lix/src/libstore/normalise.cc
2004-06-19 21:45:04 +00:00

1501 lines
40 KiB
C++

#include <map>
#include <boost/shared_ptr.hpp>
#include <boost/enable_shared_from_this.hpp>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <fcntl.h>
#include <signal.h>
#include <unistd.h>
#include "normalise.hh"
#include "references.hh"
#include "pathlocks.hh"
#include "globals.hh"
/* !!! TODO storeExprFromPath shouldn't be used here */
static string pathNullDevice = "/dev/null";
/* Forward definition. */
class Worker;
/* A pointer to a goal. */
class Goal;
typedef shared_ptr<Goal> GoalPtr;
/* A set of goals. */
typedef set<GoalPtr> Goals;
/* A map of paths to goals (and the other way around). */
typedef map<Path, GoalPtr> GoalMap;
typedef map<GoalPtr, Path> GoalMapRev;
class Goal : public enable_shared_from_this<Goal>
{
protected:
/* Backlink to the worker. */
Worker & worker;
/* Goals waiting for this one to finish. */
Goals waiters;
/* Number of goals we are waiting for. */
unsigned int nrWaitees;
Goal(Worker & _worker) : worker(_worker)
{
nrWaitees = 0;
}
virtual ~Goal()
{
debug("goal destroyed");
}
public:
virtual void work() = 0;
virtual string name()
{
return "(noname)";
}
void addWaiter(GoalPtr waiter);
void waiteeDone();
void amDone();
};
/* A mapping used to remember for each child process to what goal it
belongs, and a file descriptor for receiving log data. */
struct Child
{
GoalPtr goal;
int fdOutput;
bool inBuildSlot;
};
typedef map<pid_t, Child> Children;
/* The worker class. */
class Worker
{
private:
/* The goals of the worker. */
Goals goals;
/* Goals that are ready to do some work. */
Goals awake;
/* Goals waiting for a build slot. */
Goals wantingToBuild;
/* Child processes currently running. */
Children children;
/* Number of build slots occupied. Not all child processes
(namely build hooks) count as occupied build slots. */
unsigned int nrChildren;
/* Maps used to prevent multiple instantiation of a goal for the
same expression / path. */
GoalMap normalisationGoals;
GoalMapRev normalisationGoalsRev;
GoalMap realisationGoals;
GoalMapRev realisationGoalsRev;
GoalMap substitutionGoals;
GoalMapRev substitutionGoalsRev;
public:
Worker();
~Worker();
/* Add a goal. */
void addNormalisationGoal(const Path & nePath, GoalPtr waiter);
void addRealisationGoal(const Path & nePath, GoalPtr waiter);
void addSubstitutionGoal(const Path & storePath, GoalPtr waiter);
/* Remove a finished goal. */
void removeGoal(GoalPtr goal);
/* Wake up a goal (i.e., there is something for it to do). */
void wakeUp(GoalPtr goal);
/* Can we start another child process? */
bool canBuildMore();
/* Registers / unregisters a running child process. */
void childStarted(GoalPtr goal, pid_t pid, int fdOutput,
bool inBuildSlot);
void childTerminated(pid_t pid);
/* Add a goal to the set of goals waiting for a build slot. */
void waitForBuildSlot(GoalPtr goal);
/* Loop until all goals have been realised. */
void run();
/* Wait for input to become available. */
void waitForInput();
};
//////////////////////////////////////////////////////////////////////
void Goal::addWaiter(GoalPtr waiter)
{
waiters.insert(waiter);
}
void Goal::waiteeDone()
{
assert(nrWaitees > 0);
if (!--nrWaitees) worker.wakeUp(shared_from_this());
}
void Goal::amDone()
{
debug("done");
for (Goals::iterator i = waiters.begin(); i != waiters.end(); ++i)
(*i)->waiteeDone();
worker.removeGoal(shared_from_this());
}
//////////////////////////////////////////////////////////////////////
class NormalisationGoal : public Goal
{
private:
/* The path of the derivation store expression. */
Path nePath;
/* The store expression stored at nePath. */
StoreExpr expr;
/* The remainder is state held during the build. */
/* Whether it's being built by a hook or by ourselves. */
bool inHook;
/* Locks on the output paths. */
PathLocks outputLocks;
/* Input paths, with their closure elements. */
ClosureElems inClosures;
/* Referenceable paths (i.e., input and output paths). */
PathSet allPaths;
/* The normal forms of the input store expressions. */
PathSet inputNFs;
/* The successor mappings for the input store expressions. */
map<Path, Path> inputSucs;
/* The process ID of the builder. */
pid_t pid;
/* The temporary directory. */
Path tmpDir;
/* File descriptor for the log file. */
AutoCloseFD fdLogFile;
/* Pipe for the builder's standard output/error. */
Pipe logPipe;
/* Pipes for talking to the build hook (if any). */
Pipe toHook;
Pipe fromHook;
typedef void (NormalisationGoal::*GoalState)();
GoalState state;
public:
NormalisationGoal(const Path & _nePath, Worker & _worker);
~NormalisationGoal();
void work();
private:
/* The states. */
void init();
void haveStoreExpr();
void inputNormalised();
void inputRealised();
void tryToBuild();
void buildDone();
/* Is the build hook willing to perform the build? */
typedef enum {rpAccept, rpDecline, rpPostpone, rpDone} HookReply;
HookReply tryBuildHook();
/* Synchronously wait for a build hook to finish. */
void terminateBuildHook();
/* Acquires locks on the output paths and gathers information
about the build (e.g., the input closures). During this
process its possible that we find out that the build is
unnecessary, in which case we return false (this is not an
error condition!). */
bool prepareBuild();
/* Start building a derivation. */
void startBuilder();
/* Must be called after the output paths have become valid (either
due to a successful build or hook, or because they already
were). */
void createClosure();
/* Open a log file and a pipe to it. */
void openLogFile();
/* Common initialisation to be performed in child processes (i.e.,
both in builders and in build hooks. */
void initChild();
/* Delete the temporary directory, if we have one. */
void deleteTmpDir(bool force);
string name()
{
return nePath;
}
};
NormalisationGoal::NormalisationGoal(const Path & _nePath, Worker & _worker)
: Goal(_worker)
{
nePath = _nePath;
pid = -1;
state = &NormalisationGoal::init;
}
NormalisationGoal::~NormalisationGoal()
{
/* Careful: we should never ever throw an exception from a
destructor. */
if (pid != -1) {
printMsg(lvlError, format("killing child process %1% (%2%)")
% pid % nePath);
/* Send a KILL signal to every process in the child
process group (which hopefully includes *all* its
children). */
if (kill(-pid, SIGKILL) != 0)
printMsg(lvlError, format("killing process %1%") % pid);
else {
/* Wait until the child dies, disregarding the exit
status. */
int status;
while (waitpid(pid, &status, 0) == -1)
if (errno != EINTR) printMsg(lvlError,
format("waiting for process %1%") % pid);
}
}
try {
deleteTmpDir(false);
} catch (Error & e) {
printMsg(lvlError, format("error (ignored): %1%") % e.msg());
}
}
void NormalisationGoal::work()
{
(this->*state)();
}
void NormalisationGoal::init()
{
debug(format("init of norm `%1%'") % nePath);
/* If we already have a successor, then we are done already; don't
add the expression as a goal. */
Path nfPath;
if (querySuccessor(nePath, nfPath)) {
amDone();
return;
}
/* The first thing to do is to make sure that the store expression
exists. If it doesn't, it may be created through a
substitute. */
nrWaitees = 1;
worker.addSubstitutionGoal(nePath, shared_from_this());
state = &NormalisationGoal::haveStoreExpr;
}
void NormalisationGoal::haveStoreExpr()
{
debug(format("loading store expr `%1%'") % nePath);
assert(isValidPath(nePath));
/* Get the store expression. */
expr = storeExprFromPath(nePath);
/* If this is a normal form (i.e., a closure) we are also done. */
if (expr.type == StoreExpr::neClosure) {
amDone();
return;
}
assert(expr.type == StoreExpr::neDerivation);
/* Inputs must be normalised before we can build this goal. */
for (PathSet::iterator i = expr.derivation.inputs.begin();
i != expr.derivation.inputs.end(); ++i)
worker.addNormalisationGoal(*i, shared_from_this());
nrWaitees = expr.derivation.inputs.size();
state = &NormalisationGoal::inputNormalised;
}
void NormalisationGoal::inputNormalised()
{
debug(format("all inputs normalised of `%1%'") % nePath);
/* Inputs must also be realised before we can build this goal. */
for (PathSet::iterator i = expr.derivation.inputs.begin();
i != expr.derivation.inputs.end(); ++i)
{
Path neInput = *i, nfInput;
if (querySuccessor(neInput, nfInput))
neInput = nfInput;
/* Otherwise the input must be a closure. */
worker.addRealisationGoal(neInput, shared_from_this());
}
nrWaitees = expr.derivation.inputs.size();
state = &NormalisationGoal::inputRealised;
}
void NormalisationGoal::inputRealised()
{
debug(format("all inputs realised of `%1%'") % nePath);
/* Okay, try to build. Note that here we don't wait for a build
slot to become available, since we don't need one if there is a
build hook. */
state = &NormalisationGoal::tryToBuild;
worker.wakeUp(shared_from_this());
}
void NormalisationGoal::tryToBuild()
{
debug(format("trying to build `%1%'") % nePath);
/* Is the build hook willing to accept this job? */
switch (tryBuildHook()) {
case rpAccept:
/* Yes, it has started doing so. Wait until we get
EOF from the hook. */
state = &NormalisationGoal::buildDone;
return;
case rpPostpone:
/* Not now; wait until at least one child finishes. */
worker.waitForBuildSlot(shared_from_this());
return;
case rpDecline:
/* We should do it ourselves. */
break;
case rpDone:
/* Somebody else did it (there is a successor now). */
amDone();
return;
}
/* Make sure that we are allowed to start a build. */
if (!worker.canBuildMore()) {
worker.waitForBuildSlot(shared_from_this());
return;
}
/* Acquire locks and such. If we then see that there now is a
successor, we're done. */
if (!prepareBuild()) {
amDone();
return;
}
/* Okay, we have to build. */
startBuilder();
/* This state will be reached when we get EOF on the child's
log pipe. */
state = &NormalisationGoal::buildDone;
}
void NormalisationGoal::buildDone()
{
debug(format("build done for `%1%'") % nePath);
int status;
/* Since we got an EOF on the logger pipe, the builder is presumed
to have terminated. In fact, the builder could also have
simply have closed its end of the pipe --- just don't do that
:-) */
/* !!! this could block! */
if (waitpid(pid, &status, 0) != pid)
throw SysError(format("builder for `%1%' should have terminated")
% nePath);
/* So the child is gone now. */
worker.childTerminated(pid);
pid = -1;
/* Close the read side of the logger pipe. */
logPipe.readSide.close();
/* Close the log file. */
fdLogFile.close();
debug(format("builder process %1% finished") % pid);
/* Check the exit status. */
if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
deleteTmpDir(false);
if (WIFEXITED(status))
throw Error(format("builder for `%1%' failed with exit code %2%")
% nePath % WEXITSTATUS(status));
else if (WIFSIGNALED(status))
throw Error(format("builder for `%1%' failed due to signal %2%")
% nePath % WTERMSIG(status));
else
throw Error(format("builder for `%1%' failed died abnormally") % nePath);
} else
deleteTmpDir(true);
/* Compute a closure store expression, and register it as our
successor. */
createClosure();
amDone();
}
static string readLine(int fd)
{
string s;
while (1) {
char ch;
ssize_t rd = read(fd, &ch, 1);
if (rd == -1) {
if (errno != EINTR)
throw SysError("reading a line");
} else if (rd == 0)
throw Error("unexpected EOF reading a line");
else {
if (ch == '\n') return s;
s += ch;
}
}
}
static void writeLine(int fd, string s)
{
s += '\n';
writeFull(fd, (const unsigned char *) s.c_str(), s.size());
}
/* !!! ugly hack */
static void drain(int fd)
{
unsigned char buffer[1024];
while (1) {
ssize_t rd = read(fd, buffer, sizeof buffer);
if (rd == -1) {
if (errno != EINTR)
throw SysError("draining");
} else if (rd == 0) break;
else writeFull(STDERR_FILENO, buffer, rd);
}
}
NormalisationGoal::HookReply NormalisationGoal::tryBuildHook()
{
Path buildHook = getEnv("NIX_BUILD_HOOK");
if (buildHook == "") return rpDecline;
buildHook = absPath(buildHook);
/* Create a directory where we will store files used for
communication between us and the build hook. */
tmpDir = createTempDir();
/* Create the log file and pipe. */
openLogFile();
/* Create the communication pipes. */
toHook.create();
fromHook.create();
/* Fork the hook. */
switch (pid = fork()) {
case -1:
throw SysError("unable to fork");
case 0:
try { /* child */
initChild();
execl(buildHook.c_str(), buildHook.c_str(),
(worker.canBuildMore() ? (string) "1" : "0").c_str(),
thisSystem.c_str(),
expr.derivation.platform.c_str(),
nePath.c_str(), 0);
throw SysError(format("executing `%1%'") % buildHook);
} catch (exception & e) {
cerr << format("build error: %1%\n") % e.what();
}
_exit(1);
}
/* parent */
logPipe.writeSide.close();
worker.childStarted(shared_from_this(),
pid, logPipe.readSide, false);
fromHook.writeSide.close();
toHook.readSide.close();
/* Read the first line of input, which should be a word indicating
whether the hook wishes to perform the build. !!! potential
for deadlock here: we should also read from the child's logger
pipe. */
string reply;
try {
reply = readLine(fromHook.readSide);
} catch (Error & e) {
drain(logPipe.readSide);
throw;
}
debug(format("hook reply is `%1%'") % reply);
if (reply == "decline" || reply == "postpone") {
/* Clean up the child. !!! hacky / should verify */
drain(logPipe.readSide);
terminateBuildHook();
return reply == "decline" ? rpDecline : rpPostpone;
}
else if (reply == "accept") {
/* Acquire locks and such. If we then see that there now is a
successor, we're done. */
if (!prepareBuild()) {
writeLine(toHook.writeSide, "cancel");
terminateBuildHook();
return rpDone;
}
/* Write the information that the hook needs to perform the
build, i.e., the set of input paths (including closure
expressions), the set of output paths, and the successor
mappings for the input expressions. */
Path inputListFN = tmpDir + "/inputs";
Path outputListFN = tmpDir + "/outputs";
Path successorsListFN = tmpDir + "/successors";
string s;
for (ClosureElems::iterator i = inClosures.begin();
i != inClosures.end(); ++i)
s += i->first + "\n";
for (PathSet::iterator i = inputNFs.begin();
i != inputNFs.end(); ++i)
s += *i + "\n";
writeStringToFile(inputListFN, s);
s = "";
for (PathSet::iterator i = expr.derivation.outputs.begin();
i != expr.derivation.outputs.end(); ++i)
s += *i + "\n";
writeStringToFile(outputListFN, s);
s = "";
for (map<Path, Path>::iterator i = inputSucs.begin();
i != inputSucs.end(); ++i)
s += i->first + " " + i->second + "\n";
writeStringToFile(successorsListFN, s);
writeLine(toHook.writeSide, "okay");
inHook = true;
return rpAccept;
}
else throw Error(format("bad hook reply `%1%'") % reply);
}
void NormalisationGoal::terminateBuildHook()
{
/* !!! drain stdout of hook */
debug("terminating build hook");
int status;
if (waitpid(pid, &status, 0) != pid)
printMsg(lvlError, format("process `%1%' missing") % pid);
worker.childTerminated(pid);
pid = -1;
fromHook.readSide.close();
toHook.writeSide.close();
fdLogFile.close();
logPipe.readSide.close();
}
bool NormalisationGoal::prepareBuild()
{
/* Obtain locks on all output paths. The locks are automatically
released when we exit this function or Nix crashes. */
/* !!! BUG: this could block, which is not allowed. */
outputLocks.lockPaths(expr.derivation.outputs);
/* Now check again whether there is a successor. This is because
another process may have started building in parallel. After
it has finished and released the locks, we can (and should)
reuse its results. (Strictly speaking the first successor
check can be omitted, but that would be less efficient.) Note
that since we now hold the locks on the output paths, no other
process can build this expression, so no further checks are
necessary. */
Path nfPath;
if (querySuccessor(nePath, nfPath)) {
debug(format("skipping build of expression `%1%', someone beat us to it")
% nePath);
outputLocks.setDeletion(true);
return false;
}
/* Gather information necessary for computing the closure and/or
running the build hook. */
/* The outputs are referenceable paths. */
for (PathSet::iterator i = expr.derivation.outputs.begin();
i != expr.derivation.outputs.end(); ++i)
{
debug(format("building path `%1%'") % *i);
allPaths.insert(*i);
}
/* Get information about the inputs (these all exist now). */
for (PathSet::iterator i = expr.derivation.inputs.begin();
i != expr.derivation.inputs.end(); ++i)
{
checkInterrupt();
Path nePath = *i, nfPath;
if (!querySuccessor(nePath, nfPath)) nfPath = nePath;
inputNFs.insert(nfPath);
if (nfPath != nePath) inputSucs[nePath] = nfPath;
/* !!! nfPath should be a root of the garbage collector while
we are building */
StoreExpr ne = storeExprFromPath(nfPath);
if (ne.type != StoreExpr::neClosure) abort();
for (ClosureElems::iterator j = ne.closure.elems.begin();
j != ne.closure.elems.end(); ++j)
{
inClosures[j->first] = j->second;
allPaths.insert(j->first);
}
}
/* We can skip running the builder if all output paths are already
valid. */
bool fastBuild = true;
for (PathSet::iterator i = expr.derivation.outputs.begin();
i != expr.derivation.outputs.end(); ++i)
if (!isValidPath(*i)) {
fastBuild = false;
break;
}
if (fastBuild) {
printMsg(lvlChatty, format("skipping build; output paths already exist"));
createClosure();
return false;
}
return true;
}
void NormalisationGoal::startBuilder()
{
/* Right platform? */
if (expr.derivation.platform != thisSystem)
throw Error(format("a `%1%' is required, but I am a `%2%'")
% expr.derivation.platform % thisSystem);
/* If any of the outputs already exist but are not registered,
delete them. */
for (PathSet::iterator i = expr.derivation.outputs.begin();
i != expr.derivation.outputs.end(); ++i)
{
Path path = *i;
if (isValidPath(path))
throw Error(format("obstructed build: path `%1%' exists") % path);
if (pathExists(path)) {
debug(format("removing unregistered path `%1%'") % path);
deletePath(path);
}
}
/* Construct the environment passed to the builder. */
typedef map<string, string> Environment;
Environment env;
/* Most shells initialise PATH to some default (/bin:/usr/bin:...) when
PATH is not set. We don't want this, so we fill it in with some dummy
value. */
env["PATH"] = "/path-not-set";
/* Set HOME to a non-existing path to prevent certain programs from using
/etc/passwd (or NIS, or whatever) to locate the home directory (for
example, wget looks for ~/.wgetrc). I.e., these tools use /etc/passwd
if HOME is not set, but they will just assume that the settings file
they are looking for does not exist if HOME is set but points to some
non-existing path. */
env["HOME"] = "/homeless-shelter";
/* Tell the builder where the Nix store is. Usually they
shouldn't care, but this is useful for purity checking (e.g.,
the compiler or linker might only want to accept paths to files
in the store or in the build directory). */
env["NIX_STORE"] = nixStore;
/* Add all bindings specified in the derivation expression. */
for (StringPairs::iterator i = expr.derivation.env.begin();
i != expr.derivation.env.end(); ++i)
env[i->first] = i->second;
/* Create a temporary directory where the build will take
place. */
tmpDir = createTempDir();
/* For convenience, set an environment pointing to the top build
directory. */
env["NIX_BUILD_TOP"] = tmpDir;
/* Also set TMPDIR and variants to point to this directory. */
env["TMPDIR"] = env["TEMPDIR"] = env["TMP"] = env["TEMP"] = tmpDir;
/* Run the builder. */
printMsg(lvlChatty, format("executing builder `%1%'") %
expr.derivation.builder);
/* Create the log file and pipe. */
openLogFile();
/* Fork a child to build the package. Note that while we
currently use forks to run and wait for the children, it
shouldn't be hard to use threads for this on systems where
fork() is unavailable or inefficient. */
switch (pid = fork()) {
case -1:
throw SysError("unable to fork");
case 0:
/* Warning: in the child we should absolutely not make any
Berkeley DB calls! */
try { /* child */
initChild();
/* Fill in the arguments. */
Strings & args(expr.derivation.args);
const char * argArr[args.size() + 2];
const char * * p = argArr;
string progName = baseNameOf(expr.derivation.builder);
*p++ = progName.c_str();
for (Strings::const_iterator i = args.begin();
i != args.end(); i++)
*p++ = i->c_str();
*p = 0;
/* Fill in the environment. */
Strings envStrs;
const char * envArr[env.size() + 1];
p = envArr;
for (Environment::const_iterator i = env.begin();
i != env.end(); i++)
*p++ = envStrs.insert(envStrs.end(),
i->first + "=" + i->second)->c_str();
*p = 0;
/* Execute the program. This should not return. */
execve(expr.derivation.builder.c_str(),
(char * *) argArr, (char * *) envArr);
throw SysError(format("executing `%1%'")
% expr.derivation.builder);
} catch (exception & e) {
cerr << format("build error: %1%\n") % e.what();
}
_exit(1);
}
/* parent */
logPipe.writeSide.close();
worker.childStarted(shared_from_this(),
pid, logPipe.readSide, true);
}
void NormalisationGoal::createClosure()
{
/* The resulting closure expression. */
StoreExpr nf;
nf.type = StoreExpr::neClosure;
startNest(nest, lvlTalkative,
format("finishing normalisation of goal `%1%'") % nePath);
/* Check whether the output paths were created, and grep each
output path to determine what other paths it references. Also make all
output paths read-only. */
PathSet usedPaths;
for (PathSet::iterator i = expr.derivation.outputs.begin();
i != expr.derivation.outputs.end(); ++i)
{
Path path = *i;
if (!pathExists(path))
throw Error(format("output path `%1%' does not exist") % path);
nf.closure.roots.insert(path);
makePathReadOnly(path);
/* For this output path, find the references to other paths contained
in it. */
startNest(nest2, lvlChatty,
format("scanning for store references in `%1%'") % path);
Strings refPaths = filterReferences(path,
Strings(allPaths.begin(), allPaths.end()));
nest2.close();
/* Construct a closure element for this output path. */
ClosureElem elem;
/* For each path referenced by this output path, add its id to the
closure element and add the id to the `usedPaths' set (so that the
elements referenced by *its* closure are added below). */
for (Paths::iterator j = refPaths.begin();
j != refPaths.end(); ++j)
{
checkInterrupt();
Path path = *j;
elem.refs.insert(path);
if (inClosures.find(path) != inClosures.end())
usedPaths.insert(path);
else if (expr.derivation.outputs.find(path) ==
expr.derivation.outputs.end())
abort();
}
nf.closure.elems[path] = elem;
}
/* Close the closure. That is, for any referenced path, add the paths
referenced by it. */
PathSet donePaths;
while (!usedPaths.empty()) {
checkInterrupt();
PathSet::iterator i = usedPaths.begin();
Path path = *i;
usedPaths.erase(i);
if (donePaths.find(path) != donePaths.end()) continue;
donePaths.insert(path);
ClosureElems::iterator j = inClosures.find(path);
if (j == inClosures.end()) abort();
nf.closure.elems[path] = j->second;
for (PathSet::iterator k = j->second.refs.begin();
k != j->second.refs.end(); k++)
usedPaths.insert(*k);
}
/* For debugging, print out the referenced and unreferenced paths. */
for (ClosureElems::iterator i = inClosures.begin();
i != inClosures.end(); ++i)
{
PathSet::iterator j = donePaths.find(i->first);
if (j == donePaths.end())
debug(format("unreferenced input: `%1%'") % i->first);
else
debug(format("referenced input: `%1%'") % i->first);
}
/* Write the normal form. This does not have to occur in the
transaction below because writing terms is idem-potent. */
ATerm nfTerm = unparseStoreExpr(nf);
printMsg(lvlVomit, format("normal form: %1%") % atPrint(nfTerm));
Path nfPath = writeTerm(nfTerm, "-s");
/* Register each output path, and register the normal form. This
is wrapped in one database transaction to ensure that if we
crash, either everything is registered or nothing is. This is
for recoverability: unregistered paths in the store can be
deleted arbitrarily, while registered paths can only be deleted
by running the garbage collector. */
Transaction txn;
createStoreTransaction(txn);
for (PathSet::iterator i = expr.derivation.outputs.begin();
i != expr.derivation.outputs.end(); ++i)
registerValidPath(txn, *i);
registerSuccessor(txn, nePath, nfPath);
txn.commit();
/* It is now safe to delete the lock files, since all future
lockers will see the successor; they will not create new lock
files with the same names as the old (unlinked) lock files. */
outputLocks.setDeletion(true);
}
void NormalisationGoal::openLogFile()
{
/* Create a log file. */
Path logFileName = nixLogDir + "/" + baseNameOf(nePath);
fdLogFile = open(logFileName.c_str(),
O_CREAT | O_WRONLY | O_TRUNC, 0666);
if (fdLogFile == -1)
throw SysError(format("creating log file `%1%'") % logFileName);
/* Create a pipe to get the output of the child. */
logPipe.create();
}
void NormalisationGoal::initChild()
{
/* Put the child in a separate process group so that it doesn't
receive terminal signals. */
if (setpgid(0, 0) == -1)
throw SysError(format("setting process group"));
if (chdir(tmpDir.c_str()) == -1)
throw SysError(format("changing into to `%1%'") % tmpDir);
/* Dup the write side of the logger pipe into stderr. */
if (dup2(logPipe.writeSide, STDERR_FILENO) == -1)
throw SysError("cannot pipe standard error into log file");
logPipe.readSide.close();
/* Dup stderr to stdin. */
if (dup2(STDERR_FILENO, STDOUT_FILENO) == -1)
throw SysError("cannot dup stderr into stdout");
/* Reroute stdin to /dev/null. */
int fdDevNull = open(pathNullDevice.c_str(), O_RDWR);
if (fdDevNull == -1)
throw SysError(format("cannot open `%1%'") % pathNullDevice);
if (dup2(fdDevNull, STDIN_FILENO) == -1)
throw SysError("cannot dup null device into stdin");
/* When running a hook, dup the communication pipes. */
bool inHook = fromHook.writeSide.isOpen();
if (inHook) {
fromHook.readSide.close();
if (dup2(fromHook.writeSide, 3) == -1)
throw SysError("dup1");
toHook.writeSide.close();
if (dup2(toHook.readSide, 4) == -1)
throw SysError("dup2");
}
/* Close all other file descriptors. */
int maxFD = 0;
maxFD = sysconf(_SC_OPEN_MAX);
for (int fd = 0; fd < maxFD; ++fd)
if (fd != STDIN_FILENO && fd != STDOUT_FILENO && fd != STDERR_FILENO
&& (!inHook || (fd != 3 && fd != 4)))
close(fd); /* ignore result */
}
void NormalisationGoal::deleteTmpDir(bool force)
{
if (tmpDir != "") {
if (keepFailed && !force)
printMsg(lvlTalkative,
format("builder for `%1%' failed; keeping build directory `%2%'")
% nePath % tmpDir);
else
deletePath(tmpDir);
tmpDir = "";
}
}
//////////////////////////////////////////////////////////////////////
class RealisationGoal : public Goal
{
private:
/* The path of the closure store expression. */
Path nePath;
/* The store expression stored at nePath. */
StoreExpr expr;
typedef void (RealisationGoal::*GoalState)();
GoalState state;
public:
RealisationGoal(const Path & _nePath, Worker & _worker);
~RealisationGoal();
void work();
/* The states. */
void init();
void haveStoreExpr();
void elemFinished();
};
RealisationGoal::RealisationGoal(const Path & _nePath, Worker & _worker)
: Goal(_worker)
{
nePath = _nePath;
state = &RealisationGoal::init;
}
RealisationGoal::~RealisationGoal()
{
}
void RealisationGoal::work()
{
(this->*state)();
}
void RealisationGoal::init()
{
debug(format("init of realisation `%1%'") % nePath);
/* The first thing to do is to make sure that the store expression
exists. If it doesn't, it may be created through a
substitute. */
nrWaitees = 1;
worker.addSubstitutionGoal(nePath, shared_from_this());
state = &RealisationGoal::haveStoreExpr;
}
void RealisationGoal::haveStoreExpr()
{
debug(format("loading store expr `%1%'") % nePath);
assert(isValidPath(nePath));
/* Get the store expression. */
expr = storeExprFromPath(nePath);
/* If this is a normal form (i.e., a closure) we are also done. */
if (expr.type != StoreExpr::neClosure)
throw Error(format("expected closure in `%1%'") % nePath);
/* Each path in the closure should exist, or should be creatable
through a substitute. */
for (ClosureElems::const_iterator i = expr.closure.elems.begin();
i != expr.closure.elems.end(); ++i)
worker.addSubstitutionGoal(i->first, shared_from_this());
nrWaitees = expr.closure.elems.size();
state = &RealisationGoal::elemFinished;
}
void RealisationGoal::elemFinished()
{
debug(format("all closure elements finished of `%1%'") % nePath);
amDone();
}
//////////////////////////////////////////////////////////////////////
class SubstitutionGoal : public Goal
{
private:
/* The store path that should be realised through a substitute. */
Path storePath;
typedef void (SubstitutionGoal::*GoalState)();
GoalState state;
public:
SubstitutionGoal(const Path & _nePath, Worker & _worker);
~SubstitutionGoal();
void work();
/* The states. */
void init();
};
SubstitutionGoal::SubstitutionGoal(const Path & _storePath, Worker & _worker)
: Goal(_worker)
{
storePath = _storePath;
state = &SubstitutionGoal::init;
}
SubstitutionGoal::~SubstitutionGoal()
{
}
void SubstitutionGoal::work()
{
(this->*state)();
}
void SubstitutionGoal::init()
{
debug(format("init of subst `%1%'") % storePath);
/* If the path already exists we're done. */
if (isValidPath(storePath)) {
amDone();
return;
}
abort();
}
//////////////////////////////////////////////////////////////////////
static bool working = false;
Worker::Worker()
{
/* Debugging: prevent recursive workers. */
if (working) abort();
working = true;
}
Worker::~Worker()
{
working = false;
}
template<class T>
static void addGoal(const Path & path, GoalPtr waiter,
Worker & worker, Goals & goals,
GoalMap & goalMap, GoalMapRev & goalMapRev)
{
GoalPtr goal;
goal = goalMap[path];
if (!goal) {
goal = GoalPtr(new T(path, worker));
goals.insert(goal);
goalMap[path] = goal;
goalMapRev[goal] = path;
worker.wakeUp(goal);
}
if (waiter) goal->addWaiter(waiter);
}
void Worker::addNormalisationGoal(const Path & nePath, GoalPtr waiter)
{
addGoal<NormalisationGoal>(nePath, waiter, *this, goals,
normalisationGoals, normalisationGoalsRev);
}
void Worker::addRealisationGoal(const Path & nePath, GoalPtr waiter)
{
addGoal<RealisationGoal>(nePath, waiter, *this, goals,
realisationGoals, realisationGoalsRev);
}
void Worker::addSubstitutionGoal(const Path & storePath, GoalPtr waiter)
{
addGoal<SubstitutionGoal>(storePath, waiter, *this, goals,
substitutionGoals, substitutionGoalsRev);
}
static void removeGoal(GoalPtr goal,
GoalMap & goalMap, GoalMapRev & goalMapRev)
{
GoalMapRev::iterator i = goalMapRev.find(goal);
if (i != goalMapRev.end()) {
goalMapRev.erase(i);
goalMap.erase(i->second);
}
}
void Worker::removeGoal(GoalPtr goal)
{
goals.erase(goal);
::removeGoal(goal, normalisationGoals, normalisationGoalsRev);
::removeGoal(goal, realisationGoals, realisationGoalsRev);
::removeGoal(goal, substitutionGoals, substitutionGoalsRev);
}
void Worker::wakeUp(GoalPtr goal)
{
debug("wake up");
awake.insert(goal);
}
bool Worker::canBuildMore()
{
return nrChildren < maxBuildJobs;
}
void Worker::childStarted(GoalPtr goal,
pid_t pid, int fdOutput, bool inBuildSlot)
{
Child child;
child.goal = goal;
child.fdOutput = fdOutput;
child.inBuildSlot = inBuildSlot;
children[pid] = child;
if (inBuildSlot) nrChildren++;
}
void Worker::childTerminated(pid_t pid)
{
Children::iterator i = children.find(pid);
assert(i != children.end());
if (i->second.inBuildSlot) {
assert(nrChildren > 0);
nrChildren--;
}
children.erase(pid);
/* Wake up goals waiting for a build slot. */
for (Goals::iterator i = wantingToBuild.begin();
i != wantingToBuild.end(); ++i)
wakeUp(*i);
wantingToBuild.clear();
}
void Worker::waitForBuildSlot(GoalPtr goal)
{
debug("wait for build slot");
if (canBuildMore())
wakeUp(goal); /* we can do it right away */
else
wantingToBuild.insert(goal);
}
void Worker::run()
{
startNest(nest, lvlChatty, format("running normaliser"));
while (1) {
debug(format("main loop (%1% goals left)") % goals.size());
checkInterrupt();
/* Call every wake goal. */
while (!awake.empty()) {
Goals awake2(awake); /* !!! why is this necessary? */
awake.clear();
for (Goals::iterator i = awake2.begin(); i != awake2.end(); ++i) {
debug("goal");
checkInterrupt();
GoalPtr goal = *i;
goal->work();
}
}
if (goals.empty()) break;
/* !!! not when we're polling */
assert(!children.empty());
/* Wait for input. */
waitForInput();
}
assert(awake.empty());
assert(wantingToBuild.empty());
assert(children.empty());
}
void Worker::waitForInput()
{
printMsg(lvlVomit, "waiting for children");
/* Process log output from the children. We also use this to
detect child termination: if we get EOF on the logger pipe of a
build, we assume that the builder has terminated. */
/* Use select() to wait for the input side of any logger pipe to
become `available'. Note that `available' (i.e., non-blocking)
includes EOF. */
fd_set fds;
FD_ZERO(&fds);
int fdMax = 0;
for (Children::iterator i = children.begin();
i != children.end(); ++i)
{
int fd = i->second.fdOutput;
FD_SET(fd, &fds);
if (fd >= fdMax) fdMax = fd + 1;
}
if (select(fdMax, &fds, 0, 0, 0) == -1) {
if (errno == EINTR) return;
throw SysError("waiting for input");
}
/* Process all available file descriptors. */
for (Children::iterator i = children.begin();
i != children.end(); ++i)
{
checkInterrupt();
GoalPtr goal = i->second.goal;
int fd = i->second.fdOutput;
if (FD_ISSET(fd, &fds)) {
unsigned char buffer[4096];
ssize_t rd = read(fd, buffer, sizeof(buffer));
if (rd == -1) {
if (errno != EINTR)
throw SysError(format("reading from `%1%'")
% goal->name());
} else if (rd == 0) {
debug(format("EOF on `%1%'") % goal->name());
wakeUp(goal);
} else {
printMsg(lvlVomit, format("read %1% bytes from `%2%'")
% rd % goal->name());
// writeFull(goal.fdLogFile, buffer, rd);
if (verbosity >= buildVerbosity)
writeFull(STDERR_FILENO, buffer, rd);
}
}
}
}
//////////////////////////////////////////////////////////////////////
Path normaliseStoreExpr(const Path & nePath)
{
startNest(nest, lvlDebug, format("normalising `%1%'") % nePath);
Worker worker;
worker.addNormalisationGoal(nePath, GoalPtr());
worker.run();
Path nfPath;
if (!querySuccessor(nePath, nfPath))
throw Error("there should be a successor");
return nfPath;
}
void realiseClosure(const Path & nePath)
{
startNest(nest, lvlDebug, format("realising closure `%1%'") % nePath);
Worker worker;
worker.addRealisationGoal(nePath, GoalPtr());
worker.run();
}
void ensurePath(const Path & path)
{
/* If the path is already valid, we're done. */
if (isValidPath(path)) return;
/* !!! add realisation goal */
}