Most functions now take a StorePath argument rather than a Path (which
is just an alias for std::string). The StorePath constructor ensures
that the path is syntactically correct (i.e. it looks like
<store-dir>/<base32-hash>-<name>). Similarly, functions like
buildPaths() now take a StorePathWithOutputs, rather than abusing Path
by adding a '!<outputs>' suffix.
Note that the StorePath type is implemented in Rust. This involves
some hackery to allow Rust values to be used directly in C++, via a
helper type whose destructor calls the Rust type's drop()
function. The main issue is the dynamic nature of C++ move semantics:
after we have moved a Rust value, we should not call the drop function
on the original value. So when we move a value, we set the original
value to bitwise zero, and the destructor only calls drop() if the
value is not bitwise zero. This should be sufficient for most types.
Also lots of minor cleanups to the C++ API to make it more modern
(e.g. using std::optional and std::string_view in some places).
The FunctionCallTrace object consumes a few hundred bytes of stack
space, even when tracing is disabled. This was causing stack overflows:
$ nix-instantiate '<nixpkgs> -A texlive.combined.scheme-full --dry-run
error: stack overflow (possible infinite recursion)
This is with the default stack size of 8 MiB.
Putting the object on the heap reduces stack usage to < 5 MiB.
Also, fetchGit now runs in O(1) memory since we pipe the output of
'git archive' directly into unpackTarball() (rather than first reading
it all into memory).
E.g.
$ nix-build '<nixpkgs>' -A hello --experimental-features no-url-literals
error: URL literals are disabled, at /nix/store/vsjamkzh15r3c779q2711az826hqgvzr-nixpkgs-20.03pre194957.bef773ed53f/nixpkgs/pkgs/top-level/all-packages.nix:1236:11
Helps with implementing https://github.com/NixOS/rfcs/pull/45.
Add missing docstring on InstallableCommand. Also, some of these were wrapped
when they're right next to a line longer than the unwrapped line, so we can just
unwrap them to save vertical space.
With this patch, and this file I called `log.py`:
#!/usr/bin/env nix-shell
#!nix-shell -i python3 -p python3 --pure
import sys
from pprint import pprint
stack = []
timestack = []
for line in open(sys.argv[1]):
components = line.strip().split(" ", 2)
if components[0] != "function-trace":
continue
direction = components[1]
components = components[2].rsplit(" ", 2)
loc = components[0]
_at = components[1]
time = int(components[2])
if direction == "entered":
stack.append(loc)
timestack.append(time)
elif direction == "exited":
dur = time - timestack.pop()
vst = ";".join(stack)
print(f"{vst} {dur}")
stack.pop()
and:
nix-instantiate --trace-function-calls -vvvv ../nixpkgs/pkgs/top-level/release.nix -A unstable > log.matthewbauer 2>&1
./log.py ./log.matthewbauer > log.matthewbauer.folded
flamegraph.pl --title matthewbauer-post-pr log.matthewbauer.folded > log.matthewbauer.folded.svg
I can make flame graphs like: http://gsc.io/log.matthewbauer.folded.svg
---
Includes test cases around function call failures and tryEval. Uses
RAII so the finish is always called at the end of the function.
--no-net causes tarballTtl to be set to the largest 32-bit integer,
which causes comparison like 'time + tarballTtl < other_time' to
fail on 32-bit systems. So cast them to 64-bit first.
https://hydra.nixos.org/build/95076624
(cherry picked from commit 29ccb2e969)
Also, make fetchGit and fetchMercurial update allowedPaths properly.
(Maybe the evaluator, rather than the caller of the evaluator, should
apply toRealPath(), but that's a bigger change.)
(cherry picked from commit 5c34d66538)
For text files it is possible to do it like so:
`builtins.hashString "sha256" (builtins.readFile /tmp/a)`
but that doesn't work for binary files.
With builtins.hashFile any kind of file can be conveniently hashed.
Previously, plain derivation paths in the string context (e.g. those
that arose from builtins.storePath on a drv file, not those that arose
from accessing .drvPath of a derivation) were treated somewhat like
derivaiton paths derived from .drvPath, except their dependencies
weren't recursively added to the input set. With this change, such
plain derivation paths are simply treated as paths and added to the
source inputs set accordingly, simplifying context handling code and
removing the inconsistency. If drvPath-like behavior is desired, the
.drv file can be imported and then .drvPath can be accessed.
This is a backwards-incompatibility, but storePath is never used on
drv files within nixpkgs and almost never used elsewhere.
Trying to fetch refs that are not in refs/heads currently fails because
it looks for refs/heads/refs/foo instead of refs/foo.
eg.
builtins.fetchGit {
url = https://github.com/NixOS/nixpkgs.git;
ref = "refs/pull/1024/head;
}
SRI hashes (https://www.w3.org/TR/SRI/) combine the hash algorithm and
a base-64 hash. This allows more concise and standard hash
specifications. For example, instead of
import <nix/fetchurl.nl> {
url = https://nixos.org/releases/nix/nix-2.1.3/nix-2.1.3.tar.xz;
sha256 = "5d22dad058d5c800d65a115f919da22938c50dd6ba98c5e3a183172d149840a4";
};
you can write
import <nix/fetchurl.nl> {
url = https://nixos.org/releases/nix/nix-2.1.3/nix-2.1.3.tar.xz;
hash = "sha256-XSLa0FjVyADWWhFfkZ2iKTjFDda6mMXjoYMXLRSYQKQ=";
};
In fixed-output derivations, the outputHashAlgo is no longer mandatory
if outputHash specifies the hash (either as an SRI or in the old
"<type>:<hash>" format).
'nix hash-{file,path}' now print hashes in SRI format by default. I
also reverted them to use SHA-256 by default because that's what we're
using most of the time in Nixpkgs.
Suggested by @zimbatm.
This is already done by coerceToString(), provided that the argument
is a path (e.g. 'fetchGit ./bla'). It fixes the handling of URLs like
git@github.com:owner/repo.git. It breaks 'fetchGit "./bla"', but that
was never intended to work anyway and is inconsistent with other
builtin functions (e.g. 'readFile "./bla"' fails).
Using a 64bit integer on 32bit systems will come with a bit of a
performance overhead, but given that Nix doesn't use a lot of integers
compared to other types, I think the overhead is negligible also
considering that 32bit systems are in decline.
The biggest advantage however is that when we use a consistent integer
size across all platforms it's less likely that we miss things that we
break due to that. One example would be:
https://github.com/NixOS/nixpkgs/pull/44233
On Hydra it will evaluate, because the evaluator runs on a 64bit
machine, but when evaluating the same on a 32bit machine it will fail,
so using 64bit integers should make that consistent.
While the change of the type in value.hh is rather easy to do, we have a
few more options available for doing the conversion in the lexer:
* Via an #ifdef on the architecture and using strtol() or strtoll()
accordingly depending on which architecture we are. For the #ifdef
we would need another AX_COMPILE_CHECK_SIZEOF in configure.ac.
* Using istringstream, which would involve copying the value.
* As we're already using boost, lexical_cast might be a good idea.
Spoiler: I went for the latter, first of all because lexical_cast does
have an overload for const char* and second of all, because it doesn't
involve copying around the input string. Also, because istringstream
seems to come with a bigger overhead than boost::lexical_cast:
https://www.boost.org/doc/libs/release/doc/html/boost_lexical_cast/performance.html
The first method (still using strtol/strtoll) also wasn't something I
pursued further, because it is also locale-aware which I doubt is what
we want, given that the regex for int is [0-9]+.
Signed-off-by: aszlig <aszlig@nix.build>
Fixes: #2339
The current usage technically works by putting multiple different
repos in to the same git directory. However, it is very slow as
Git tries very hard to find common commits between the two
repositories. If the two repositories are large (like Nixpkgs and
another long-running project,) it is maddeningly slow.
This change busts the cache for existing deployments, but users
will be promptly repaid in per-repository performance.
In EvalState::checkSourcePath, the path is checked against the list of
allowed paths first and later it's checked again *after* resolving
symlinks.
The resolving of the symlinks is done via canonPath, which also strips
out "../" and "./". However after the canonicalisation the error message
pointing out that the path is not allowed prints the symlink target in
the error message.
Even if we'd suppress the message, symlink targets could still be leaked
if the symlink target doesn't exist (in this case the error is thrown in
canonPath).
So instead, we now do canonPath() without symlink resolving first before
even checking against the list of allowed paths and then later do the
symlink resolving and checking the allowed paths again.
The first call to canonPath() should get rid of all the "../" and "./",
so in theory the only way to leak a symlink if the attacker is able to
put a symlink in one of the paths allowed by restricted evaluation mode.
For the latter I don't think this is part of the threat model, because
if the attacker can write to that path, the attack vector is even
larger.
Signed-off-by: aszlig <aszlig@nix.build>
forceValue() were called after a value is copied effectively forcing only one of the copies keeping another copy not evaluated.
This resulted in its evaluation of the same lazy value more than once (the number of hits is not big though)
This reduces the risk of object liveness misdetection. For example,
Glibc has an internal variable "mp_" that often points to a Boehm
object, keeping it alive unnecessarily. Since we don't store any
actual roots in global variables, we can just disable data segment
scanning.
With this, the max RSS doing 100 evaluations of
nixos.tests.firefox.x86_64-linux.drvPath went from 718 MiB to 455 MiB.