If we don't see machine that supports a build step for
'max_unsupported_time' seconds, the step is aborted. The default is 0,
which is appropriate for Hydra installations that don't provision
missing machines dynamically.
When I browse failed builds in a jobset-eval on Hydra, I regularly
mistake actual build-failures with temporary issues like timeouts (that
probably disappear at the next eval).
To prevent this kind of issue, I figured that using the stopsign-svg for
builds with timeouts or exceeded log-limits is a reasonable choice for
the following reasons:
* A user can now distinguish between actual build-errors (like
compilation-failures or oversized outputs) and (usually) temporary issues
(like a bloated log or a timeout).
* The stopsign is also used for aborted jobs that are shown in a
different tab and can't be confused with timeouts for that reason.
Declarative jobsets were broken by the Nix update, causing
nix cat-file to break silently.
This commit restores declarative jobsets, based on top of a commit
making it easier to see what broke.
In the past, jobsets which are automatically evaluated are evaluated
regularly, on a schedule. This schedule means a new evaluation is
created every checkInterval seconds (assuming something changed.)
This model works well for architectures where our build farm can
easily keep up with demand.
This commit adds a new type of evaluation, called ONE_AT_A_TIME, which
only schedules a new evaluation if the previous evaluation of the
jobset has no unfinished builds.
This model of evaluation lets us have 'low-tier' architectures.
For example, we could now have a jobset for ARMv7l builds, where
the buildfarm only has a single, underpowered ARMv7l builder.
Configuring that jobset as ONE_AT_A_TIME will create an evaluation
and then won't schedule another evaluation until every job of
the existing evaluation is complete.
This way, the cache will have a complete collection of pre-built
software for some commits, but the underpowered architecture will
never become backlogged in ancient revisions.
A postgresql column which is non-null and unique is treated with
the same optimisations as a primary key, so we have no need to
try and recreate the `id` as the primary key.
No read paths are impacted by this change, and the database will
automatically create an ID for each insert. Thus, no code needs to
change.