#include #include #include "state.hh" using namespace nix; void State::makeRunnable(Step::ptr step) { printMsg(lvlChatty, format("step ‘%1%’ is now runnable") % step->drvPath); { auto step_(step->state.lock()); assert(step_->created); assert(!step->finished); assert(step_->deps.empty()); } { auto runnable_(runnable.lock()); runnable_->push_back(step); } wakeDispatcher(); } void State::dispatcher() { while (true) { printMsg(lvlDebug, "dispatcher woken up"); auto sleepUntil = system_time::max(); bool keepGoing; do { system_time now = std::chrono::system_clock::now(); /* Copy the currentJobs field of each machine. This is necessary to ensure that the sort comparator below is an ordering. std::sort() can segfault if it isn't. Also filter out temporarily disabled machines. */ struct MachineInfo { Machine::ptr machine; unsigned int currentJobs; }; std::vector machinesSorted; { auto machines_(machines.lock()); for (auto & m : *machines_) { auto info(m.second->state->connectInfo.lock()); if (info->consecutiveFailures && info->disabledUntil > now) { if (info->disabledUntil < sleepUntil) sleepUntil = info->disabledUntil; continue; } machinesSorted.push_back({m.second, m.second->state->currentJobs}); } } /* Sort the machines by a combination of speed factor and available slots. Prioritise the available machines as follows: - First by load divided by speed factor, rounded to the nearest integer. This causes fast machines to be preferred over slow machines with similar loads. - Then by speed factor. - Finally by load. */ sort(machinesSorted.begin(), machinesSorted.end(), [](const MachineInfo & a, const MachineInfo & b) -> bool { float ta = roundf(a.currentJobs / a.machine->speedFactor); float tb = roundf(b.currentJobs / b.machine->speedFactor); return ta != tb ? ta < tb : a.machine->speedFactor != b.machine->speedFactor ? a.machine->speedFactor > b.machine->speedFactor : a.currentJobs > b.currentJobs; }); /* Find a machine with a free slot and find a step to run on it. Once we find such a pair, we restart the outer loop because the machine sorting will have changed. */ keepGoing = false; for (auto & mi : machinesSorted) { // FIXME: can we lose a wakeup if a builder exits concurrently? if (mi.machine->state->currentJobs >= mi.machine->maxJobs) continue; auto runnable_(runnable.lock()); //printMsg(lvlDebug, format("%1% runnable builds") % runnable_->size()); /* FIXME: we're holding the runnable lock too long here. This could be more efficient. */ for (auto i = runnable_->begin(); i != runnable_->end(); ) { auto step = i->lock(); /* Delete dead steps. */ if (!step) { i = runnable_->erase(i); continue; } /* Can this machine do this step? */ if (!mi.machine->supportsStep(step)) { ++i; continue; } /* Skip previously failed steps that aren't ready to be retried. */ { auto step_(step->state.lock()); if (step_->tries > 0 && step_->after > now) { if (step_->after < sleepUntil) sleepUntil = step_->after; ++i; continue; } } /* Make a slot reservation and start a thread to do the build. */ auto reservation = std::make_shared(mi.machine->state->currentJobs); i = runnable_->erase(i); auto builderThread = std::thread(&State::builder, this, step, mi.machine, reservation); builderThread.detach(); // FIXME? keepGoing = true; break; } if (keepGoing) break; } } while (keepGoing); /* Sleep until we're woken up (either because a runnable build is added, or because a build finishes). */ { std::unique_lock lock(dispatcherMutex); printMsg(lvlDebug, format("dispatcher sleeping for %1%s") % std::chrono::duration_cast(sleepUntil - std::chrono::system_clock::now()).count()); dispatcherWakeup.wait_until(lock, sleepUntil); nrDispatcherWakeups++; } } printMsg(lvlError, "dispatcher exits"); } void State::wakeDispatcher() { { std::lock_guard lock(dispatcherMutex); } // barrier dispatcherWakeup.notify_one(); }