* The "Jobset" page now shows when evaluations are in progress (rather
than just pending).
* Restored the ability to do a single evaluation from the command line
by doing "hydra-evaluator <project> <jobset>".
* Fix some consistency issues between jobset status in PostgreSQL and
in hydra-evaluator. In particular, "lastCheckedTime" was never
updated internally.
Setting
xxx-jobset-repeats = patchelf:master:2
will cause Hydra to perform every build step in the specified jobset 2
additional times (i.e. 3 times in total). Non-determinism is not fatal
unless the derivation has the attribute "isDeterministic = true"; we
just note the lack of determinism in the Hydra database. This will
allow us to get stats about the (lack of) reproducibility of all of
Nixpkgs.
Builds can now specify the attribute "isDeterministic = true" to tell
Hydra to build with build-repeat > 0. If there is a mismatch between
rounds, the step / build fails with a suitable status.
Maybe this should be a meta attribute, but that makes it invisible to
hydra-queue-runner, and it seems reasonable to make a claim of
mandatory determinism part of the derivation (since e.g. enabling this
flag should trigger a rebuild).
We now kill active build steps when there are no more referring
builds. This is useful e.g. for preventing cancelled multi-hour TPC-H
benchmark runs from hogging build machines.
Without this, if (failed or aborted) derivations have been
garbage-collected, there is no way to restart them, which is very
annoying. Now we set a forceEval flag in the jobset to cause it to be
re-evaluated even if none of the inputs have changed.
This rewrites the top-level loop of hydra-evaluator in C++. The Perl
stuff is moved into hydra-eval-jobset. (Rewriting the entire evaluator
would be nice but is a bit too much work.) The new version has some
advantages:
* It can run multiple jobset evaluations in parallel.
* It uses PostgreSQL notifications so it doesn't have to poll the
database. So if a jobset is triggered via the web interface or from
a GitHub / Bitbucket webhook, evaluation of the jobset will start
almost instantaneously (assuming the evaluator is not at its
concurrency limit).
* It imposes a timeout on evaluations. So if e.g. hydra-eval-jobset
hangs connecting to a Mercurial server, it will eventually be
killed.
Dashboards can now be marked as publically visible in the user
preferences. The dashboard URL has changed from /user/<name>/dashboard
to /dashboard/<name> because /user/<name> requires being logged in as
<name> or as an admin.
This allows fully declarative project specifications. This is best
illustrated by example:
* I create a new project, setting the declarative spec file to
"spec.json" and the declarative input to a git repo pointing
at git://github.com/shlevy/declarative-hydra-example.git
* hydra creates a special ".jobsets" jobset alongside the project
* Just before evaluating the ".jobsets" jobset, hydra fetches
declarative-hydra-example.git, reads spec.json as a jobset spec,
and updates the jobset's configuration accordingly:
{
"enabled": 1,
"hidden": false,
"description": "Jobsets",
"nixexprinput": "src",
"nixexprpath": "default.nix",
"checkinterval": 300,
"schedulingshares": 100,
"enableemail": false,
"emailoverride": "",
"keepnr": 3,
"inputs": {
"src": { "type": "git", "value": "git://github.com/shlevy/declarative-hydra-example.git", "emailresponsible": false },
"nixpkgs": { "type": "git", "value": "git://github.com/NixOS/nixpkgs.git release-16.03", "emailresponsible": false }
}
}
* When the "jobsets" job of the ".jobsets" jobset completes, hydra
reads its output as a JSON representation of a dictionary of
jobset specs and creates a jobset named "master" configured
accordingly (In this example, this is the same configuration as
.jobsets itself, except using release.nix instead of default.nix):
{
"enabled": 1,
"hidden": false,
"description": "js",
"nixexprinput": "src",
"nixexprpath": "release.nix",
"checkinterval": 300,
"schedulingshares": 100,
"enableemail": false,
"emailoverride": "",
"keepnr": 3,
"inputs": {
"src": { "type": "git", "value": "git://github.com/shlevy/declarative-hydra-example.git", "emailresponsible": false },
"nixpkgs": { "type": "git", "value": "git://github.com/NixOS/nixpkgs.git release-16.03", "emailresponsible": false }
}
}
The maximum output size per build step (as the sum of the NARs of each
output) can be set via hydra.conf, e.g.
max-output-size = 1000000000
The default is 2 GiB.
Also refactored the build error / status handling a bit.
The queue runner no longer uses this field, and it doesn't provide
very interesting historical data (mostly SSH failures), but it takes
up a lot of space. Also, it contained some bad UTF-8 which was
preventing an upgrade to Postgres 9.5, so a good occasion to get rid
of it.
This removes the "busy", "locker" and "logfile" columns, which are no
longer used by the queue runner. The "Running builds" page now only
shows builds that have an active build step.
We have this set in upgrade-42.sql, so it's better to stay consistent
with the basic SQL file to avoid problems with new Hydra installations.
Signed-off-by: aszlig <aszlig@redmoonstudios.org>
Reported-by: Eelco Dolstra <eelco.dolstra@logicblox.com>
This is to properly separate channels from regular jobs and also make
sure that we can always iterate on them, no matter whether the build has
failed. The reason why we were not able to do this until now was because
we were iterating on the build products, and whenever some constituent
of a channel job has failed, we didn't get a build output.
So whenever there is a meta.isHydraChannel, we can now properly
distinguish it from the other jobs.
I still don't have any clue, why "make -C src/sql update-dbix" without
*any* modifications tries to create additional schema definitions. But
I've checked the md5sums of the existing schema definitions and they
don't seem to match, so it seems that they already have been tampered
with.
Signed-off-by: aszlig <aszlig@redmoonstudios.org>
Builds can now emit metrics that Hydra will store in its database and
render as time series via flot charts. Typical applications are to
keep track of performance indicators, coverage percentages, artifact
sizes, and so on.
For example, a coverage build can emit the coverage percentage as
follows:
echo "lineCoverage $pct %" > $out/nix-support/hydra-metrics
Graphs of all metrics for a job can be seen at
http://.../job/<project>/<jobset>/<job>#tabs-charts
Specific metrics are also visible at
http://.../job/<project>/<jobset>/<job>/metric/<metric>
The latter URL also allows getting the data in JSON format (e.g. via
"curl -H 'Accept: application/json'").
Aborted builds are now put back on the runnable queue and retried
after a certain time interval (currently 60 seconds for the first
retry, then tripled on each subsequent retry).
There is no point in indexing rows with common column values like
"finished = 1", since those are the majority of the table. Only the
exceptions ("finished = 0") are interesting. Having smaller tables
should make updates/insertions faster.