The value pointers of lists with 1 or 2 elements are now stored in the
list value itself. In particular, this makes the "concatMap (x: if
cond then [(f x)] else [])" idiom cheaper.
This ensures that 1) the derivation doesn't change when Nix changes;
2) the derivation closure doesn't contain Nix and its dependencies; 3)
we don't have to rely on ugly chroot hacks.
This modification moves Attr and Bindings structures into their own header
file which is dedicated to the attribute set representation. The goal of to
isolate pieces of code which are related to the attribute set
representation. Thus future modifications of the attribute set
representation will only have to modify these files, and not every other
file across the evaluator.
This relaxes restricted mode to allow access to anything in the
store. In the future, it would be better to allow access to only paths
that have been constructed in the current evaluation (so a hard-coded
/nix/store/blabla in a Nix expression would still be
rejected). However, note that reading /nix/store itself is still
rejected, so you can't use this so get access to things you don't know
about.
This is because we don't want to do HTTP requests on every evaluation,
even though we can prevent a full redownload via the cached ETag. The
default is one hour.
This function downloads and unpacks the given URL at evaluation
time. This is primarily intended to make it easier to deal with Nix
expressions that have external dependencies. For instance, to fetch
Nixpkgs 14.12:
with import (fetchTarball https://github.com/NixOS/nixpkgs-channels/archive/nixos-14.12.tar.gz) {};
Or to fetch a specific revision:
with import (fetchTarball 2766a4b44e.tar.gz) {};
This patch also adds a ‘fetchurl’ builtin that downloads but doesn't
unpack its argument. Not sure if it's useful though.
This doesn't work anymore if the "strict" chroot mode is
enabled. Instead, add Nix's store path as a dependency. This ensures
that its closure is present in the chroot.
If ‘--option restrict-eval true’ is given, the evaluator will throw an
exception if an attempt is made to access any file outside of the Nix
search path. This is primarily intended for Hydra, where we don't want
people doing ‘builtins.readFile ~/.ssh/id_dsa’ or stuff like that.
The DT_UNKNOWN fallback code was getting the type of the wrong path,
causing readDir to report "directory" as the type of every file.
Reported by deepfire on IRC.
Code that links to libnixexpr (e.g. plugins loaded with importNative, or
nix-exec) may want to provide custom value types and operations on
values of those types. For example, nix-exec is currently using sets
where a custom IO value type would be more appropriate. This commit
provides a generic hook for such types in the form of tExternal and the
ExternalBase virtual class, which contains all functions necessary for
libnixexpr's type-polymorphic functions (e.g. `showType`) to be
implemented.
The function ‘builtins.match’ takes a POSIX extended regular
expression and an arbitrary string. It returns ‘null’ if the string
does not match the regular expression. Otherwise, it returns a list
containing substring matches corresponding to parenthesis groups in
the regex. The regex must match the entire string (i.e. there is an
implied "^<pat>$" around the regex). For example:
match "foo" "foobar" => null
match "foo" "foo" => []
match "f(o+)(.*)" "foooobar" => ["oooo" "bar"]
match "(.*/)?([^/]*)" "/dir/file.nix" => ["/dir/" "file.nix"]
match "(.*/)?([^/]*)" "file.nix" => [null "file.nix"]
The following example finds all regular files with extension .nix or
.patch underneath the current directory:
let
findFiles = pat: dir: concatLists (mapAttrsToList (name: type:
if type == "directory" then
findFiles pat (dir + "/" + name)
else if type == "regular" && match pat name != null then
[(dir + "/" + name)]
else []) (readDir dir));
in findFiles ".*\\.(nix|patch)" (toString ./.)
Before this there was a bug where a `find` was being called on a
not-yet-sorted set. The code was just a mess before anyway, so I cleaned
it up while fixing it.
With this, attribute sets with a `__functor` attribute can be applied
just like normal functions. This can be used to attach arbitrary
metadata to a function without callers needing to treat it specially.
Clearing v.app.right was not enough, because the length field of a
list only takes 32 bits, so the most significant 32 bits of v.app.left
(a.k.a. v.thunk.env) would remain. This could cause Boehm GC to
interpret it as a valid pointer.
This change reduces maximum RSS for evaluating the ‘tested’ job in
nixos/release-small.nix from 1.33 GiB to 0.80 GiB, and runtime by
about 8%.
This can be used to import a dynamic shared object and return an
arbitrary value, including new primops. This can be used both to test
new primops without having to recompile nix every time, and to build
specialized primops that probably don't belong upstream (e.g. a function
that calls out to gpg to decrypt a nixops secret as-needed).
The imported function should initialize the Value & as needed. A single
import can define multiple values by creating an attrset or list, of
course.
An example initialization function might look like:
extern "C" void initialize(nix::EvalState & state, nix::Value & v)
{
v.type = nix::tPrimOp;
v.primOp = NEW nix::PrimOp(myFun, 1, state.symbols.create("myFun"));
}
Then `builtins.importNative ./example.so "initialize"` will evaluate to
the primop defined in the myFun function.
It's slower than ExprVar since it doesn't compute a static
displacement. Since we're not using the throw primop in the
implementation of <...> anymore, it's also not really needed.
Nix search path lookups like <nixpkgs> are now desugared to ‘findFile
nixPath <nixpkgs>’, where ‘findFile’ is a new primop. Thus you can
override the search path simply by saying
let
nixPath = [ { prefix = "nixpkgs"; path = "/my-nixpkgs"; } ];
in ... <nixpkgs> ...
In conjunction with ‘scopedImport’ (commit
c273c15cb1), the Nix search path can be
propagated across imports, e.g.
let
overrides = {
nixPath = [ ... ] ++ builtins.nixPath;
import = fn: scopedImport overrides fn;
scopedImport = attrs: fn: scopedImport (overrides // attrs) fn;
builtins = builtins // overrides;
};
in scopedImport overrides ./nixos
‘scopedImport’ works like ‘import’, except that it takes a set of
attributes to be added to the lexical scope of the expression,
essentially extending or overriding the builtin variables. For
instance, the expression
scopedImport { x = 1; } ./foo.nix
where foo.nix contains ‘x’, will evaluate to 1.
This has a few applications:
* It allows getting rid of function argument specifications in package
expressions. For instance, a package expression like:
{ stdenv, fetchurl, libfoo }:
stdenv.mkDerivation { ... buildInputs = [ libfoo ]; }
can now we written as just
stdenv.mkDerivation { ... buildInputs = [ libfoo ]; }
and imported in all-packages.nix as:
bar = scopedImport pkgs ./bar.nix;
So whereas we once had dependencies listed in three places
(buildInputs, the function, and the call site), they now only need
to appear in one place.
* It allows overriding builtin functions. For instance, to trace all
calls to ‘map’:
let
overrides = {
map = f: xs: builtins.trace "map called!" (map f xs);
# Ensure that our override gets propagated by calls to
# import/scopedImport.
import = fn: scopedImport overrides fn;
scopedImport = attrs: fn: scopedImport (overrides // attrs) fn;
# Also update ‘builtins’.
builtins = builtins // overrides;
};
in scopedImport overrides ./bla.nix
* Similarly, it allows extending the set of builtin functions. For
instance, during Nixpkgs/NixOS evaluation, the Nixpkgs library
functions could be added to the default scope.
There is a downside: calls to scopedImport are not memoized, unlike
import. So importing a file multiple times leads to multiple parsings
/ evaluations. It would be possible to construct the AST only once,
but that would require careful handling of variables/environments.