These commands outputs data that may not end with a newline. This
causes problems when the progress bar redraws, as that completely
wipes the last line of output. As nix key generate-secret outputs
a single line of text with no output, it shows up entirely blank,
making it look like nothing happened.
Fixes: lix-project/lix#320
Change-Id: I5ac706d71d839b6dfa760b60a351414cd96297cf
Already, we had classes like `BuiltPathsCommand` and `StorePathsCommand`
which provided alternative `run` virtual functions providing the
implementation with more arguments. This was a very nice and easy way to
make writing command; just fill in the virtual functions and it is
fairly clear what to do.
However, exception to this pattern were `Installable{,s}Command`. These
two classes instead just had a field where the installables would be
stored, and various side-effecting `prepare` and `load` machinery too
fill them in. Command would wish out those fields.
This isn't so clear to use.
What this commit does is make those command classes like the others,
with richer `run` functions.
Not only does this restore the pattern making commands easier to write,
it has a number of other benefits:
- `prepare` and `load` are gone entirely! One command just hands just
hands off to the next.
- `useDefaultInstallables` because `defaultInstallables`. This takes
over `prepare` for the one case that needs it, and provides enough
flexiblity to handle `nix repl`'s idiosyncratic migration.
- We can use `ref` instead of `std::shared_ptr`. The former must be
initialized (so it is like Rust's `Box` rather than `Option<Box>`,
This expresses the invariant that the installable are in fact
initialized much better.
This is possible because since we just have local variables not
fields, we can stop worrying about the not-yet-initialized case.
- Fewer lines of code! (Finally I have a large refactor that makes the
number go down not up...)
- `nix repl` is now implemented in a clearer way.
The last item deserves further mention. `nix repl` is not like the other
installable commands because instead working from once-loaded
installables, it needs to be able to load them again and again.
To properly support this, we make a new superclass
`RawInstallablesCommand`. This class has the argument parsing and
completion logic, but does *not* hand off parsed installables but
instead just the raw string arguments.
This is exactly what `nix repl` needs, and allows us to instead of
having the logic awkwardly split between `prepare`,
`useDefaultInstallables,` and `load`, have everything right next to each
other. I think this will enable future simplifications of that argument
defaulting logic, but I am saving those for a future PR --- best to keep
code motion and more complicated boolean expression rewriting separate
steps.
The "diagnostic ignored `-Woverloaded-virtual`" pragma helps because C++
doesn't like our many `run` methods. In our case, we don't mind the
shadowing it all --- it is *intentional* that the derived class only
provides a `run` method, and doesn't call any of the overridden `run`
methods.
Helps with https://github.com/NixOS/rfcs/pull/134
Rather than having them plain strings scattered through the whole
codebase, create an enum containing all the known experimental features.
This means that
- Nix can now `warn` when an unkwown experimental feature is passed
(making it much nicer to spot typos and spot deprecated features)
- It’s now easy to remove a feature altogether (once the feature isn’t
experimental anymore or is dropped) by just removing the field for the
enum and letting the compiler point us to all the now invalid usages
of it.
Most functions now take a StorePath argument rather than a Path (which
is just an alias for std::string). The StorePath constructor ensures
that the path is syntactically correct (i.e. it looks like
<store-dir>/<base32-hash>-<name>). Similarly, functions like
buildPaths() now take a StorePathWithOutputs, rather than abusing Path
by adding a '!<outputs>' suffix.
Note that the StorePath type is implemented in Rust. This involves
some hackery to allow Rust values to be used directly in C++, via a
helper type whose destructor calls the Rust type's drop()
function. The main issue is the dynamic nature of C++ move semantics:
after we have moved a Rust value, we should not call the drop function
on the original value. So when we move a value, we set the original
value to bitwise zero, and the destructor only calls drop() if the
value is not bitwise zero. This should be sufficient for most types.
Also lots of minor cleanups to the C++ API to make it more modern
(e.g. using std::optional and std::string_view in some places).
Caching path info is generally useful. For instance, it speeds up "nix
path-info -rS /run/current-system" (i.e. showing the closure sizes of
all paths in the closure of the current system) from 5.6s to 0.15s.
This also eliminates some APIs like Store::queryDeriver() and
Store::queryReferences().