I think it is bad for these reasons when `tests/` contains a mix of
functional and integration tests
- Concepts is harder to understand, the documentation makes a good
unit vs functional vs integration distinction, but when the
integration tests are just two subdirs within `tests/` this is not
clear.
- Source filtering in the `flake.nix` is more complex. We need to
filter out some of the dirs from `tests/`, rather than simply pick
the dirs we want and take all of them. This is a good sign the
structure of what we are trying to do is not matching the structure
of the files.
With this change we have a clean:
```shell-session
$ git show 'HEAD:tests'
tree HEAD:tests
functional/
installer/
nixos/
```
(cherry picked from commit 68c81c737571794f7246db53fb4774e94fcf4b7e)
hook. This fixes a problem with log files being partially or
completely filled with 0's because another nix-store process
truncates the log file. It should also be more efficient.
* Removed some dead code (successor stuff) from nix-push.
* Updated terminology in the tests (store expr -> drv path).
* Check that the deriver is set properly in the tests.
in parallel. Hooks are more efficient: locks on output paths are
only acquired when the hook says that it is willing to accept a
build job. Hooks now work in two phases. First, they should first
tell Nix whether they are willing to accept a job. Nix guarantuees
that no two hooks will ever be in the first phase at the same time
(this simplifies the implementation of hooks, since they don't have
to perform locking (?)). Second, if they accept a job, they are
then responsible for building it (on the remote system), and copying
the result back. These can be run in parallel with other hooks and
locally executed jobs.
The implementation is a bit messy right now, though.
* The directory `distributed' shows a (hacky) example of a hook that
distributes build jobs over a set of machines listed in a
configuration file.
parallel as possible (similar to GNU Make's `-j' switch). This is
useful on SMP systems, but it is especially useful for doing builds
on multiple machines. The idea is that a large derivation is
initiated on one master machine, which then distributes
sub-derivations to any number of slave machines. This should not
happen synchronously or in lock-step, so the master must be capable
of dealing with multiple parallel build jobs. We now have the
infrastructure to support this.
TODO: substitutes are currently broken.