forked from lix-project/hydra
Merge pull request #1301 from delroth/queue-runner-perf
queue-runner: only re-sort runnables by prio once per dispatch cycle
This commit is contained in:
commit
874fcae1e8
1 changed files with 106 additions and 99 deletions
|
@ -85,59 +85,12 @@ system_time State::doDispatch()
|
|||
}
|
||||
}
|
||||
|
||||
system_time now = std::chrono::system_clock::now();
|
||||
|
||||
/* Start steps until we're out of steps or slots. */
|
||||
auto sleepUntil = system_time::max();
|
||||
bool keepGoing;
|
||||
|
||||
do {
|
||||
system_time now = std::chrono::system_clock::now();
|
||||
|
||||
/* Copy the currentJobs field of each machine. This is
|
||||
necessary to ensure that the sort comparator below is
|
||||
an ordering. std::sort() can segfault if it isn't. Also
|
||||
filter out temporarily disabled machines. */
|
||||
struct MachineInfo
|
||||
{
|
||||
Machine::ptr machine;
|
||||
unsigned long currentJobs;
|
||||
};
|
||||
std::vector<MachineInfo> machinesSorted;
|
||||
{
|
||||
auto machines_(machines.lock());
|
||||
for (auto & m : *machines_) {
|
||||
auto info(m.second->state->connectInfo.lock());
|
||||
if (!m.second->enabled) continue;
|
||||
if (info->consecutiveFailures && info->disabledUntil > now) {
|
||||
if (info->disabledUntil < sleepUntil)
|
||||
sleepUntil = info->disabledUntil;
|
||||
continue;
|
||||
}
|
||||
machinesSorted.push_back({m.second, m.second->state->currentJobs});
|
||||
}
|
||||
}
|
||||
|
||||
/* Sort the machines by a combination of speed factor and
|
||||
available slots. Prioritise the available machines as
|
||||
follows:
|
||||
|
||||
- First by load divided by speed factor, rounded to the
|
||||
nearest integer. This causes fast machines to be
|
||||
preferred over slow machines with similar loads.
|
||||
|
||||
- Then by speed factor.
|
||||
|
||||
- Finally by load. */
|
||||
sort(machinesSorted.begin(), machinesSorted.end(),
|
||||
[](const MachineInfo & a, const MachineInfo & b) -> bool
|
||||
{
|
||||
float ta = std::round(a.currentJobs / a.machine->speedFactor);
|
||||
float tb = std::round(b.currentJobs / b.machine->speedFactor);
|
||||
return
|
||||
ta != tb ? ta < tb :
|
||||
a.machine->speedFactor != b.machine->speedFactor ? a.machine->speedFactor > b.machine->speedFactor :
|
||||
a.currentJobs > b.currentJobs;
|
||||
});
|
||||
|
||||
/* Sort the runnable steps by priority. Priority is establised
|
||||
as follows (in order of precedence):
|
||||
|
||||
|
@ -164,6 +117,7 @@ system_time State::doDispatch()
|
|||
struct StepInfo
|
||||
{
|
||||
Step::ptr step;
|
||||
bool alreadyScheduled = false;
|
||||
|
||||
/* The lowest share used of any jobset depending on this
|
||||
step. */
|
||||
|
@ -236,6 +190,55 @@ system_time State::doDispatch()
|
|||
a.lowestBuildID < b.lowestBuildID;
|
||||
});
|
||||
|
||||
do {
|
||||
now = std::chrono::system_clock::now();
|
||||
|
||||
/* Copy the currentJobs field of each machine. This is
|
||||
necessary to ensure that the sort comparator below is
|
||||
an ordering. std::sort() can segfault if it isn't. Also
|
||||
filter out temporarily disabled machines. */
|
||||
struct MachineInfo
|
||||
{
|
||||
Machine::ptr machine;
|
||||
unsigned long currentJobs;
|
||||
};
|
||||
std::vector<MachineInfo> machinesSorted;
|
||||
{
|
||||
auto machines_(machines.lock());
|
||||
for (auto & m : *machines_) {
|
||||
auto info(m.second->state->connectInfo.lock());
|
||||
if (!m.second->enabled) continue;
|
||||
if (info->consecutiveFailures && info->disabledUntil > now) {
|
||||
if (info->disabledUntil < sleepUntil)
|
||||
sleepUntil = info->disabledUntil;
|
||||
continue;
|
||||
}
|
||||
machinesSorted.push_back({m.second, m.second->state->currentJobs});
|
||||
}
|
||||
}
|
||||
|
||||
/* Sort the machines by a combination of speed factor and
|
||||
available slots. Prioritise the available machines as
|
||||
follows:
|
||||
|
||||
- First by load divided by speed factor, rounded to the
|
||||
nearest integer. This causes fast machines to be
|
||||
preferred over slow machines with similar loads.
|
||||
|
||||
- Then by speed factor.
|
||||
|
||||
- Finally by load. */
|
||||
sort(machinesSorted.begin(), machinesSorted.end(),
|
||||
[](const MachineInfo & a, const MachineInfo & b) -> bool
|
||||
{
|
||||
float ta = std::round(a.currentJobs / a.machine->speedFactor);
|
||||
float tb = std::round(b.currentJobs / b.machine->speedFactor);
|
||||
return
|
||||
ta != tb ? ta < tb :
|
||||
a.machine->speedFactor != b.machine->speedFactor ? a.machine->speedFactor > b.machine->speedFactor :
|
||||
a.currentJobs > b.currentJobs;
|
||||
});
|
||||
|
||||
/* Find a machine with a free slot and find a step to run
|
||||
on it. Once we find such a pair, we restart the outer
|
||||
loop because the machine sorting will have changed. */
|
||||
|
@ -245,6 +248,8 @@ system_time State::doDispatch()
|
|||
if (mi.machine->state->currentJobs >= mi.machine->maxJobs) continue;
|
||||
|
||||
for (auto & stepInfo : runnableSorted) {
|
||||
if (stepInfo.alreadyScheduled) continue;
|
||||
|
||||
auto & step(stepInfo.step);
|
||||
|
||||
/* Can this machine do this step? */
|
||||
|
@ -271,6 +276,8 @@ system_time State::doDispatch()
|
|||
r.count--;
|
||||
}
|
||||
|
||||
stepInfo.alreadyScheduled = true;
|
||||
|
||||
/* Make a slot reservation and start a thread to
|
||||
do the build. */
|
||||
auto builderThread = std::thread(&State::builder, this,
|
||||
|
|
Loading…
Reference in a new issue