forked from lix-project/hydra
Split hydra-queue-runner.cc more
This commit is contained in:
parent
6ddcd37df1
commit
7e026d35f7
6 changed files with 921 additions and 904 deletions
|
@ -1,6 +1,7 @@
|
|||
bin_PROGRAMS = hydra-queue-runner
|
||||
|
||||
hydra_queue_runner_SOURCES = hydra-queue-runner.cc build-result.cc build-remote.cc \
|
||||
hydra_queue_runner_SOURCES = hydra-queue-runner.cc queue-monitor.cc dispatcher.cc \
|
||||
builder.cc build-result.cc build-remote.cc \
|
||||
build-result.hh counter.hh pool.hh sync.hh token-server.hh state.hh db.hh
|
||||
hydra_queue_runner_LDADD = $(NIX_LIBS) -lpqxx
|
||||
|
||||
|
|
378
src/hydra-queue-runner/builder.cc
Normal file
378
src/hydra-queue-runner/builder.cc
Normal file
|
@ -0,0 +1,378 @@
|
|||
#include <cmath>
|
||||
|
||||
#include "state.hh"
|
||||
#include "build-result.hh"
|
||||
|
||||
using namespace nix;
|
||||
|
||||
|
||||
void State::builder(Step::ptr step, Machine::ptr machine, std::shared_ptr<MaintainCount> reservation)
|
||||
{
|
||||
bool retry = true;
|
||||
|
||||
MaintainCount mc(nrActiveSteps);
|
||||
|
||||
try {
|
||||
auto store = openStore(); // FIXME: pool
|
||||
retry = doBuildStep(store, step, machine);
|
||||
} catch (std::exception & e) {
|
||||
printMsg(lvlError, format("uncaught exception building ‘%1%’ on ‘%2%’: %3%")
|
||||
% step->drvPath % machine->sshName % e.what());
|
||||
}
|
||||
|
||||
/* Release the machine and wake up the dispatcher. */
|
||||
assert(reservation.unique());
|
||||
reservation = 0;
|
||||
wakeDispatcher();
|
||||
|
||||
/* If there was a temporary failure, retry the step after an
|
||||
exponentially increasing interval. */
|
||||
if (retry) {
|
||||
{
|
||||
auto step_(step->state.lock());
|
||||
step_->tries++;
|
||||
nrRetries++;
|
||||
if (step_->tries > maxNrRetries) maxNrRetries = step_->tries; // yeah yeah, not atomic
|
||||
int delta = retryInterval * powf(retryBackoff, step_->tries - 1);
|
||||
printMsg(lvlInfo, format("will retry ‘%1%’ after %2%s") % step->drvPath % delta);
|
||||
step_->after = std::chrono::system_clock::now() + std::chrono::seconds(delta);
|
||||
}
|
||||
|
||||
makeRunnable(step);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
bool State::doBuildStep(std::shared_ptr<StoreAPI> store, Step::ptr step,
|
||||
Machine::ptr machine)
|
||||
{
|
||||
{
|
||||
auto step_(step->state.lock());
|
||||
assert(step_->created);
|
||||
assert(!step->finished);
|
||||
}
|
||||
|
||||
/* There can be any number of builds in the database that depend
|
||||
on this derivation. Arbitrarily pick one (though preferring a
|
||||
build of which this is the top-level derivation) for the
|
||||
purpose of creating build steps. We could create a build step
|
||||
record for every build, but that could be very expensive
|
||||
(e.g. a stdenv derivation can be a dependency of tens of
|
||||
thousands of builds), so we don't. */
|
||||
Build::ptr build;
|
||||
|
||||
{
|
||||
std::set<Build::ptr> dependents;
|
||||
std::set<Step::ptr> steps;
|
||||
getDependents(step, dependents, steps);
|
||||
|
||||
if (dependents.empty()) {
|
||||
/* Apparently all builds that depend on this derivation
|
||||
are gone (e.g. cancelled). So don't bother. This is
|
||||
very unlikely to happen, because normally Steps are
|
||||
only kept alive by being reachable from a
|
||||
Build. However, it's possible that a new Build just
|
||||
created a reference to this step. So to handle that
|
||||
possibility, we retry this step (putting it back in
|
||||
the runnable queue). If there are really no strong
|
||||
pointers to the step, it will be deleted. */
|
||||
printMsg(lvlInfo, format("maybe cancelling build step ‘%1%’") % step->drvPath);
|
||||
return true;
|
||||
}
|
||||
|
||||
for (auto build2 : dependents)
|
||||
if (build2->drvPath == step->drvPath) { build = build2; break; }
|
||||
|
||||
if (!build) build = *dependents.begin();
|
||||
|
||||
printMsg(lvlInfo, format("performing step ‘%1%’ on ‘%2%’ (needed by build %3% and %4% others)")
|
||||
% step->drvPath % machine->sshName % build->id % (dependents.size() - 1));
|
||||
}
|
||||
|
||||
bool quit = build->id == buildOne;
|
||||
|
||||
auto conn(dbPool.get());
|
||||
|
||||
RemoteResult result;
|
||||
BuildOutput res;
|
||||
int stepNr = 0;
|
||||
|
||||
time_t stepStartTime = result.startTime = time(0);
|
||||
|
||||
/* If any of the outputs have previously failed, then don't bother
|
||||
building again. */
|
||||
bool cachedFailure = checkCachedFailure(step, *conn);
|
||||
|
||||
if (cachedFailure)
|
||||
result.status = BuildResult::CachedFailure;
|
||||
else {
|
||||
|
||||
/* Create a build step record indicating that we started
|
||||
building. Also, mark the selected build as busy. */
|
||||
{
|
||||
pqxx::work txn(*conn);
|
||||
stepNr = createBuildStep(txn, result.startTime, build, step, machine->sshName, bssBusy);
|
||||
txn.parameterized("update Builds set busy = 1 where id = $1")(build->id).exec();
|
||||
txn.commit();
|
||||
}
|
||||
|
||||
/* Do the build. */
|
||||
try {
|
||||
/* FIXME: referring builds may have conflicting timeouts. */
|
||||
buildRemote(store, machine, step, build->maxSilentTime, build->buildTimeout, result);
|
||||
} catch (Error & e) {
|
||||
result.status = BuildResult::MiscFailure;
|
||||
result.errorMsg = e.msg();
|
||||
}
|
||||
|
||||
if (result.success()) res = getBuildOutput(store, step->drv);
|
||||
}
|
||||
|
||||
time_t stepStopTime = time(0);
|
||||
if (!result.stopTime) result.stopTime = stepStopTime;
|
||||
|
||||
/* Asynchronously compress the log. */
|
||||
if (result.logFile != "") {
|
||||
{
|
||||
auto logCompressorQueue_(logCompressorQueue.lock());
|
||||
logCompressorQueue_->push(result.logFile);
|
||||
}
|
||||
logCompressorWakeup.notify_one();
|
||||
}
|
||||
|
||||
/* The step had a hopefully temporary failure (e.g. network
|
||||
issue). Retry a number of times. */
|
||||
if (result.canRetry()) {
|
||||
printMsg(lvlError, format("possibly transient failure building ‘%1%’ on ‘%2%’: %3%")
|
||||
% step->drvPath % machine->sshName % result.errorMsg);
|
||||
bool retry;
|
||||
{
|
||||
auto step_(step->state.lock());
|
||||
retry = step_->tries + 1 < maxTries;
|
||||
}
|
||||
if (retry) {
|
||||
pqxx::work txn(*conn);
|
||||
finishBuildStep(txn, result.startTime, result.stopTime, build->id,
|
||||
stepNr, machine->sshName, bssAborted, result.errorMsg);
|
||||
txn.commit();
|
||||
if (quit) exit(1);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
if (result.success()) {
|
||||
|
||||
/* Register success in the database for all Build objects that
|
||||
have this step as the top-level step. Since the queue
|
||||
monitor thread may be creating new referring Builds
|
||||
concurrently, and updating the database may fail, we do
|
||||
this in a loop, marking all known builds, repeating until
|
||||
there are no unmarked builds.
|
||||
*/
|
||||
|
||||
std::vector<BuildID> buildIDs;
|
||||
|
||||
while (true) {
|
||||
|
||||
/* Get the builds that have this one as the top-level. */
|
||||
std::vector<Build::ptr> direct;
|
||||
{
|
||||
auto steps_(steps.lock());
|
||||
auto step_(step->state.lock());
|
||||
|
||||
for (auto & b_ : step_->builds) {
|
||||
auto b = b_.lock();
|
||||
if (b && !b->finishedInDB) direct.push_back(b);
|
||||
}
|
||||
|
||||
/* If there are no builds left to update in the DB,
|
||||
then we're done (except for calling
|
||||
finishBuildStep()). Delete the step from
|
||||
‘steps’. Since we've been holding the ‘steps’ lock,
|
||||
no new referrers can have been added in the
|
||||
meantime or be added afterwards. */
|
||||
if (direct.empty()) {
|
||||
printMsg(lvlDebug, format("finishing build step ‘%1%’") % step->drvPath);
|
||||
steps_->erase(step->drvPath);
|
||||
}
|
||||
}
|
||||
|
||||
/* Update the database. */
|
||||
{
|
||||
pqxx::work txn(*conn);
|
||||
|
||||
finishBuildStep(txn, result.startTime, result.stopTime, build->id, stepNr, machine->sshName, bssSuccess);
|
||||
|
||||
for (auto & b : direct)
|
||||
markSucceededBuild(txn, b, res, build != b || result.status != BuildResult::Built,
|
||||
result.startTime, result.stopTime);
|
||||
|
||||
txn.commit();
|
||||
}
|
||||
|
||||
if (direct.empty()) break;
|
||||
|
||||
/* Remove the direct dependencies from ‘builds’. This will
|
||||
cause them to be destroyed. */
|
||||
for (auto & b : direct) {
|
||||
auto builds_(builds.lock());
|
||||
b->finishedInDB = true;
|
||||
builds_->erase(b->id);
|
||||
buildIDs.push_back(b->id);
|
||||
}
|
||||
}
|
||||
|
||||
/* Send notification about the builds that have this step as
|
||||
the top-level. */
|
||||
for (auto id : buildIDs) {
|
||||
{
|
||||
auto notificationSenderQueue_(notificationSenderQueue.lock());
|
||||
notificationSenderQueue_->push(NotificationItem(id, std::vector<BuildID>()));
|
||||
}
|
||||
notificationSenderWakeup.notify_one();
|
||||
}
|
||||
|
||||
/* Wake up any dependent steps that have no other
|
||||
dependencies. */
|
||||
{
|
||||
auto step_(step->state.lock());
|
||||
for (auto & rdepWeak : step_->rdeps) {
|
||||
auto rdep = rdepWeak.lock();
|
||||
if (!rdep) continue;
|
||||
|
||||
bool runnable = false;
|
||||
{
|
||||
auto rdep_(rdep->state.lock());
|
||||
rdep_->deps.erase(step);
|
||||
/* Note: if the step has not finished
|
||||
initialisation yet, it will be made runnable in
|
||||
createStep(), if appropriate. */
|
||||
if (rdep_->deps.empty() && rdep_->created) runnable = true;
|
||||
}
|
||||
|
||||
if (runnable) makeRunnable(rdep);
|
||||
}
|
||||
}
|
||||
|
||||
} else {
|
||||
|
||||
/* Register failure in the database for all Build objects that
|
||||
directly or indirectly depend on this step. */
|
||||
|
||||
std::vector<BuildID> dependentIDs;
|
||||
|
||||
while (true) {
|
||||
|
||||
/* Get the builds and steps that depend on this step. */
|
||||
std::set<Build::ptr> indirect;
|
||||
{
|
||||
auto steps_(steps.lock());
|
||||
std::set<Step::ptr> steps;
|
||||
getDependents(step, indirect, steps);
|
||||
|
||||
/* If there are no builds left, delete all referring
|
||||
steps from ‘steps’. As for the success case, we can
|
||||
be certain no new referrers can be added. */
|
||||
if (indirect.empty()) {
|
||||
for (auto & s : steps) {
|
||||
printMsg(lvlDebug, format("finishing build step ‘%1%’") % s->drvPath);
|
||||
steps_->erase(s->drvPath);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* Update the database. */
|
||||
{
|
||||
pqxx::work txn(*conn);
|
||||
|
||||
BuildStatus buildStatus =
|
||||
result.status == BuildResult::TimedOut ? bsTimedOut :
|
||||
result.canRetry() ? bsAborted :
|
||||
bsFailed;
|
||||
BuildStepStatus buildStepStatus =
|
||||
result.status == BuildResult::TimedOut ? bssTimedOut :
|
||||
result.canRetry() ? bssAborted :
|
||||
bssFailed;
|
||||
|
||||
/* For standard failures, we don't care about the error
|
||||
message. */
|
||||
if (result.status == BuildResult::PermanentFailure ||
|
||||
result.status == BuildResult::TransientFailure ||
|
||||
result.status == BuildResult::CachedFailure ||
|
||||
result.status == BuildResult::TimedOut)
|
||||
result.errorMsg = "";
|
||||
|
||||
/* Create failed build steps for every build that depends
|
||||
on this. For cached failures, only create a step for
|
||||
builds that don't have this step as top-level
|
||||
(otherwise the user won't be able to see what caused
|
||||
the build to fail). */
|
||||
for (auto & build2 : indirect) {
|
||||
if ((cachedFailure && build2->drvPath == step->drvPath) ||
|
||||
(!cachedFailure && build == build2) ||
|
||||
build2->finishedInDB)
|
||||
continue;
|
||||
createBuildStep(txn, 0, build2, step, machine->sshName,
|
||||
buildStepStatus, result.errorMsg, build == build2 ? 0 : build->id);
|
||||
}
|
||||
|
||||
if (!cachedFailure)
|
||||
finishBuildStep(txn, result.startTime, result.stopTime, build->id,
|
||||
stepNr, machine->sshName, buildStepStatus, result.errorMsg);
|
||||
|
||||
/* Mark all builds that depend on this derivation as failed. */
|
||||
for (auto & build2 : indirect) {
|
||||
if (build2->finishedInDB) continue;
|
||||
printMsg(lvlError, format("marking build %1% as failed") % build2->id);
|
||||
txn.parameterized
|
||||
("update Builds set finished = 1, busy = 0, buildStatus = $2, startTime = $3, stopTime = $4, isCachedBuild = $5 where id = $1 and finished = 0")
|
||||
(build2->id)
|
||||
((int) (build2->drvPath != step->drvPath && buildStatus == bsFailed ? bsDepFailed : buildStatus))
|
||||
(result.startTime)
|
||||
(result.stopTime)
|
||||
(cachedFailure ? 1 : 0).exec();
|
||||
nrBuildsDone++;
|
||||
}
|
||||
|
||||
/* Remember failed paths in the database so that they
|
||||
won't be built again. */
|
||||
if (!cachedFailure && result.status == BuildResult::PermanentFailure)
|
||||
for (auto & path : outputPaths(step->drv))
|
||||
txn.parameterized("insert into FailedPaths values ($1)")(path).exec();
|
||||
|
||||
txn.commit();
|
||||
}
|
||||
|
||||
/* Remove the indirect dependencies from ‘builds’. This
|
||||
will cause them to be destroyed. */
|
||||
for (auto & b : indirect) {
|
||||
auto builds_(builds.lock());
|
||||
b->finishedInDB = true;
|
||||
builds_->erase(b->id);
|
||||
dependentIDs.push_back(b->id);
|
||||
if (buildOne == b->id) quit = true;
|
||||
}
|
||||
}
|
||||
|
||||
/* Send notification about this build and its dependents. */
|
||||
{
|
||||
auto notificationSenderQueue_(notificationSenderQueue.lock());
|
||||
notificationSenderQueue_->push(NotificationItem(build->id, dependentIDs));
|
||||
}
|
||||
notificationSenderWakeup.notify_one();
|
||||
|
||||
}
|
||||
|
||||
// FIXME: keep stats about aborted steps?
|
||||
nrStepsDone++;
|
||||
totalStepTime += stepStopTime - stepStartTime;
|
||||
totalStepBuildTime += result.stopTime - result.startTime;
|
||||
machine->state->nrStepsDone++;
|
||||
machine->state->totalStepTime += stepStopTime - stepStartTime;
|
||||
machine->state->totalStepBuildTime += result.stopTime - result.startTime;
|
||||
|
||||
if (quit) exit(0); // testing hack
|
||||
|
||||
return false;
|
||||
}
|
155
src/hydra-queue-runner/dispatcher.cc
Normal file
155
src/hydra-queue-runner/dispatcher.cc
Normal file
|
@ -0,0 +1,155 @@
|
|||
#include <algorithm>
|
||||
#include <thread>
|
||||
|
||||
#include "state.hh"
|
||||
|
||||
using namespace nix;
|
||||
|
||||
|
||||
void State::makeRunnable(Step::ptr step)
|
||||
{
|
||||
printMsg(lvlChatty, format("step ‘%1%’ is now runnable") % step->drvPath);
|
||||
|
||||
{
|
||||
auto step_(step->state.lock());
|
||||
assert(step_->created);
|
||||
assert(!step->finished);
|
||||
assert(step_->deps.empty());
|
||||
}
|
||||
|
||||
{
|
||||
auto runnable_(runnable.lock());
|
||||
runnable_->push_back(step);
|
||||
}
|
||||
|
||||
wakeDispatcher();
|
||||
}
|
||||
|
||||
|
||||
void State::dispatcher()
|
||||
{
|
||||
while (true) {
|
||||
printMsg(lvlDebug, "dispatcher woken up");
|
||||
|
||||
auto sleepUntil = system_time::max();
|
||||
|
||||
bool keepGoing;
|
||||
|
||||
do {
|
||||
/* Copy the currentJobs field of each machine. This is
|
||||
necessary to ensure that the sort comparator below is
|
||||
an ordering. std::sort() can segfault if it isn't. */
|
||||
struct MachineInfo
|
||||
{
|
||||
Machine::ptr machine;
|
||||
unsigned int currentJobs;
|
||||
};
|
||||
std::vector<MachineInfo> machinesSorted;
|
||||
{
|
||||
auto machines_(machines.lock());
|
||||
for (auto & m : *machines_)
|
||||
machinesSorted.push_back({m.second, m.second->state->currentJobs});
|
||||
}
|
||||
|
||||
/* Sort the machines by a combination of speed factor and
|
||||
available slots. Prioritise the available machines as
|
||||
follows:
|
||||
|
||||
- First by load divided by speed factor, rounded to the
|
||||
nearest integer. This causes fast machines to be
|
||||
preferred over slow machines with similar loads.
|
||||
|
||||
- Then by speed factor.
|
||||
|
||||
- Finally by load. */
|
||||
sort(machinesSorted.begin(), machinesSorted.end(),
|
||||
[](const MachineInfo & a, const MachineInfo & b) -> bool
|
||||
{
|
||||
float ta = roundf(a.currentJobs / a.machine->speedFactor);
|
||||
float tb = roundf(b.currentJobs / b.machine->speedFactor);
|
||||
return
|
||||
ta != tb ? ta < tb :
|
||||
a.machine->speedFactor != b.machine->speedFactor ? a.machine->speedFactor > b.machine->speedFactor :
|
||||
a.currentJobs > b.currentJobs;
|
||||
});
|
||||
|
||||
/* Find a machine with a free slot and find a step to run
|
||||
on it. Once we find such a pair, we restart the outer
|
||||
loop because the machine sorting will have changed. */
|
||||
keepGoing = false;
|
||||
system_time now = std::chrono::system_clock::now();
|
||||
|
||||
for (auto & mi : machinesSorted) {
|
||||
// FIXME: can we lose a wakeup if a builder exits concurrently?
|
||||
if (mi.machine->state->currentJobs >= mi.machine->maxJobs) continue;
|
||||
|
||||
auto runnable_(runnable.lock());
|
||||
//printMsg(lvlDebug, format("%1% runnable builds") % runnable_->size());
|
||||
|
||||
/* FIXME: we're holding the runnable lock too long
|
||||
here. This could be more efficient. */
|
||||
|
||||
for (auto i = runnable_->begin(); i != runnable_->end(); ) {
|
||||
auto step = i->lock();
|
||||
|
||||
/* Delete dead steps. */
|
||||
if (!step) {
|
||||
i = runnable_->erase(i);
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Can this machine do this step? */
|
||||
if (!mi.machine->supportsStep(step)) {
|
||||
++i;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Skip previously failed steps that aren't ready
|
||||
to be retried. */
|
||||
{
|
||||
auto step_(step->state.lock());
|
||||
if (step_->tries > 0 && step_->after > now) {
|
||||
if (step_->after < sleepUntil)
|
||||
sleepUntil = step_->after;
|
||||
++i;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
/* Make a slot reservation and start a thread to
|
||||
do the build. */
|
||||
auto reservation = std::make_shared<MaintainCount>(mi.machine->state->currentJobs);
|
||||
i = runnable_->erase(i);
|
||||
|
||||
auto builderThread = std::thread(&State::builder, this, step, mi.machine, reservation);
|
||||
builderThread.detach(); // FIXME?
|
||||
|
||||
keepGoing = true;
|
||||
break;
|
||||
}
|
||||
|
||||
if (keepGoing) break;
|
||||
}
|
||||
|
||||
} while (keepGoing);
|
||||
|
||||
/* Sleep until we're woken up (either because a runnable build
|
||||
is added, or because a build finishes). */
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(dispatcherMutex);
|
||||
printMsg(lvlDebug, format("dispatcher sleeping for %1%s") %
|
||||
std::chrono::duration_cast<std::chrono::seconds>(sleepUntil - std::chrono::system_clock::now()).count());
|
||||
dispatcherWakeup.wait_until(lock, sleepUntil);
|
||||
nrDispatcherWakeups++;
|
||||
}
|
||||
}
|
||||
|
||||
printMsg(lvlError, "dispatcher exits");
|
||||
}
|
||||
|
||||
|
||||
void State::wakeDispatcher()
|
||||
{
|
||||
{ std::lock_guard<std::mutex> lock(dispatcherMutex); } // barrier
|
||||
dispatcherWakeup.notify_one();
|
||||
}
|
|
@ -1,14 +1,12 @@
|
|||
#include <iostream>
|
||||
#include <thread>
|
||||
#include <cmath>
|
||||
#include <algorithm>
|
||||
|
||||
#include <sys/types.h>
|
||||
#include <sys/stat.h>
|
||||
#include <fcntl.h>
|
||||
|
||||
#include "build-result.hh"
|
||||
#include "state.hh"
|
||||
#include "build-result.hh"
|
||||
|
||||
#include "shared.hh"
|
||||
#include "globals.hh"
|
||||
|
@ -17,20 +15,6 @@
|
|||
using namespace nix;
|
||||
|
||||
|
||||
// FIXME: Make configurable.
|
||||
const unsigned int maxTries = 5;
|
||||
const unsigned int retryInterval = 60; // seconds
|
||||
const float retryBackoff = 3.0;
|
||||
const unsigned int maxParallelCopyClosure = 4;
|
||||
|
||||
|
||||
template <class C, class V>
|
||||
bool has(const C & c, const V & v)
|
||||
{
|
||||
return c.find(v) != c.end();
|
||||
}
|
||||
|
||||
|
||||
State::State()
|
||||
{
|
||||
hydraData = getEnv("HYDRA_DATA");
|
||||
|
@ -186,371 +170,6 @@ void State::finishBuildStep(pqxx::work & txn, time_t startTime, time_t stopTime,
|
|||
}
|
||||
|
||||
|
||||
void State::queueMonitor()
|
||||
{
|
||||
while (true) {
|
||||
try {
|
||||
queueMonitorLoop();
|
||||
} catch (std::exception & e) {
|
||||
printMsg(lvlError, format("queue monitor: %1%") % e.what());
|
||||
sleep(10); // probably a DB problem, so don't retry right away
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void State::queueMonitorLoop()
|
||||
{
|
||||
auto conn(dbPool.get());
|
||||
|
||||
receiver buildsAdded(*conn, "builds_added");
|
||||
receiver buildsRestarted(*conn, "builds_restarted");
|
||||
receiver buildsCancelled(*conn, "builds_cancelled");
|
||||
receiver buildsDeleted(*conn, "builds_deleted");
|
||||
|
||||
auto store = openStore(); // FIXME: pool
|
||||
|
||||
unsigned int lastBuildId = 0;
|
||||
|
||||
while (true) {
|
||||
getQueuedBuilds(*conn, store, lastBuildId);
|
||||
|
||||
/* Sleep until we get notification from the database about an
|
||||
event. */
|
||||
conn->await_notification();
|
||||
nrQueueWakeups++;
|
||||
|
||||
if (buildsAdded.get())
|
||||
printMsg(lvlTalkative, "got notification: new builds added to the queue");
|
||||
if (buildsRestarted.get()) {
|
||||
printMsg(lvlTalkative, "got notification: builds restarted");
|
||||
lastBuildId = 0; // check all builds
|
||||
}
|
||||
if (buildsCancelled.get() || buildsDeleted.get()) {
|
||||
printMsg(lvlTalkative, "got notification: builds cancelled");
|
||||
removeCancelledBuilds(*conn);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void State::getQueuedBuilds(Connection & conn, std::shared_ptr<StoreAPI> store, unsigned int & lastBuildId)
|
||||
{
|
||||
printMsg(lvlInfo, format("checking the queue for builds > %1%...") % lastBuildId);
|
||||
|
||||
/* Grab the queued builds from the database, but don't process
|
||||
them yet (since we don't want a long-running transaction). */
|
||||
std::multimap<Path, Build::ptr> newBuilds;
|
||||
|
||||
{
|
||||
pqxx::work txn(conn);
|
||||
|
||||
auto res = txn.parameterized("select id, project, jobset, job, drvPath, maxsilent, timeout from Builds where id > $1 and finished = 0 order by id")(lastBuildId).exec();
|
||||
|
||||
for (auto const & row : res) {
|
||||
auto builds_(builds.lock());
|
||||
BuildID id = row["id"].as<BuildID>();
|
||||
if (buildOne && id != buildOne) continue;
|
||||
if (id > lastBuildId) lastBuildId = id;
|
||||
if (has(*builds_, id)) continue;
|
||||
|
||||
auto build = std::make_shared<Build>();
|
||||
build->id = id;
|
||||
build->drvPath = row["drvPath"].as<string>();
|
||||
build->fullJobName = row["project"].as<string>() + ":" + row["jobset"].as<string>() + ":" + row["job"].as<string>();
|
||||
build->maxSilentTime = row["maxsilent"].as<int>();
|
||||
build->buildTimeout = row["timeout"].as<int>();
|
||||
|
||||
newBuilds.emplace(std::make_pair(build->drvPath, build));
|
||||
}
|
||||
}
|
||||
|
||||
std::set<Step::ptr> newRunnable;
|
||||
unsigned int nrAdded;
|
||||
std::function<void(Build::ptr)> createBuild;
|
||||
|
||||
createBuild = [&](Build::ptr build) {
|
||||
printMsg(lvlTalkative, format("loading build %1% (%2%)") % build->id % build->fullJobName);
|
||||
nrAdded++;
|
||||
|
||||
if (!store->isValidPath(build->drvPath)) {
|
||||
/* Derivation has been GC'ed prematurely. */
|
||||
printMsg(lvlError, format("aborting GC'ed build %1%") % build->id);
|
||||
if (!build->finishedInDB) {
|
||||
pqxx::work txn(conn);
|
||||
txn.parameterized
|
||||
("update Builds set finished = 1, busy = 0, buildStatus = $2, startTime = $3, stopTime = $3, errorMsg = $4 where id = $1 and finished = 0")
|
||||
(build->id)
|
||||
((int) bsAborted)
|
||||
(time(0))
|
||||
("derivation was garbage-collected prior to build").exec();
|
||||
txn.commit();
|
||||
build->finishedInDB = true;
|
||||
nrBuildsDone++;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
std::set<Step::ptr> newSteps;
|
||||
std::set<Path> finishedDrvs; // FIXME: re-use?
|
||||
Step::ptr step = createStep(store, build->drvPath, build, 0, finishedDrvs, newSteps, newRunnable);
|
||||
|
||||
/* Some of the new steps may be the top level of builds that
|
||||
we haven't processed yet. So do them now. This ensures that
|
||||
if build A depends on build B with top-level step X, then X
|
||||
will be "accounted" to B in doBuildStep(). */
|
||||
for (auto & r : newSteps) {
|
||||
while (true) {
|
||||
auto i = newBuilds.find(r->drvPath);
|
||||
if (i == newBuilds.end()) break;
|
||||
Build::ptr b = i->second;
|
||||
newBuilds.erase(i);
|
||||
createBuild(b);
|
||||
}
|
||||
}
|
||||
|
||||
/* If we didn't get a step, it means the step's outputs are
|
||||
all valid. So we mark this as a finished, cached build. */
|
||||
if (!step) {
|
||||
Derivation drv = readDerivation(build->drvPath);
|
||||
BuildOutput res = getBuildOutput(store, drv);
|
||||
|
||||
pqxx::work txn(conn);
|
||||
time_t now = time(0);
|
||||
markSucceededBuild(txn, build, res, true, now, now);
|
||||
txn.commit();
|
||||
|
||||
build->finishedInDB = true;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
/* If any step has an unsupported system type or has a
|
||||
previously failed output path, then fail the build right
|
||||
away. */
|
||||
bool badStep = false;
|
||||
for (auto & r : newSteps) {
|
||||
BuildStatus buildStatus = bsSuccess;
|
||||
BuildStepStatus buildStepStatus = bssFailed;
|
||||
|
||||
if (checkCachedFailure(r, conn)) {
|
||||
printMsg(lvlError, format("marking build %1% as cached failure") % build->id);
|
||||
buildStatus = step == r ? bsFailed : bsDepFailed;
|
||||
buildStepStatus = bssFailed;
|
||||
}
|
||||
|
||||
if (buildStatus == bsSuccess) {
|
||||
bool supported = false;
|
||||
{
|
||||
auto machines_(machines.lock()); // FIXME: use shared_mutex
|
||||
for (auto & m : *machines_)
|
||||
if (m.second->supportsStep(r)) { supported = true; break; }
|
||||
}
|
||||
|
||||
if (!supported) {
|
||||
printMsg(lvlError, format("aborting unsupported build %1%") % build->id);
|
||||
buildStatus = bsUnsupported;
|
||||
buildStepStatus = bssUnsupported;
|
||||
}
|
||||
}
|
||||
|
||||
if (buildStatus != bsSuccess) {
|
||||
time_t now = time(0);
|
||||
if (!build->finishedInDB) {
|
||||
pqxx::work txn(conn);
|
||||
createBuildStep(txn, 0, build, r, "", buildStepStatus);
|
||||
txn.parameterized
|
||||
("update Builds set finished = 1, busy = 0, buildStatus = $2, startTime = $3, stopTime = $3, isCachedBuild = $4 where id = $1 and finished = 0")
|
||||
(build->id)
|
||||
((int) buildStatus)
|
||||
(now)
|
||||
(buildStatus != bsUnsupported ? 1 : 0).exec();
|
||||
txn.commit();
|
||||
build->finishedInDB = true;
|
||||
nrBuildsDone++;
|
||||
}
|
||||
badStep = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (badStep) return;
|
||||
|
||||
/* Note: if we exit this scope prior to this, the build and
|
||||
all newly created steps are destroyed. */
|
||||
|
||||
{
|
||||
auto builds_(builds.lock());
|
||||
if (!build->finishedInDB) // FIXME: can this happen?
|
||||
(*builds_)[build->id] = build;
|
||||
build->toplevel = step;
|
||||
}
|
||||
|
||||
printMsg(lvlChatty, format("added build %1% (top-level step %2%, %3% new steps)")
|
||||
% build->id % step->drvPath % newSteps.size());
|
||||
};
|
||||
|
||||
/* Now instantiate build steps for each new build. The builder
|
||||
threads can start building the runnable build steps right away,
|
||||
even while we're still processing other new builds. */
|
||||
while (!newBuilds.empty()) {
|
||||
auto build = newBuilds.begin()->second;
|
||||
newBuilds.erase(newBuilds.begin());
|
||||
|
||||
newRunnable.clear();
|
||||
nrAdded = 0;
|
||||
try {
|
||||
createBuild(build);
|
||||
} catch (Error & e) {
|
||||
e.addPrefix(format("while loading build %1%: ") % build->id);
|
||||
throw;
|
||||
}
|
||||
|
||||
/* Add the new runnable build steps to ‘runnable’ and wake up
|
||||
the builder threads. */
|
||||
printMsg(lvlChatty, format("got %1% new runnable steps from %2% new builds") % newRunnable.size() % nrAdded);
|
||||
for (auto & r : newRunnable)
|
||||
makeRunnable(r);
|
||||
|
||||
nrBuildsRead += nrAdded;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void State::removeCancelledBuilds(Connection & conn)
|
||||
{
|
||||
/* Get the current set of queued builds. */
|
||||
std::set<BuildID> currentIds;
|
||||
{
|
||||
pqxx::work txn(conn);
|
||||
auto res = txn.exec("select id from Builds where finished = 0");
|
||||
for (auto const & row : res)
|
||||
currentIds.insert(row["id"].as<BuildID>());
|
||||
}
|
||||
|
||||
auto builds_(builds.lock());
|
||||
|
||||
for (auto i = builds_->begin(); i != builds_->end(); ) {
|
||||
if (currentIds.find(i->first) == currentIds.end()) {
|
||||
printMsg(lvlInfo, format("discarding cancelled build %1%") % i->first);
|
||||
i = builds_->erase(i);
|
||||
// FIXME: ideally we would interrupt active build steps here.
|
||||
} else
|
||||
++i;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Step::ptr State::createStep(std::shared_ptr<StoreAPI> store, const Path & drvPath,
|
||||
Build::ptr referringBuild, Step::ptr referringStep, std::set<Path> & finishedDrvs,
|
||||
std::set<Step::ptr> & newSteps, std::set<Step::ptr> & newRunnable)
|
||||
{
|
||||
if (finishedDrvs.find(drvPath) != finishedDrvs.end()) return 0;
|
||||
|
||||
/* Check if the requested step already exists. If not, create a
|
||||
new step. In any case, make the step reachable from
|
||||
referringBuild or referringStep. This is done atomically (with
|
||||
‘steps’ locked), to ensure that this step can never become
|
||||
reachable from a new build after doBuildStep has removed it
|
||||
from ‘steps’. */
|
||||
Step::ptr step;
|
||||
bool isNew = false;
|
||||
{
|
||||
auto steps_(steps.lock());
|
||||
|
||||
/* See if the step already exists in ‘steps’ and is not
|
||||
stale. */
|
||||
auto prev = steps_->find(drvPath);
|
||||
if (prev != steps_->end()) {
|
||||
step = prev->second.lock();
|
||||
/* Since ‘step’ is a strong pointer, the referred Step
|
||||
object won't be deleted after this. */
|
||||
if (!step) steps_->erase(drvPath); // remove stale entry
|
||||
}
|
||||
|
||||
/* If it doesn't exist, create it. */
|
||||
if (!step) {
|
||||
step = std::make_shared<Step>();
|
||||
step->drvPath = drvPath;
|
||||
isNew = true;
|
||||
}
|
||||
|
||||
auto step_(step->state.lock());
|
||||
|
||||
assert(step_->created != isNew);
|
||||
|
||||
if (referringBuild)
|
||||
step_->builds.push_back(referringBuild);
|
||||
|
||||
if (referringStep)
|
||||
step_->rdeps.push_back(referringStep);
|
||||
|
||||
(*steps_)[drvPath] = step;
|
||||
}
|
||||
|
||||
if (!isNew) return step;
|
||||
|
||||
printMsg(lvlDebug, format("considering derivation ‘%1%’") % drvPath);
|
||||
|
||||
/* Initialize the step. Note that the step may be visible in
|
||||
‘steps’ before this point, but that doesn't matter because
|
||||
it's not runnable yet, and other threads won't make it
|
||||
runnable while step->created == false. */
|
||||
step->drv = readDerivation(drvPath);
|
||||
{
|
||||
auto i = step->drv.env.find("requiredSystemFeatures");
|
||||
if (i != step->drv.env.end())
|
||||
step->requiredSystemFeatures = tokenizeString<std::set<std::string>>(i->second);
|
||||
}
|
||||
|
||||
auto attr = step->drv.env.find("preferLocalBuild");
|
||||
step->preferLocalBuild =
|
||||
attr != step->drv.env.end() && attr->second == "1"
|
||||
&& has(localPlatforms, step->drv.platform);
|
||||
|
||||
/* Are all outputs valid? */
|
||||
bool valid = true;
|
||||
for (auto & i : step->drv.outputs) {
|
||||
if (!store->isValidPath(i.second.path)) {
|
||||
valid = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: check whether all outputs are in the binary cache.
|
||||
if (valid) {
|
||||
finishedDrvs.insert(drvPath);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* No, we need to build. */
|
||||
printMsg(lvlDebug, format("creating build step ‘%1%’") % drvPath);
|
||||
newSteps.insert(step);
|
||||
|
||||
/* Create steps for the dependencies. */
|
||||
for (auto & i : step->drv.inputDrvs) {
|
||||
auto dep = createStep(store, i.first, 0, step, finishedDrvs, newSteps, newRunnable);
|
||||
if (dep) {
|
||||
auto step_(step->state.lock());
|
||||
step_->deps.insert(dep);
|
||||
}
|
||||
}
|
||||
|
||||
/* If the step has no (remaining) dependencies, make it
|
||||
runnable. */
|
||||
{
|
||||
auto step_(step->state.lock());
|
||||
assert(!step_->created);
|
||||
step_->created = true;
|
||||
if (step_->deps.empty())
|
||||
newRunnable.insert(step);
|
||||
}
|
||||
|
||||
return step;
|
||||
}
|
||||
|
||||
|
||||
/* Get the steps and unfinished builds that depend on the given step. */
|
||||
void getDependents(Step::ptr step, std::set<Build::ptr> & builds, std::set<Step::ptr> & steps)
|
||||
{
|
||||
|
@ -585,527 +204,6 @@ void getDependents(Step::ptr step, std::set<Build::ptr> & builds, std::set<Step:
|
|||
}
|
||||
|
||||
|
||||
void State::makeRunnable(Step::ptr step)
|
||||
{
|
||||
printMsg(lvlChatty, format("step ‘%1%’ is now runnable") % step->drvPath);
|
||||
|
||||
{
|
||||
auto step_(step->state.lock());
|
||||
assert(step_->created);
|
||||
assert(!step->finished);
|
||||
assert(step_->deps.empty());
|
||||
}
|
||||
|
||||
{
|
||||
auto runnable_(runnable.lock());
|
||||
runnable_->push_back(step);
|
||||
}
|
||||
|
||||
wakeDispatcher();
|
||||
}
|
||||
|
||||
|
||||
void State::dispatcher()
|
||||
{
|
||||
while (true) {
|
||||
printMsg(lvlDebug, "dispatcher woken up");
|
||||
|
||||
auto sleepUntil = system_time::max();
|
||||
|
||||
bool keepGoing;
|
||||
|
||||
do {
|
||||
/* Copy the currentJobs field of each machine. This is
|
||||
necessary to ensure that the sort comparator below is
|
||||
an ordering. std::sort() can segfault if it isn't. */
|
||||
struct MachineInfo
|
||||
{
|
||||
Machine::ptr machine;
|
||||
unsigned int currentJobs;
|
||||
};
|
||||
std::vector<MachineInfo> machinesSorted;
|
||||
{
|
||||
auto machines_(machines.lock());
|
||||
for (auto & m : *machines_)
|
||||
machinesSorted.push_back({m.second, m.second->state->currentJobs});
|
||||
}
|
||||
|
||||
/* Sort the machines by a combination of speed factor and
|
||||
available slots. Prioritise the available machines as
|
||||
follows:
|
||||
|
||||
- First by load divided by speed factor, rounded to the
|
||||
nearest integer. This causes fast machines to be
|
||||
preferred over slow machines with similar loads.
|
||||
|
||||
- Then by speed factor.
|
||||
|
||||
- Finally by load. */
|
||||
sort(machinesSorted.begin(), machinesSorted.end(),
|
||||
[](const MachineInfo & a, const MachineInfo & b) -> bool
|
||||
{
|
||||
float ta = roundf(a.currentJobs / a.machine->speedFactor);
|
||||
float tb = roundf(b.currentJobs / b.machine->speedFactor);
|
||||
return
|
||||
ta != tb ? ta < tb :
|
||||
a.machine->speedFactor != b.machine->speedFactor ? a.machine->speedFactor > b.machine->speedFactor :
|
||||
a.currentJobs > b.currentJobs;
|
||||
});
|
||||
|
||||
/* Find a machine with a free slot and find a step to run
|
||||
on it. Once we find such a pair, we restart the outer
|
||||
loop because the machine sorting will have changed. */
|
||||
keepGoing = false;
|
||||
system_time now = std::chrono::system_clock::now();
|
||||
|
||||
for (auto & mi : machinesSorted) {
|
||||
// FIXME: can we lose a wakeup if a builder exits concurrently?
|
||||
if (mi.machine->state->currentJobs >= mi.machine->maxJobs) continue;
|
||||
|
||||
auto runnable_(runnable.lock());
|
||||
//printMsg(lvlDebug, format("%1% runnable builds") % runnable_->size());
|
||||
|
||||
/* FIXME: we're holding the runnable lock too long
|
||||
here. This could be more efficient. */
|
||||
|
||||
for (auto i = runnable_->begin(); i != runnable_->end(); ) {
|
||||
auto step = i->lock();
|
||||
|
||||
/* Delete dead steps. */
|
||||
if (!step) {
|
||||
i = runnable_->erase(i);
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Can this machine do this step? */
|
||||
if (!mi.machine->supportsStep(step)) {
|
||||
++i;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Skip previously failed steps that aren't ready
|
||||
to be retried. */
|
||||
{
|
||||
auto step_(step->state.lock());
|
||||
if (step_->tries > 0 && step_->after > now) {
|
||||
if (step_->after < sleepUntil)
|
||||
sleepUntil = step_->after;
|
||||
++i;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
/* Make a slot reservation and start a thread to
|
||||
do the build. */
|
||||
auto reservation = std::make_shared<MaintainCount>(mi.machine->state->currentJobs);
|
||||
i = runnable_->erase(i);
|
||||
|
||||
auto builderThread = std::thread(&State::builder, this, step, mi.machine, reservation);
|
||||
builderThread.detach(); // FIXME?
|
||||
|
||||
keepGoing = true;
|
||||
break;
|
||||
}
|
||||
|
||||
if (keepGoing) break;
|
||||
}
|
||||
|
||||
} while (keepGoing);
|
||||
|
||||
/* Sleep until we're woken up (either because a runnable build
|
||||
is added, or because a build finishes). */
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(dispatcherMutex);
|
||||
printMsg(lvlDebug, format("dispatcher sleeping for %1%s") %
|
||||
std::chrono::duration_cast<std::chrono::seconds>(sleepUntil - std::chrono::system_clock::now()).count());
|
||||
dispatcherWakeup.wait_until(lock, sleepUntil);
|
||||
nrDispatcherWakeups++;
|
||||
}
|
||||
}
|
||||
|
||||
printMsg(lvlError, "dispatcher exits");
|
||||
}
|
||||
|
||||
|
||||
void State::wakeDispatcher()
|
||||
{
|
||||
{ std::lock_guard<std::mutex> lock(dispatcherMutex); } // barrier
|
||||
dispatcherWakeup.notify_one();
|
||||
}
|
||||
|
||||
|
||||
void State::builder(Step::ptr step, Machine::ptr machine, std::shared_ptr<MaintainCount> reservation)
|
||||
{
|
||||
bool retry = true;
|
||||
|
||||
MaintainCount mc(nrActiveSteps);
|
||||
|
||||
try {
|
||||
auto store = openStore(); // FIXME: pool
|
||||
retry = doBuildStep(store, step, machine);
|
||||
} catch (std::exception & e) {
|
||||
printMsg(lvlError, format("uncaught exception building ‘%1%’ on ‘%2%’: %3%")
|
||||
% step->drvPath % machine->sshName % e.what());
|
||||
}
|
||||
|
||||
/* Release the machine and wake up the dispatcher. */
|
||||
assert(reservation.unique());
|
||||
reservation = 0;
|
||||
wakeDispatcher();
|
||||
|
||||
/* If there was a temporary failure, retry the step after an
|
||||
exponentially increasing interval. */
|
||||
if (retry) {
|
||||
{
|
||||
auto step_(step->state.lock());
|
||||
step_->tries++;
|
||||
nrRetries++;
|
||||
if (step_->tries > maxNrRetries) maxNrRetries = step_->tries; // yeah yeah, not atomic
|
||||
int delta = retryInterval * powf(retryBackoff, step_->tries - 1);
|
||||
printMsg(lvlInfo, format("will retry ‘%1%’ after %2%s") % step->drvPath % delta);
|
||||
step_->after = std::chrono::system_clock::now() + std::chrono::seconds(delta);
|
||||
}
|
||||
|
||||
makeRunnable(step);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
bool State::doBuildStep(std::shared_ptr<StoreAPI> store, Step::ptr step,
|
||||
Machine::ptr machine)
|
||||
{
|
||||
{
|
||||
auto step_(step->state.lock());
|
||||
assert(step_->created);
|
||||
assert(!step->finished);
|
||||
}
|
||||
|
||||
/* There can be any number of builds in the database that depend
|
||||
on this derivation. Arbitrarily pick one (though preferring a
|
||||
build of which this is the top-level derivation) for the
|
||||
purpose of creating build steps. We could create a build step
|
||||
record for every build, but that could be very expensive
|
||||
(e.g. a stdenv derivation can be a dependency of tens of
|
||||
thousands of builds), so we don't. */
|
||||
Build::ptr build;
|
||||
|
||||
{
|
||||
std::set<Build::ptr> dependents;
|
||||
std::set<Step::ptr> steps;
|
||||
getDependents(step, dependents, steps);
|
||||
|
||||
if (dependents.empty()) {
|
||||
/* Apparently all builds that depend on this derivation
|
||||
are gone (e.g. cancelled). So don't bother. This is
|
||||
very unlikely to happen, because normally Steps are
|
||||
only kept alive by being reachable from a
|
||||
Build. However, it's possible that a new Build just
|
||||
created a reference to this step. So to handle that
|
||||
possibility, we retry this step (putting it back in
|
||||
the runnable queue). If there are really no strong
|
||||
pointers to the step, it will be deleted. */
|
||||
printMsg(lvlInfo, format("maybe cancelling build step ‘%1%’") % step->drvPath);
|
||||
return true;
|
||||
}
|
||||
|
||||
for (auto build2 : dependents)
|
||||
if (build2->drvPath == step->drvPath) { build = build2; break; }
|
||||
|
||||
if (!build) build = *dependents.begin();
|
||||
|
||||
printMsg(lvlInfo, format("performing step ‘%1%’ on ‘%2%’ (needed by build %3% and %4% others)")
|
||||
% step->drvPath % machine->sshName % build->id % (dependents.size() - 1));
|
||||
}
|
||||
|
||||
bool quit = build->id == buildOne;
|
||||
|
||||
auto conn(dbPool.get());
|
||||
|
||||
RemoteResult result;
|
||||
BuildOutput res;
|
||||
int stepNr = 0;
|
||||
|
||||
time_t stepStartTime = result.startTime = time(0);
|
||||
|
||||
/* If any of the outputs have previously failed, then don't bother
|
||||
building again. */
|
||||
bool cachedFailure = checkCachedFailure(step, *conn);
|
||||
|
||||
if (cachedFailure)
|
||||
result.status = BuildResult::CachedFailure;
|
||||
else {
|
||||
|
||||
/* Create a build step record indicating that we started
|
||||
building. Also, mark the selected build as busy. */
|
||||
{
|
||||
pqxx::work txn(*conn);
|
||||
stepNr = createBuildStep(txn, result.startTime, build, step, machine->sshName, bssBusy);
|
||||
txn.parameterized("update Builds set busy = 1 where id = $1")(build->id).exec();
|
||||
txn.commit();
|
||||
}
|
||||
|
||||
/* Do the build. */
|
||||
try {
|
||||
/* FIXME: referring builds may have conflicting timeouts. */
|
||||
buildRemote(store, machine, step, build->maxSilentTime, build->buildTimeout, result);
|
||||
} catch (Error & e) {
|
||||
result.status = BuildResult::MiscFailure;
|
||||
result.errorMsg = e.msg();
|
||||
}
|
||||
|
||||
if (result.success()) res = getBuildOutput(store, step->drv);
|
||||
}
|
||||
|
||||
time_t stepStopTime = time(0);
|
||||
if (!result.stopTime) result.stopTime = stepStopTime;
|
||||
|
||||
/* Asynchronously compress the log. */
|
||||
if (result.logFile != "") {
|
||||
{
|
||||
auto logCompressorQueue_(logCompressorQueue.lock());
|
||||
logCompressorQueue_->push(result.logFile);
|
||||
}
|
||||
logCompressorWakeup.notify_one();
|
||||
}
|
||||
|
||||
/* The step had a hopefully temporary failure (e.g. network
|
||||
issue). Retry a number of times. */
|
||||
if (result.canRetry()) {
|
||||
printMsg(lvlError, format("possibly transient failure building ‘%1%’ on ‘%2%’: %3%")
|
||||
% step->drvPath % machine->sshName % result.errorMsg);
|
||||
bool retry;
|
||||
{
|
||||
auto step_(step->state.lock());
|
||||
retry = step_->tries + 1 < maxTries;
|
||||
}
|
||||
if (retry) {
|
||||
pqxx::work txn(*conn);
|
||||
finishBuildStep(txn, result.startTime, result.stopTime, build->id,
|
||||
stepNr, machine->sshName, bssAborted, result.errorMsg);
|
||||
txn.commit();
|
||||
if (quit) exit(1);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
if (result.success()) {
|
||||
|
||||
/* Register success in the database for all Build objects that
|
||||
have this step as the top-level step. Since the queue
|
||||
monitor thread may be creating new referring Builds
|
||||
concurrently, and updating the database may fail, we do
|
||||
this in a loop, marking all known builds, repeating until
|
||||
there are no unmarked builds.
|
||||
*/
|
||||
|
||||
std::vector<BuildID> buildIDs;
|
||||
|
||||
while (true) {
|
||||
|
||||
/* Get the builds that have this one as the top-level. */
|
||||
std::vector<Build::ptr> direct;
|
||||
{
|
||||
auto steps_(steps.lock());
|
||||
auto step_(step->state.lock());
|
||||
|
||||
for (auto & b_ : step_->builds) {
|
||||
auto b = b_.lock();
|
||||
if (b && !b->finishedInDB) direct.push_back(b);
|
||||
}
|
||||
|
||||
/* If there are no builds left to update in the DB,
|
||||
then we're done (except for calling
|
||||
finishBuildStep()). Delete the step from
|
||||
‘steps’. Since we've been holding the ‘steps’ lock,
|
||||
no new referrers can have been added in the
|
||||
meantime or be added afterwards. */
|
||||
if (direct.empty()) {
|
||||
printMsg(lvlDebug, format("finishing build step ‘%1%’") % step->drvPath);
|
||||
steps_->erase(step->drvPath);
|
||||
}
|
||||
}
|
||||
|
||||
/* Update the database. */
|
||||
{
|
||||
pqxx::work txn(*conn);
|
||||
|
||||
finishBuildStep(txn, result.startTime, result.stopTime, build->id, stepNr, machine->sshName, bssSuccess);
|
||||
|
||||
for (auto & b : direct)
|
||||
markSucceededBuild(txn, b, res, build != b || result.status != BuildResult::Built,
|
||||
result.startTime, result.stopTime);
|
||||
|
||||
txn.commit();
|
||||
}
|
||||
|
||||
if (direct.empty()) break;
|
||||
|
||||
/* Remove the direct dependencies from ‘builds’. This will
|
||||
cause them to be destroyed. */
|
||||
for (auto & b : direct) {
|
||||
auto builds_(builds.lock());
|
||||
b->finishedInDB = true;
|
||||
builds_->erase(b->id);
|
||||
buildIDs.push_back(b->id);
|
||||
}
|
||||
}
|
||||
|
||||
/* Send notification about the builds that have this step as
|
||||
the top-level. */
|
||||
for (auto id : buildIDs) {
|
||||
{
|
||||
auto notificationSenderQueue_(notificationSenderQueue.lock());
|
||||
notificationSenderQueue_->push(NotificationItem(id, std::vector<BuildID>()));
|
||||
}
|
||||
notificationSenderWakeup.notify_one();
|
||||
}
|
||||
|
||||
/* Wake up any dependent steps that have no other
|
||||
dependencies. */
|
||||
{
|
||||
auto step_(step->state.lock());
|
||||
for (auto & rdepWeak : step_->rdeps) {
|
||||
auto rdep = rdepWeak.lock();
|
||||
if (!rdep) continue;
|
||||
|
||||
bool runnable = false;
|
||||
{
|
||||
auto rdep_(rdep->state.lock());
|
||||
rdep_->deps.erase(step);
|
||||
/* Note: if the step has not finished
|
||||
initialisation yet, it will be made runnable in
|
||||
createStep(), if appropriate. */
|
||||
if (rdep_->deps.empty() && rdep_->created) runnable = true;
|
||||
}
|
||||
|
||||
if (runnable) makeRunnable(rdep);
|
||||
}
|
||||
}
|
||||
|
||||
} else {
|
||||
|
||||
/* Register failure in the database for all Build objects that
|
||||
directly or indirectly depend on this step. */
|
||||
|
||||
std::vector<BuildID> dependentIDs;
|
||||
|
||||
while (true) {
|
||||
|
||||
/* Get the builds and steps that depend on this step. */
|
||||
std::set<Build::ptr> indirect;
|
||||
{
|
||||
auto steps_(steps.lock());
|
||||
std::set<Step::ptr> steps;
|
||||
getDependents(step, indirect, steps);
|
||||
|
||||
/* If there are no builds left, delete all referring
|
||||
steps from ‘steps’. As for the success case, we can
|
||||
be certain no new referrers can be added. */
|
||||
if (indirect.empty()) {
|
||||
for (auto & s : steps) {
|
||||
printMsg(lvlDebug, format("finishing build step ‘%1%’") % s->drvPath);
|
||||
steps_->erase(s->drvPath);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* Update the database. */
|
||||
{
|
||||
pqxx::work txn(*conn);
|
||||
|
||||
BuildStatus buildStatus =
|
||||
result.status == BuildResult::TimedOut ? bsTimedOut :
|
||||
result.canRetry() ? bsAborted :
|
||||
bsFailed;
|
||||
BuildStepStatus buildStepStatus =
|
||||
result.status == BuildResult::TimedOut ? bssTimedOut :
|
||||
result.canRetry() ? bssAborted :
|
||||
bssFailed;
|
||||
|
||||
/* For standard failures, we don't care about the error
|
||||
message. */
|
||||
if (result.status == BuildResult::PermanentFailure ||
|
||||
result.status == BuildResult::TransientFailure ||
|
||||
result.status == BuildResult::CachedFailure ||
|
||||
result.status == BuildResult::TimedOut)
|
||||
result.errorMsg = "";
|
||||
|
||||
/* Create failed build steps for every build that depends
|
||||
on this. For cached failures, only create a step for
|
||||
builds that don't have this step as top-level
|
||||
(otherwise the user won't be able to see what caused
|
||||
the build to fail). */
|
||||
for (auto & build2 : indirect) {
|
||||
if ((cachedFailure && build2->drvPath == step->drvPath) ||
|
||||
(!cachedFailure && build == build2) ||
|
||||
build2->finishedInDB)
|
||||
continue;
|
||||
createBuildStep(txn, 0, build2, step, machine->sshName,
|
||||
buildStepStatus, result.errorMsg, build == build2 ? 0 : build->id);
|
||||
}
|
||||
|
||||
if (!cachedFailure)
|
||||
finishBuildStep(txn, result.startTime, result.stopTime, build->id,
|
||||
stepNr, machine->sshName, buildStepStatus, result.errorMsg);
|
||||
|
||||
/* Mark all builds that depend on this derivation as failed. */
|
||||
for (auto & build2 : indirect) {
|
||||
if (build2->finishedInDB) continue;
|
||||
printMsg(lvlError, format("marking build %1% as failed") % build2->id);
|
||||
txn.parameterized
|
||||
("update Builds set finished = 1, busy = 0, buildStatus = $2, startTime = $3, stopTime = $4, isCachedBuild = $5 where id = $1 and finished = 0")
|
||||
(build2->id)
|
||||
((int) (build2->drvPath != step->drvPath && buildStatus == bsFailed ? bsDepFailed : buildStatus))
|
||||
(result.startTime)
|
||||
(result.stopTime)
|
||||
(cachedFailure ? 1 : 0).exec();
|
||||
nrBuildsDone++;
|
||||
}
|
||||
|
||||
/* Remember failed paths in the database so that they
|
||||
won't be built again. */
|
||||
if (!cachedFailure && result.status == BuildResult::PermanentFailure)
|
||||
for (auto & path : outputPaths(step->drv))
|
||||
txn.parameterized("insert into FailedPaths values ($1)")(path).exec();
|
||||
|
||||
txn.commit();
|
||||
}
|
||||
|
||||
/* Remove the indirect dependencies from ‘builds’. This
|
||||
will cause them to be destroyed. */
|
||||
for (auto & b : indirect) {
|
||||
auto builds_(builds.lock());
|
||||
b->finishedInDB = true;
|
||||
builds_->erase(b->id);
|
||||
dependentIDs.push_back(b->id);
|
||||
if (buildOne == b->id) quit = true;
|
||||
}
|
||||
}
|
||||
|
||||
/* Send notification about this build and its dependents. */
|
||||
{
|
||||
auto notificationSenderQueue_(notificationSenderQueue.lock());
|
||||
notificationSenderQueue_->push(NotificationItem(build->id, dependentIDs));
|
||||
}
|
||||
notificationSenderWakeup.notify_one();
|
||||
|
||||
}
|
||||
|
||||
// FIXME: keep stats about aborted steps?
|
||||
nrStepsDone++;
|
||||
totalStepTime += stepStopTime - stepStartTime;
|
||||
totalStepBuildTime += result.stopTime - result.startTime;
|
||||
machine->state->nrStepsDone++;
|
||||
machine->state->totalStepTime += stepStopTime - stepStartTime;
|
||||
machine->state->totalStepBuildTime += result.stopTime - result.startTime;
|
||||
|
||||
if (quit) exit(0); // testing hack
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
void State::markSucceededBuild(pqxx::work & txn, Build::ptr build,
|
||||
const BuildOutput & res, bool isCachedBuild, time_t startTime, time_t stopTime)
|
||||
{
|
||||
|
|
369
src/hydra-queue-runner/queue-monitor.cc
Normal file
369
src/hydra-queue-runner/queue-monitor.cc
Normal file
|
@ -0,0 +1,369 @@
|
|||
#include "state.hh"
|
||||
#include "build-result.hh"
|
||||
|
||||
using namespace nix;
|
||||
|
||||
|
||||
void State::queueMonitor()
|
||||
{
|
||||
while (true) {
|
||||
try {
|
||||
queueMonitorLoop();
|
||||
} catch (std::exception & e) {
|
||||
printMsg(lvlError, format("queue monitor: %1%") % e.what());
|
||||
sleep(10); // probably a DB problem, so don't retry right away
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void State::queueMonitorLoop()
|
||||
{
|
||||
auto conn(dbPool.get());
|
||||
|
||||
receiver buildsAdded(*conn, "builds_added");
|
||||
receiver buildsRestarted(*conn, "builds_restarted");
|
||||
receiver buildsCancelled(*conn, "builds_cancelled");
|
||||
receiver buildsDeleted(*conn, "builds_deleted");
|
||||
|
||||
auto store = openStore(); // FIXME: pool
|
||||
|
||||
unsigned int lastBuildId = 0;
|
||||
|
||||
while (true) {
|
||||
getQueuedBuilds(*conn, store, lastBuildId);
|
||||
|
||||
/* Sleep until we get notification from the database about an
|
||||
event. */
|
||||
conn->await_notification();
|
||||
nrQueueWakeups++;
|
||||
|
||||
if (buildsAdded.get())
|
||||
printMsg(lvlTalkative, "got notification: new builds added to the queue");
|
||||
if (buildsRestarted.get()) {
|
||||
printMsg(lvlTalkative, "got notification: builds restarted");
|
||||
lastBuildId = 0; // check all builds
|
||||
}
|
||||
if (buildsCancelled.get() || buildsDeleted.get()) {
|
||||
printMsg(lvlTalkative, "got notification: builds cancelled");
|
||||
removeCancelledBuilds(*conn);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void State::getQueuedBuilds(Connection & conn, std::shared_ptr<StoreAPI> store, unsigned int & lastBuildId)
|
||||
{
|
||||
printMsg(lvlInfo, format("checking the queue for builds > %1%...") % lastBuildId);
|
||||
|
||||
/* Grab the queued builds from the database, but don't process
|
||||
them yet (since we don't want a long-running transaction). */
|
||||
std::multimap<Path, Build::ptr> newBuilds;
|
||||
|
||||
{
|
||||
pqxx::work txn(conn);
|
||||
|
||||
auto res = txn.parameterized("select id, project, jobset, job, drvPath, maxsilent, timeout from Builds where id > $1 and finished = 0 order by id")(lastBuildId).exec();
|
||||
|
||||
for (auto const & row : res) {
|
||||
auto builds_(builds.lock());
|
||||
BuildID id = row["id"].as<BuildID>();
|
||||
if (buildOne && id != buildOne) continue;
|
||||
if (id > lastBuildId) lastBuildId = id;
|
||||
if (has(*builds_, id)) continue;
|
||||
|
||||
auto build = std::make_shared<Build>();
|
||||
build->id = id;
|
||||
build->drvPath = row["drvPath"].as<string>();
|
||||
build->fullJobName = row["project"].as<string>() + ":" + row["jobset"].as<string>() + ":" + row["job"].as<string>();
|
||||
build->maxSilentTime = row["maxsilent"].as<int>();
|
||||
build->buildTimeout = row["timeout"].as<int>();
|
||||
|
||||
newBuilds.emplace(std::make_pair(build->drvPath, build));
|
||||
}
|
||||
}
|
||||
|
||||
std::set<Step::ptr> newRunnable;
|
||||
unsigned int nrAdded;
|
||||
std::function<void(Build::ptr)> createBuild;
|
||||
|
||||
createBuild = [&](Build::ptr build) {
|
||||
printMsg(lvlTalkative, format("loading build %1% (%2%)") % build->id % build->fullJobName);
|
||||
nrAdded++;
|
||||
|
||||
if (!store->isValidPath(build->drvPath)) {
|
||||
/* Derivation has been GC'ed prematurely. */
|
||||
printMsg(lvlError, format("aborting GC'ed build %1%") % build->id);
|
||||
if (!build->finishedInDB) {
|
||||
pqxx::work txn(conn);
|
||||
txn.parameterized
|
||||
("update Builds set finished = 1, busy = 0, buildStatus = $2, startTime = $3, stopTime = $3, errorMsg = $4 where id = $1 and finished = 0")
|
||||
(build->id)
|
||||
((int) bsAborted)
|
||||
(time(0))
|
||||
("derivation was garbage-collected prior to build").exec();
|
||||
txn.commit();
|
||||
build->finishedInDB = true;
|
||||
nrBuildsDone++;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
std::set<Step::ptr> newSteps;
|
||||
std::set<Path> finishedDrvs; // FIXME: re-use?
|
||||
Step::ptr step = createStep(store, build->drvPath, build, 0, finishedDrvs, newSteps, newRunnable);
|
||||
|
||||
/* Some of the new steps may be the top level of builds that
|
||||
we haven't processed yet. So do them now. This ensures that
|
||||
if build A depends on build B with top-level step X, then X
|
||||
will be "accounted" to B in doBuildStep(). */
|
||||
for (auto & r : newSteps) {
|
||||
while (true) {
|
||||
auto i = newBuilds.find(r->drvPath);
|
||||
if (i == newBuilds.end()) break;
|
||||
Build::ptr b = i->second;
|
||||
newBuilds.erase(i);
|
||||
createBuild(b);
|
||||
}
|
||||
}
|
||||
|
||||
/* If we didn't get a step, it means the step's outputs are
|
||||
all valid. So we mark this as a finished, cached build. */
|
||||
if (!step) {
|
||||
Derivation drv = readDerivation(build->drvPath);
|
||||
BuildOutput res = getBuildOutput(store, drv);
|
||||
|
||||
pqxx::work txn(conn);
|
||||
time_t now = time(0);
|
||||
markSucceededBuild(txn, build, res, true, now, now);
|
||||
txn.commit();
|
||||
|
||||
build->finishedInDB = true;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
/* If any step has an unsupported system type or has a
|
||||
previously failed output path, then fail the build right
|
||||
away. */
|
||||
bool badStep = false;
|
||||
for (auto & r : newSteps) {
|
||||
BuildStatus buildStatus = bsSuccess;
|
||||
BuildStepStatus buildStepStatus = bssFailed;
|
||||
|
||||
if (checkCachedFailure(r, conn)) {
|
||||
printMsg(lvlError, format("marking build %1% as cached failure") % build->id);
|
||||
buildStatus = step == r ? bsFailed : bsDepFailed;
|
||||
buildStepStatus = bssFailed;
|
||||
}
|
||||
|
||||
if (buildStatus == bsSuccess) {
|
||||
bool supported = false;
|
||||
{
|
||||
auto machines_(machines.lock()); // FIXME: use shared_mutex
|
||||
for (auto & m : *machines_)
|
||||
if (m.second->supportsStep(r)) { supported = true; break; }
|
||||
}
|
||||
|
||||
if (!supported) {
|
||||
printMsg(lvlError, format("aborting unsupported build %1%") % build->id);
|
||||
buildStatus = bsUnsupported;
|
||||
buildStepStatus = bssUnsupported;
|
||||
}
|
||||
}
|
||||
|
||||
if (buildStatus != bsSuccess) {
|
||||
time_t now = time(0);
|
||||
if (!build->finishedInDB) {
|
||||
pqxx::work txn(conn);
|
||||
createBuildStep(txn, 0, build, r, "", buildStepStatus);
|
||||
txn.parameterized
|
||||
("update Builds set finished = 1, busy = 0, buildStatus = $2, startTime = $3, stopTime = $3, isCachedBuild = $4 where id = $1 and finished = 0")
|
||||
(build->id)
|
||||
((int) buildStatus)
|
||||
(now)
|
||||
(buildStatus != bsUnsupported ? 1 : 0).exec();
|
||||
txn.commit();
|
||||
build->finishedInDB = true;
|
||||
nrBuildsDone++;
|
||||
}
|
||||
badStep = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (badStep) return;
|
||||
|
||||
/* Note: if we exit this scope prior to this, the build and
|
||||
all newly created steps are destroyed. */
|
||||
|
||||
{
|
||||
auto builds_(builds.lock());
|
||||
if (!build->finishedInDB) // FIXME: can this happen?
|
||||
(*builds_)[build->id] = build;
|
||||
build->toplevel = step;
|
||||
}
|
||||
|
||||
printMsg(lvlChatty, format("added build %1% (top-level step %2%, %3% new steps)")
|
||||
% build->id % step->drvPath % newSteps.size());
|
||||
};
|
||||
|
||||
/* Now instantiate build steps for each new build. The builder
|
||||
threads can start building the runnable build steps right away,
|
||||
even while we're still processing other new builds. */
|
||||
while (!newBuilds.empty()) {
|
||||
auto build = newBuilds.begin()->second;
|
||||
newBuilds.erase(newBuilds.begin());
|
||||
|
||||
newRunnable.clear();
|
||||
nrAdded = 0;
|
||||
try {
|
||||
createBuild(build);
|
||||
} catch (Error & e) {
|
||||
e.addPrefix(format("while loading build %1%: ") % build->id);
|
||||
throw;
|
||||
}
|
||||
|
||||
/* Add the new runnable build steps to ‘runnable’ and wake up
|
||||
the builder threads. */
|
||||
printMsg(lvlChatty, format("got %1% new runnable steps from %2% new builds") % newRunnable.size() % nrAdded);
|
||||
for (auto & r : newRunnable)
|
||||
makeRunnable(r);
|
||||
|
||||
nrBuildsRead += nrAdded;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void State::removeCancelledBuilds(Connection & conn)
|
||||
{
|
||||
/* Get the current set of queued builds. */
|
||||
std::set<BuildID> currentIds;
|
||||
{
|
||||
pqxx::work txn(conn);
|
||||
auto res = txn.exec("select id from Builds where finished = 0");
|
||||
for (auto const & row : res)
|
||||
currentIds.insert(row["id"].as<BuildID>());
|
||||
}
|
||||
|
||||
auto builds_(builds.lock());
|
||||
|
||||
for (auto i = builds_->begin(); i != builds_->end(); ) {
|
||||
if (currentIds.find(i->first) == currentIds.end()) {
|
||||
printMsg(lvlInfo, format("discarding cancelled build %1%") % i->first);
|
||||
i = builds_->erase(i);
|
||||
// FIXME: ideally we would interrupt active build steps here.
|
||||
} else
|
||||
++i;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Step::ptr State::createStep(std::shared_ptr<StoreAPI> store, const Path & drvPath,
|
||||
Build::ptr referringBuild, Step::ptr referringStep, std::set<Path> & finishedDrvs,
|
||||
std::set<Step::ptr> & newSteps, std::set<Step::ptr> & newRunnable)
|
||||
{
|
||||
if (finishedDrvs.find(drvPath) != finishedDrvs.end()) return 0;
|
||||
|
||||
/* Check if the requested step already exists. If not, create a
|
||||
new step. In any case, make the step reachable from
|
||||
referringBuild or referringStep. This is done atomically (with
|
||||
‘steps’ locked), to ensure that this step can never become
|
||||
reachable from a new build after doBuildStep has removed it
|
||||
from ‘steps’. */
|
||||
Step::ptr step;
|
||||
bool isNew = false;
|
||||
{
|
||||
auto steps_(steps.lock());
|
||||
|
||||
/* See if the step already exists in ‘steps’ and is not
|
||||
stale. */
|
||||
auto prev = steps_->find(drvPath);
|
||||
if (prev != steps_->end()) {
|
||||
step = prev->second.lock();
|
||||
/* Since ‘step’ is a strong pointer, the referred Step
|
||||
object won't be deleted after this. */
|
||||
if (!step) steps_->erase(drvPath); // remove stale entry
|
||||
}
|
||||
|
||||
/* If it doesn't exist, create it. */
|
||||
if (!step) {
|
||||
step = std::make_shared<Step>();
|
||||
step->drvPath = drvPath;
|
||||
isNew = true;
|
||||
}
|
||||
|
||||
auto step_(step->state.lock());
|
||||
|
||||
assert(step_->created != isNew);
|
||||
|
||||
if (referringBuild)
|
||||
step_->builds.push_back(referringBuild);
|
||||
|
||||
if (referringStep)
|
||||
step_->rdeps.push_back(referringStep);
|
||||
|
||||
(*steps_)[drvPath] = step;
|
||||
}
|
||||
|
||||
if (!isNew) return step;
|
||||
|
||||
printMsg(lvlDebug, format("considering derivation ‘%1%’") % drvPath);
|
||||
|
||||
/* Initialize the step. Note that the step may be visible in
|
||||
‘steps’ before this point, but that doesn't matter because
|
||||
it's not runnable yet, and other threads won't make it
|
||||
runnable while step->created == false. */
|
||||
step->drv = readDerivation(drvPath);
|
||||
{
|
||||
auto i = step->drv.env.find("requiredSystemFeatures");
|
||||
if (i != step->drv.env.end())
|
||||
step->requiredSystemFeatures = tokenizeString<std::set<std::string>>(i->second);
|
||||
}
|
||||
|
||||
auto attr = step->drv.env.find("preferLocalBuild");
|
||||
step->preferLocalBuild =
|
||||
attr != step->drv.env.end() && attr->second == "1"
|
||||
&& has(localPlatforms, step->drv.platform);
|
||||
|
||||
/* Are all outputs valid? */
|
||||
bool valid = true;
|
||||
for (auto & i : step->drv.outputs) {
|
||||
if (!store->isValidPath(i.second.path)) {
|
||||
valid = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: check whether all outputs are in the binary cache.
|
||||
if (valid) {
|
||||
finishedDrvs.insert(drvPath);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* No, we need to build. */
|
||||
printMsg(lvlDebug, format("creating build step ‘%1%’") % drvPath);
|
||||
newSteps.insert(step);
|
||||
|
||||
/* Create steps for the dependencies. */
|
||||
for (auto & i : step->drv.inputDrvs) {
|
||||
auto dep = createStep(store, i.first, 0, step, finishedDrvs, newSteps, newRunnable);
|
||||
if (dep) {
|
||||
auto step_(step->state.lock());
|
||||
step_->deps.insert(dep);
|
||||
}
|
||||
}
|
||||
|
||||
/* If the step has no (remaining) dependencies, make it
|
||||
runnable. */
|
||||
{
|
||||
auto step_(step->state.lock());
|
||||
assert(!step_->created);
|
||||
step_->created = true;
|
||||
if (step_->deps.empty())
|
||||
newRunnable.insert(step);
|
||||
}
|
||||
|
||||
return step;
|
||||
}
|
|
@ -118,6 +118,9 @@ struct Step
|
|||
};
|
||||
|
||||
|
||||
void getDependents(Step::ptr step, std::set<Build::ptr> & builds, std::set<Step::ptr> & steps);
|
||||
|
||||
|
||||
struct Machine
|
||||
{
|
||||
typedef std::shared_ptr<Machine> ptr;
|
||||
|
@ -159,6 +162,12 @@ class State
|
|||
{
|
||||
private:
|
||||
|
||||
// FIXME: Make configurable.
|
||||
const unsigned int maxTries = 5;
|
||||
const unsigned int retryInterval = 60; // seconds
|
||||
const float retryBackoff = 3.0;
|
||||
const unsigned int maxParallelCopyClosure = 4;
|
||||
|
||||
nix::Path hydraData, logDir;
|
||||
|
||||
nix::StringSet localPlatforms;
|
||||
|
@ -306,3 +315,10 @@ public:
|
|||
|
||||
void run(BuildID buildOne = 0);
|
||||
};
|
||||
|
||||
|
||||
template <class C, class V>
|
||||
bool has(const C & c, const V & v)
|
||||
{
|
||||
return c.find(v) != c.end();
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue