Previously, the build ID would never flow through channels which
exited.
This patch tracks the buildOne state as part of State and exits avoids
waiting forever for new work.
The code around buildOnly is a bit rough, making this a bit weird to
implement but since it is only used for testing the value of improving
it on its own is a bit questionable.
If we don't see machine that supports a build step for
'max_unsupported_time' seconds, the step is aborted. The default is 0,
which is appropriate for Hydra installations that don't provision
missing machines dynamically.
(cherry picked from commit f5cdbfe21d)
In a NixOS container, cmdBuildDerivation doesn't work because we're
not privileged. But we also don't need it because the store already
has the derivation.
Also, don't copy from/to the store since this gives errors about
missing signatures.
It now receives notifications about started/finished builds/steps via
PostgreSQL. This gets rid of the (substantial) overhead of starting
hydra-notify for every event. It also allows other programs (even on
other machines) to listen to Hydra notifications.
Setting
xxx-jobset-repeats = patchelf:master:2
will cause Hydra to perform every build step in the specified jobset 2
additional times (i.e. 3 times in total). Non-determinism is not fatal
unless the derivation has the attribute "isDeterministic = true"; we
just note the lack of determinism in the Hydra database. This will
allow us to get stats about the (lack of) reproducibility of all of
Nixpkgs.
Builds can now specify the attribute "isDeterministic = true" to tell
Hydra to build with build-repeat > 0. If there is a mismatch between
rounds, the step / build fails with a suitable status.
Maybe this should be a meta attribute, but that makes it invisible to
hydra-queue-runner, and it seems reasonable to make a claim of
mandatory determinism part of the derivation (since e.g. enabling this
flag should trigger a rebuild).
We now take into account the memory necessary for compressing the NAR
being exported to the binary cache, plus xz compression overhead.
Also, we now release the memory tokens for the NAR accessor *after*
releasing the NAR accessor. Previously the memory for the NAR accessor
might still be in use while another thread does an allocation, causing
the maximum to be exceeded temporarily.
Also, use notify_all instead of notify_one to wake up memory token
waiters. This is not very nice, but not every waiter is requesting the
same number of tokens, so some might be able to proceed.
This was a bad idea because pthread_cancel() is unsalvageable broken
in C++. Destructors are not allowed to throw exceptions (especially in
C++11), but pthread_cancel() can cause a __cxxabiv1::__forced_unwind
exception inside any destructor that invokes a cancellation
point. (This exception can be caught but *must* be rethrown.) So let's
just kill the builder process instead.
It was hitting
assert(reservation.unique());
Since we do want the machine reservation to be released before calling
wakeDispatcher(), let's use a different object for keeping track of
active steps.
We now kill active build steps when there are no more referring
builds. This is useful e.g. for preventing cancelled multi-hour TPC-H
benchmark runs from hogging build machines.
These are build steps that remain "busy" in the database even though
they have finished, because they couldn't be updated (e.g. due to a
PostgreSQL connection problem). To prevent them from showing up as
busy in the "Machine status" page, we now periodically purge them.
Previously, if the queue monitor thread encounters a build that Hydra
has previously built, it downloaded the output paths from the binary
cache, just to determine the build products and metrics. This is very
inefficient. In particular, when doing something like merging
nixpkgs:staging into nixpkgs:master, the queue monitor thread will be
locked up for a long time fetching files from S3, causing the build
farm to be mostly idle.
Of course this is entirely unnecessary, since the build
products/metrics are already in the Hydra database. So now we just
look up a previous build with the same output path, and copy the
products/metrics.
The maximum output size per build step (as the sum of the NARs of each
output) can be set via hydra.conf, e.g.
max-output-size = 1000000000
The default is 2 GiB.
Also refactored the build error / status handling a bit.
When using a binary cache store, the queue runner receives NARs from
the build machines, compresses them, and uploads them to the
cache. However, keeping multiple large NARs in memory can cause the
queue runner to run out of memory. This can happen for instance when
it's processing multiple ISO images concurrently.
The fix is to use a TokenServer to prevent the builder threads to
store more than a certain total size of NARs concurrently (at the
moment, this is hard-coded at 4 GiB). Builder threads that cause the
limit to be exceeded will block until other threads have finished.
The 4 GiB limit does not include certain other allocations, such as
for xz compression or for FSAccessor::readFile(). But since these are
unlikely to be more than the size of the NARs and hydra.nixos.org has
32 GiB RAM, it should be fine.
Same problem as d744362e4a.
at /nix/store/ksvsbr7pg4z69bv6fbbc8h7x7rm2104m-gcc-4.9.3/include/c++/4.9.3/bits/predefined_ops.h:166
__last@entry=..., __comp=...) at /nix/store/ksvsbr7pg4z69bv6fbbc8h7x7rm2104m-gcc-4.9.3/include/c++/4.9.3/bits/stl_algo.h:1827
__comp=...) at /nix/store/ksvsbr7pg4z69bv6fbbc8h7x7rm2104m-gcc-4.9.3/include/c++/4.9.3/bits/stl_algo.h:4717
To use the local Nix store (default):
store_mode = direct
To use a local binary cache:
store_mode = local-binary-cache
binary_cache_dir = /var/lib/hydra/binary-cache
To use an S3 bucket:
store_mode = s3-binary-cache
binary_cache_s3_bucket = my-nix-bucket
Also, respect binary_cache_{secret,public}_key_file for signing the
binary cache.