|
ATermMap subs;
|
|
Expr undefined = ATmake("Undefined");
|
|
|
|
/* Get the formal arguments. */
|
|
for (ATermIterator i(formals); i; ++i) {
|
|
Expr name, def;
|
|
if (atMatch(m, *i) >> "NoDefFormal" >> name)
|
|
subs.set(name, undefined);
|
|
else if (atMatch(m, *i) >> "DefFormal" >> name >> def)
|
|
subs.set(name, def);
|
|
else abort(); /* can't happen */
|
|
}
|
|
|
|
/* Get the actual arguments, and check that they match with the
|
|
formals. */
|
|
ATermMap args;
|
|
queryAllAttrs(arg, args);
|
|
for (ATermIterator i(args.keys()); i; ++i) {
|
|
Expr key = *i;
|
|
Expr cur = subs.get(key);
|
|
if (!cur)
|
|
throw badTerm(format("function has no formal argument `%1%'")
|
|
% aterm2String(key), arg);
|
|
subs.set(key, args.get(key));
|
|
}
|
|
|
|
/* Check that all arguments are defined. */
|
|
for (ATermIterator i(subs.keys()); i; ++i)
|
|
if (subs.get(*i) == undefined)
|
|
throw badTerm(format("formal argument `%1%' missing")
|
|
% aterm2String(*i), arg);
|
|
|
|
return substitute(subs, body);
|
|
}
|
|
|
|
|
|
/* Transform a mutually recursive set into a non-recursive set. Each
|
|
attribute is transformed into an expression that has all references
|
|
to attributes substituted with selection expressions on the
|
|
original set. E.g., e = `rec {x = f x y, y = x}' becomes `{x = f
|
|
(e.x) (e.y), y = e.x}'. */
|
|
ATerm expandRec(ATerm e, ATermList bnds)
|
|
{
|
|
ATMatcher m;
|
|
|
|
/* Create the substitution list. */
|
|
ATermMap subs;
|
|
for (ATermIterator i(bnds); i; ++i) {
|
|
string s;
|
|
Expr e2;
|
|
if (!(atMatch(m, *i) >> "Bind" >> s >> e2))
|
|
abort(); /* can't happen */
|
|
subs.set(s, ATmake("Select(<term>, <str>)", e, s.c_str()));
|
|
}
|
|
|
|
/* Create the non-recursive set. */
|
|
ATermMap as;
|
|
for (ATermIterator i(bnds); i; ++i) {
|
|
string s;
|
|
Expr e2;
|
|
if (!(atMatch(m, *i) >> "Bind" >> s >> e2))
|
|
abort(); /* can't happen */
|
|
as.set(s, substitute(subs, e2));
|
|
}
|
|
|
|
return makeAttrs(as);
|
|
}
|
|
|
|
|
|
string evalString(EvalState & state, Expr e)
|
|
{
|
|
e = evalExpr(state, e);
|
|
ATMatcher m;
|
|
string s;
|
|
if (!(atMatch(m, e) >> "Str" >> s))
|
|
throw badTerm("string expected", e);
|
|
return s;
|
|
}
|
|
|
|
|
|
Path evalPath(EvalState & state, Expr e)
|
|
{
|
|
e = evalExpr(state, e);
|
|
ATMatcher m;
|
|
string s;
|
|
if (!(atMatch(m, e) >> "Path" >> s))
|
|
throw badTerm("path expected", e);
|
|
return s;
|
|
}
|
|
|
|
|
|
bool evalBool(EvalState & state, Expr e)
|
|
{
|
|
e = evalExpr(state, e);
|
|
ATMatcher m;
|
|
if (atMatch(m, e) >> "Bool" >> "True") return true;
|
|
else if (atMatch(m, e) >> "Bool" >> "False") return false;
|
|
else throw badTerm("expecting a boolean", e);
|
|
}
|
|
|
|
|
|
Expr evalExpr2(EvalState & state, Expr e)
|
|
{
|
|
ATMatcher m;
|
|
Expr e1, e2, e3, e4;
|
|
string s1;
|
|
|
|
/* Normal forms. */
|
|
if (atMatch(m, e) >> "Str" ||
|
|
atMatch(m, e) >> "Path" ||
|
|
atMatch(m, e) >> "Uri" ||
|
|
atMatch(m, e) >> "Int" ||
|
|
atMatch(m, e) >> "Bool" ||
|
|
atMatch(m, e) >> "Function" ||
|
|
atMatch(m, e) >> "Attrs" ||
|
|
atMatch(m, e) >> "List")
|
|
return e;
|
|
|
|
/* Any encountered variables must be undeclared or primops. */
|
|
if (atMatch(m, e) >> "Var" >> s1) {
|
|
if (s1 == "null") return primNull(state);
|
|
if (s1 == "true") return ATmake("Bool(True)");
|
|
if (s1 == "false") return ATmake("Bool(False)");
|
|
return e;
|
|
}
|
|
|
|
/* Function application. */
|
|
if (atMatch(m, e) >> "Call" >> e1 >> e2) {
|
|
|
|
ATermList formals;
|
|
|
|
/* Evaluate the left-hand side. */
|
|
e1 = evalExpr(state, e1);
|
|
|
|
/* Is it a primop or a function? */
|
|
if (atMatch(m, e1) >> "Var" >> s1) {
|
|
if (s1 == "import") return primImport(state, e2);
|
|
if (s1 == "derivation") return primDerivation(state, e2);
|
|
if (s1 == "toString") return primToString(state, e2);
|
|
if (s1 == "baseNameOf") return primBaseNameOf(state, e2);
|
|
if (s1 == "isNull") return primIsNull(state, e2);
|
|
else throw badTerm("undefined variable/primop", e1);
|
|
}
|
|
|
|
else if (atMatch(m, e1) >> "Function" >> formals >> e4)
|
|
return evalExpr(state,
|
|
substArgs(e4, formals, evalExpr(state, e2)));
|
|
|
|
else throw badTerm("expecting a function or primop", e1);
|
|
}
|
|
|
|
/* Attribute selection. */
|
|
if (atMatch(m, e) >> "Select" >> e1 >> s1) {
|
|
Expr a = queryAttr(evalExpr(state, e1), s1);
|
|
if (!a) throw badTerm(format("missing attribute `%1%'") % s1, e);
|
|
return evalExpr(state, a);
|
|
}
|
|
|
|
/* Mutually recursive sets. */
|
|
ATermList bnds;
|
|
if (atMatch(m, e) >> "Rec" >> bnds)
|
|
return expandRec(e, bnds);
|
|
|
|
/* Let expressions `let {..., body = ...}' are just desugared
|
|
into `(rec {..., body = ...}).body'. */
|
|
if (atMatch(m, e) >> "LetRec" >> bnds)
|
|
return evalExpr(state, ATmake("Select(Rec(<term>), \"body\")", bnds));
|
|
|
|
/* Conditionals. */
|
|
if (atMatch(m, e) >> "If" >> e1 >> e2 >> e3) {
|
|
if (evalBool(state, e1))
|
|
return evalExpr(state, e2);
|
|
else
|
|
return evalExpr(state, e3);
|
|
}
|
|
|
|
/* Assertions. */
|
|
if (atMatch(m, e) >> "Assert" >> e1 >> e2) {
|
|
if (!evalBool(state, e1)) throw badTerm("guard failed", e);
|
|
return evalExpr(state, e2);
|
|
}
|
|
|
|
/* Generic equality. */
|
|
if (atMatch(m, e) >> "OpEq" >> e1 >> e2)
|
|
return makeBool(evalExpr(state, e1) == evalExpr(state, e2));
|
|
|
|
/* Generic inequality. */
|
|
if (atMatch(m, e) >> "OpNEq" >> e1 >> e2)
|
|
return makeBool(evalExpr(state, e1) != evalExpr(state, e2));
|
|
|
|
/* Negation. */
|
|
if (atMatch(m, e) >> "OpNot" >> e1)
|
|
return makeBool(!evalBool(state, e1));
|
|
|
|
/* Implication. */
|
|
if (atMatch(m, e) >> "OpImpl" >> e1 >> e2)
|
|
return makeBool(!evalBool(state, e1) || evalBool(state, e2));
|
|
|
|
/* Conjunction (logical AND). */
|
|
if (atMatch(m, e) >> "OpAnd" >> e1 >> e2)
|
|
return makeBool(evalBool(state, e1) && evalBool(state, e2));
|
|
|
|
/* Disjunction (logical OR). */
|
|
if (atMatch(m, e) >> "OpOr" >> e1 >> e2)
|
|
return makeBool(evalBool(state, e1) || evalBool(state, e2));
|
|
|
|
/* Barf. */
|
|
throw badTerm("invalid expression", e);
|
|
}
|
|
|
|
|
|
Expr evalExpr(EvalState & state, Expr e)
|
|
{
|
|
checkInterrupt();
|
|
|
|
startNest(nest, lvlVomit,
|
|
format("evaluating expression: %1%") % e);
|
|
|
|
state.nrEvaluated++;
|
|
|
|
/* Consult the memo table to quickly get the normal form of
|
|
previously evaluated expressions. */
|
|
Expr nf = state.normalForms.get(e);
|
|
if (nf) {
|
|
if (nf == state.blackHole)
|
|
throw badTerm("infinite recursion", e);
|
|
state.nrCached++;
|
|
return nf;
|
|
}
|
|
|
|
/* Otherwise, evaluate and memoize. */
|
|
state.normalForms.set(e, state.blackHole);
|
|
nf = evalExpr2(state, e);
|
|
state.normalForms.set(e, nf);
|
|
return nf;
|
|
}
|
|
|
|
|
|
Expr evalFile(EvalState & state, const Path & path)
|
|
{
|
|
startNest(nest, lvlTalkative, format("evaluating file `%1%'") % path);
|
|
Expr e = parseExprFromFile(path);
|
|
return evalExpr(state, e);
|
|
}
|
|
|
|
|
|
void printEvalStats(EvalState & state)
|
|
{
|
|
debug(format("evaluated %1% expressions, %2% cache hits, %3%%% efficiency")
|
|
% state.nrEvaluated % state.nrCached
|
|
% ((float) state.nrCached / (float) state.nrEvaluated * 100));
|
|
}
|