#pragma once ///@file #include #include #include #include #include #include #include "sync.hh" #include "ref.hh" namespace nix { /** * This template class implements a simple pool manager of resources * of some type R, such as database connections. It is used as * follows: * * class Connection { ... }; * * Pool pool; * * { * auto conn(pool.get()); * conn->exec("select ..."); * } * * Here, the Connection object referenced by ‘conn’ is automatically * returned to the pool when ‘conn’ goes out of scope. */ template class Pool { public: /** * A function that produces new instances of R on demand. */ typedef std::function()> Factory; /** * A function that checks whether an instance of R is still * usable. Unusable instances are removed from the pool. */ typedef std::function &)> Validator; private: Factory factory; Validator validator; struct State { size_t inUse = 0; size_t max; std::vector> idle; }; Sync state; std::condition_variable wakeup; public: Pool(size_t max = std::numeric_limits::max(), const Factory & factory = []() { return make_ref(); }, const Validator & validator = [](ref r) { return true; }) : factory(factory) , validator(validator) { auto state_(state.lock()); state_->max = max; } void incCapacity() { auto state_(state.lock()); state_->max++; /* we could wakeup here, but this is only used when we're * about to nest Pool usages, and we want to save the slot for * the nested use if we can */ } void decCapacity() { auto state_(state.lock()); state_->max--; } ~Pool() { auto state_(state.lock()); assert(!state_->inUse); state_->max = 0; state_->idle.clear(); } class Handle { private: Pool & pool; std::shared_ptr r; bool bad = false; friend Pool; Handle(Pool & pool, std::shared_ptr r) : pool(pool), r(r) { } public: Handle(Handle && h) : pool(h.pool), r(h.r) { h.r.reset(); } Handle(const Handle & l) = delete; ~Handle() { if (!r) return; { auto state_(pool.state.lock()); if (!bad && !std::uncaught_exceptions()) state_->idle.push_back(ref(r)); assert(state_->inUse); state_->inUse--; } pool.wakeup.notify_one(); } R * operator -> () { return &*r; } R & operator * () { return *r; } void markBad() { bad = true; } }; Handle get() { // we do not want to handle the complexity that comes with allocating // resources during stack unwinding. it would be possible to do this, // but doing so requires more per-handle bookkeeping to properly free // resources allocated during unwinding. that effort is not worth it. assert(std::uncaught_exceptions() == 0); { auto state_(state.lock()); /* If we're over the maximum number of instance, we need to wait until a slot becomes available. */ while (state_->idle.empty() && state_->inUse >= state_->max) state_.wait(wakeup); while (!state_->idle.empty()) { auto p = state_->idle.back(); state_->idle.pop_back(); if (validator(p)) { state_->inUse++; return Handle(*this, p); } } state_->inUse++; } /* We need to create a new instance. Because that might take a while, we don't hold the lock in the meantime. */ try { Handle h(*this, factory()); return h; } catch (...) { auto state_(state.lock()); state_->inUse--; wakeup.notify_one(); throw; } } size_t count() { auto state_(state.lock()); return state_->idle.size() + state_->inUse; } size_t capacity() { return state.lock()->max; } }; }