lix/src/libexpr/value.hh

477 lines
11 KiB
C++

#pragma once
///@file
#include <cassert>
#include <climits>
#include "gc-alloc.hh"
#include "symbol-table.hh"
#include "value/context.hh"
#include "input-accessor.hh"
#include "source-path.hh"
#include "print-options.hh"
#include "checked-arithmetic.hh"
#include <nlohmann/json_fwd.hpp>
namespace nix {
class BindingsBuilder;
typedef enum {
tInt = 1,
tBool,
tString,
tPath,
tNull,
tAttrs,
tList1,
tList2,
tListN,
tThunk,
tApp,
tLambda,
tPrimOp,
tPrimOpApp,
tExternal,
tFloat
} InternalType;
/**
* This type abstracts over all actual value types in the language,
* grouping together implementation details like tList*, different function
* types, and types in non-normal form (so thunks and co.)
*/
typedef enum {
nThunk,
nInt,
nFloat,
nBool,
nString,
nPath,
nNull,
nAttrs,
nList,
nFunction,
nExternal
} ValueType;
class Bindings;
struct Env;
struct Expr;
struct ExprLambda;
struct ExprBlackHole;
struct PrimOp;
class Symbol;
class PosIdx;
struct Pos;
class StorePath;
class Store;
class EvalState;
class XMLWriter;
class Printer;
using NixInt = checked::Checked<int64_t>;
using NixFloat = double;
/**
* External values must descend from ExternalValueBase, so that
* type-agnostic nix functions (e.g. showType) can be implemented
*/
class ExternalValueBase
{
friend std::ostream & operator << (std::ostream & str, const ExternalValueBase & v);
friend class Printer;
protected:
/**
* Print out the value
*/
virtual std::ostream & print(std::ostream & str) const = 0;
public:
/**
* Return a simple string describing the type
*/
virtual std::string showType() const = 0;
/**
* Return a string to be used in builtins.typeOf
*/
virtual std::string typeOf() const = 0;
/**
* Coerce the value to a string. Defaults to uncoercable, i.e. throws an
* error.
*/
virtual std::string coerceToString(EvalState & state, const PosIdx & pos, NixStringContext & context, bool copyMore, bool copyToStore) const;
/**
* Compare to another value of the same type. Defaults to uncomparable,
* i.e. always false.
*/
virtual bool operator ==(const ExternalValueBase & b) const;
/**
* Print the value as JSON. Defaults to unconvertable, i.e. throws an error
*/
virtual nlohmann::json printValueAsJSON(EvalState & state, bool strict,
NixStringContext & context, bool copyToStore = true) const;
/**
* Print the value as XML. Defaults to unevaluated
*/
virtual void printValueAsXML(EvalState & state, bool strict, bool location,
XMLWriter & doc, NixStringContext & context, PathSet & drvsSeen,
const PosIdx pos) const;
virtual ~ExternalValueBase()
{
};
};
std::ostream & operator << (std::ostream & str, const ExternalValueBase & v);
struct Value
{
private:
InternalType internalType;
friend std::string showType(const Value & v);
public:
void print(EvalState &state, std::ostream &str, PrintOptions options = PrintOptions {});
// Functions needed to distinguish the type
// These should be removed eventually, by putting the functionality that's
// needed by callers into methods of this type
// type() == nThunk
inline bool isThunk() const { return internalType == tThunk; };
inline bool isApp() const { return internalType == tApp; };
inline bool isBlackhole() const;
// type() == nFunction
inline bool isLambda() const { return internalType == tLambda; };
inline bool isPrimOp() const { return internalType == tPrimOp; };
inline bool isPrimOpApp() const { return internalType == tPrimOpApp; };
union
{
NixInt integer;
bool boolean;
/**
* Strings in the evaluator carry a so-called `context` which
* is a list of strings representing store paths. This is to
* allow users to write things like
* "--with-freetype2-library=" + freetype + "/lib"
* where `freetype` is a derivation (or a source to be copied
* to the store). If we just concatenated the strings without
* keeping track of the referenced store paths, then if the
* string is used as a derivation attribute, the derivation
* will not have the correct dependencies in its inputDrvs and
* inputSrcs.
* The semantics of the context is as follows: when a string
* with context C is used as a derivation attribute, then the
* derivations in C will be added to the inputDrvs of the
* derivation, and the other store paths in C will be added to
* the inputSrcs of the derivations.
* For canonicity, the store paths should be in sorted order.
*/
struct {
const char * s;
const char * * context; // must be in sorted order
} string;
const char * _path;
Bindings * attrs;
struct {
size_t size;
Value * * elems;
} bigList;
Value * smallList[2];
struct {
Env * env;
Expr * expr;
} thunk;
struct {
Value * left, * right;
} app;
struct {
Env * env;
ExprLambda * fun;
} lambda;
PrimOp * primOp;
struct {
Value * left, * right;
} primOpApp;
ExternalValueBase * external;
NixFloat fpoint;
};
/**
* Returns the normal type of a Value. This only returns nThunk if
* the Value hasn't been forceValue'd
*
* @param invalidIsThunk Instead of aborting an an invalid (probably
* 0, so uninitialized) internal type, return `nThunk`.
*/
inline ValueType type(bool invalidIsThunk = false) const
{
switch (internalType) {
case tInt: return nInt;
case tBool: return nBool;
case tString: return nString;
case tPath: return nPath;
case tNull: return nNull;
case tAttrs: return nAttrs;
case tList1: case tList2: case tListN: return nList;
case tLambda: case tPrimOp: case tPrimOpApp: return nFunction;
case tExternal: return nExternal;
case tFloat: return nFloat;
case tThunk: case tApp: return nThunk;
}
if (invalidIsThunk)
return nThunk;
else
abort();
}
/**
* After overwriting an app node, be sure to clear pointers in the
* Value to ensure that the target isn't kept alive unnecessarily.
*/
inline void clearValue()
{
app.left = app.right = 0;
}
inline void mkInt(NixInt::Inner n)
{
mkInt(NixInt{n});
}
inline void mkInt(NixInt n)
{
clearValue();
internalType = tInt;
integer = n;
}
inline void mkBool(bool b)
{
clearValue();
internalType = tBool;
boolean = b;
}
inline void mkString(const char * s, const char * * context = 0)
{
internalType = tString;
string.s = s;
string.context = context;
}
void mkString(std::string_view s);
void mkString(std::string_view s, const NixStringContext & context);
void mkStringMove(const char * s, const NixStringContext & context);
inline void mkString(const Symbol & s)
{
mkString(((const std::string &) s).c_str());
}
void mkPath(const SourcePath & path);
inline void mkPath(const char * path)
{
clearValue();
internalType = tPath;
_path = path;
}
inline void mkNull()
{
clearValue();
internalType = tNull;
}
inline void mkAttrs(Bindings * a)
{
clearValue();
internalType = tAttrs;
attrs = a;
}
Value & mkAttrs(BindingsBuilder & bindings);
inline void mkList(size_t size)
{
clearValue();
if (size == 1)
internalType = tList1;
else if (size == 2)
internalType = tList2;
else {
internalType = tListN;
bigList.size = size;
}
}
inline void mkThunk(Env * e, Expr & ex)
{
internalType = tThunk;
thunk.env = e;
thunk.expr = &ex;
}
inline void mkApp(Value * l, Value * r)
{
internalType = tApp;
app.left = l;
app.right = r;
}
inline void mkLambda(Env * e, ExprLambda * f)
{
internalType = tLambda;
lambda.env = e;
lambda.fun = f;
}
inline void mkBlackhole();
void mkPrimOp(PrimOp * p);
inline void mkPrimOpApp(Value * l, Value * r)
{
internalType = tPrimOpApp;
primOpApp.left = l;
primOpApp.right = r;
}
/**
* For a `tPrimOpApp` value, get the original `PrimOp` value.
*/
PrimOp * primOpAppPrimOp() const;
inline void mkExternal(ExternalValueBase * e)
{
clearValue();
internalType = tExternal;
external = e;
}
inline void mkFloat(NixFloat n)
{
clearValue();
internalType = tFloat;
fpoint = n;
}
bool isList() const
{
return internalType == tList1 || internalType == tList2 || internalType == tListN;
}
Value * * listElems()
{
return internalType == tList1 || internalType == tList2 ? smallList : bigList.elems;
}
Value * const * listElems() const
{
return internalType == tList1 || internalType == tList2 ? smallList : bigList.elems;
}
size_t listSize() const
{
return internalType == tList1 ? 1 : internalType == tList2 ? 2 : bigList.size;
}
PosIdx determinePos(const PosIdx pos) const;
/**
* Check whether forcing this value requires a trivial amount of
* computation. In particular, function applications are
* non-trivial.
*/
bool isTrivial() const;
auto listItems()
{
struct ListIterable
{
typedef Value * const * iterator;
iterator _begin, _end;
iterator begin() const { return _begin; }
iterator end() const { return _end; }
};
assert(isList());
auto begin = listElems();
return ListIterable { begin, begin + listSize() };
}
auto listItems() const
{
struct ConstListIterable
{
typedef const Value * const * iterator;
iterator _begin, _end;
iterator begin() const { return _begin; }
iterator end() const { return _end; }
};
assert(isList());
auto begin = listElems();
return ConstListIterable { begin, begin + listSize() };
}
SourcePath path() const
{
assert(internalType == tPath);
return SourcePath{CanonPath(_path)};
}
std::string_view str() const
{
assert(internalType == tString);
return std::string_view(string.s);
}
};
extern ExprBlackHole eBlackHole;
bool Value::isBlackhole() const
{
return internalType == tThunk && thunk.expr == (Expr*) &eBlackHole;
}
void Value::mkBlackhole()
{
internalType = tThunk;
thunk.expr = (Expr*) &eBlackHole;
}
using ValueVector = GcVector<Value *>;
using ValueMap = GcMap<Symbol, Value *>;
using ValueVectorMap = std::map<Symbol, ValueVector>;
/**
* A value allocated in traceable memory.
*/
typedef std::shared_ptr<Value *> RootValue;
RootValue allocRootValue(Value * v);
}