the disk is full (because to delete something from the Nix store, we
need a Berkeley DB transaction, which takes up disk space). Under
normal operation, we make sure that there exists a file
/nix/var/nix/db/reserved of 1 MB. When running the garbage
collector, we delete that file before we open the Berkeley DB
environment.
creates a new process group but also a new session. New sessions
have no controlling tty, so child processes like ssh cannot open
/dev/tty (which is bad).
intended). This ensures that any ssh child processes to remote
machines are also killed, and thus the Nix process on the remote
machine also exits. Without this, the remote Nix process will
continue until it exists or until its stdout buffer gets full and it
locks up. (Partially fixes NIX-35.)
deletes a path even if it is reachable from a root. However, it
won't delete a path that still has referrers (since that would
violate store invariants).
Don't try this at home. It's a useful hack for recovering from
certain situations in a somewhat clean way (e.g., holes in closures
due to disk corruption).
nix-store query options `--referer' and `--referer-closure' have
been changed to `--referrer' and `--referrer-closure' (but the old
ones are still accepted for compatibility).
mapping. The referer table is replaced by a referrer table (note
spelling fix) that stores each referrer separately. That is,
instead of having
referer[P] = {Q_1, Q_2, Q_3, ...}
we store
referer[(P, Q_1)] = ""
referer[(P, Q_2)] = ""
referer[(P, Q_3)] = ""
...
To find the referrers of P, we enumerate over the keys with a value
lexicographically greater than P. This requires the referrer table
to be stored as a B-Tree rather than a hash table.
(The tuples (P, Q) are stored as P + null-byte + Q.)
Old Nix databases are upgraded automatically to the new schema.
builder. Instead, require that the Nix store has sticky permission
(S_ISVTX); everyone can created files in the Nix store, but they
cannot delete, rename or modify files created by others.
root (or setuid root), then builds will be performed under one of
the users listed in the `build-users' configuration variables. This
is to make it impossible to influence build results externally,
allowing locally built derivations to be shared safely between
users (see ASE-2005 paper).
To do: only one builder should be active per build user.
derivations. This is mostly to simplify the implementation of
nix-prefetch-{url, svn}, which now work properly in setuid
installations.
* Enforce valid store names in `nix-store --add / --add-fixed'.
continue building when one fails unless `--keep-going' is
specified.
* When `--keep-going' is specified, print out the set of failing
derivations at the end (otherwise it can be hard to find out which
failed).
multiple times is also a top-level goal, then the second and later
instantiations would never be created because there would be a
stable pointer to the first one that would keep it alive in the
WeakGoalMap.
* Some tracing code for debugging this kind of problem.
user environment, e.g.,
$ nix-env -i /nix/store/z58v41v21xd3ywrqk1vmvdwlagjx7f10-aterm-2.3.1.drv
or
$ nix-env -i /nix/store/hsyj5pbn0d9iz7q0aj0fga7cpaadvp1l-aterm-2.3.1
This is useful because it allows Nix expressions to be bypassed
entirely. For instance, if only a nix-pull manifest is provided,
plus the top-level path of some component, it can be installed
without having to supply the Nix expression (e.g., for obfuscation,
or to be independent of Nix expression language changes or context
dependencies).
to derivations in user environments. Nice for developers (since it
prevents build-time-only dependencies from being GC'ed, in
conjunction with `gc-keep-outputs'). Turned off by default.
* Removed some dead code (successor stuff) from nix-push.
* Updated terminology in the tests (store expr -> drv path).
* Check that the deriver is set properly in the tests.
for finding build-time dependencies (possibly after a build). E.g.,
$ nix-store -qb aterm $(nix-store -qd $(which strc))
/nix/store/jw7c7s65n1gwhxpn35j9rgcci6ilzxym-aterm-2.3.1
* Arguments to nix-store can be files within store objects, e.g.,
/nix/store/jw7c...-aterm-2.3.1/bin/baffle.
* Idem for garbage collector roots.
This was necessary becase root finding must be done after
acquisition of the global GC lock.
This makes `nix-collect-garbage' obsolete; it is now just a wrapper
around `nix-store --gc'.
* Automatically remove stale GC roots (i.e., indirect GC roots that
point to non-existent paths).
get rid of GC roots. Nix-build places a symlink `result' in the
current directory. Previously, removing that symlink would not
remove the store path being linked to as a GC root. Now, the GC
root created by nix-build is actually a symlink in
`/nix/var/nix/gcroots/auto' to `result'. So if that symlink is
removed the GC root automatically becomes invalid (since it can no
longer be resolved). The root itself is not automatically removed -
the garbage collector should delete dangling roots.
immediately add the result as a permanent GC root. This is the only
way to prevent a race with the garbage collector. For instance, the
old style
ln -s $(nix-store -r $(nix-instantiate foo.nix)) \
/nix/var/nix/gcroots/result
has two time windows in which the garbage collector can interfere
(by GC'ing the derivation and the output, respectively). On the
other hand,
nix-store --add-root /nix/var/nix/gcroots/result -r \
$(nix-instantiate --add-root /nix/var/nix/gcroots/drv \
foo.nix)
is safe.
* nix-build: use `--add-root' to prevent GC races.
being created after the garbage collector has read the temproots
directory. This blocks the creation of new processes, but the
garbage collector could periodically release the GC lock to allow
them to run.
that they are deleted in an order that maintains the closure
invariant.
* Presence of a path in a temporary roots file does not imply that all
paths in its closure are also present, so add the closure.
roots to a per-process temporary file in /nix/var/nix/temproots
while holding a write lock on that file. The garbage collector
acquires read locks on all those files, thus blocking further
progress in other Nix processes, and reads the sets of temporary
roots.
though). In particular it's now much easier to register a GC root.
Just place a symlink to whatever store path it is that you want to
keep in /nix/var/nix/gcroots.
This simplifies garbage collection and `nix-store --query
--requisites' since we no longer need to treat derivations
specially.
* Better maintaining of the invariants, e.g., setReferences() can only
be called on a valid/substitutable path.
closure of the referers relation rather than the references
relation, i.e., the set of all paths that directly or indirectly
refer to the given path. Note that contrary to the references
closure this set is not fixed; it can change as paths are added to
or removed from the store.
promise :-) This allows derivations to specify on *what* output
paths of input derivations they are dependent. This helps to
prevent unnecessary downloads. For instance, a build might be
dependent on the `devel' and `lib' outputs of some library
component, but not the `docs' output.
graph. That is, `nix-store --query --references PATH' shows the set
of paths referenced by PATH, and `nix-store --query --referers PATH'
shows the set of paths referencing PATH.
`derivations.cc', etc.
* Store the SHA-256 content hash of store paths in the database after
they have been built/added. This is so that we can check whether
the store has been messed with (a la `rpm --verify').
* When registering path validity, verify that the closure property
holds.
representation of closures as ATerms in the Nix store. Instead, the
file system pointer graph is now stored in the Nix database. This
has many advantages:
- It greatly simplifies the implementation (we can drop the notion
of `successors', and so on).
- It makes registering roots for the garbage collector much easier.
Instead of specifying the closure expression as a root, you can
simply specify the store path that must be retained as a root.
This could not be done previously, since there was no way to find
the closure store expression containing a given store path.
- Better traceability: it is now possible to query what paths are
referenced by a path, and what paths refer to a path.
* Formalise the notion of fixed-output derivations, i.e., derivations
for which a cryptographic hash of the output is known in advance.
Changes to such derivations should not propagate upwards through the
dependency graph. Previously this was done by specifying the hash
component of the output path through the `id' attribute, but this is
insecure since you can lie about it (i.e., you can specify any hash
and then produce a completely different output). Now the
responsibility for checking the output is moved from the builder to
Nix itself.
A fixed-output derivation can be created by specifying the
`outputHash' and `outputHashAlgo' attributes, the latter taking
values `md5', `sha1', and `sha256', and the former specifying the
actual hash in hexadecimal or in base-32 (auto-detected by looking
at the length of the attribute value). MD5 is included for
compatibility but should be considered deprecated.
* Removed the `drvPath' pseudo-attribute in derivation results. It's
no longer necessary.
* Cleaned up the support for multiple output paths in derivation store
expressions. Each output now has a unique identifier (e.g., `out',
`devel', `docs'). Previously there was no way to tell output paths
apart at the store expression level.
* `nix-hash' now has a flag `--base32' to specify that the hash should
be printed in base-32 notation.
* `fetchurl' accepts parameters `sha256' and `sha1' in addition to
`md5'.
* `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a
flag to specify the hash.)
bits, then encode them in a radix-32 representation (using digits
and letters except e, o, u, and t). This produces store paths like
/nix/store/4i0zb0z7f88mwghjirkz702a71dcfivn-aterm-2.3.1. The nice
thing about this is that the hash part of the file name is still 32
characters, as before with MD5.
(Of course, shortening SHA-256 to 160 bits makes it no better than
SHA-160 in theory, but hopefully it's a bit more resistant to
attacks; it's certainly a lot slower.)
* Start cleaning up unique store path generation (they weren't always
unique; in particular the suffix ("-aterm-2.2", "-builder.sh") was
not part of the hash, therefore changes to the suffix would cause
multiple store objects with the same hash).
- Drop the store expression. So now a substitute is just a
command-line invocation (a program name + arguments). If you
register a substitute you are responsible for registering the
expression that built it (if any) as a root of the garbage
collector.
- Drop the substitutes-rev DB table.
permission to the Nix store or database. E.g., `nix-env -qa' will
work, but `nix-env -qas' won't (the latter needs DB access). The
option `--readonly-mode' forces this mode; otherwise, it's only
activated when the database cannot be opened.
derivation, since NormalisationGoal would first run a
NormalisationGoal on the subderivation (a no-op, since in a
situation where we need fallback the successor is known), and then
runs a RealisationGoal on the normal form, which then cannot do a
fallback because it doesn't know the derivation expression for which
it is a normal form.
Tossed out the 2-phase normalisation/realisation in
NormalisationGoal and SubstitutionGoal since it's no longer needed -
a RealisationGoal will run a NormalisationGoal if necessary.
Previously there was the problem that all files read by nix-env
etc. should be reachable and readable by the Nix user. So for
instance building a Nix expression in your home directory meant that
the home directory should have at least g+x or o+x permission so
that the Nix user could reach the Nix expression. Now we just
switch back to the original user just prior to reading sources and
the like. The places where this happens are somewhat arbitrary,
however. Any scope that has a live SwitchToOriginalUser object in
it is executed as the original user.
* Back out r1385. setreuid() sets the saved uid to the new
real/effective uid, which prevents us from switching back to the
original uid. setresuid() doesn't have this problem (although the
manpage has a bug: specifying -1 for the saved uid doesn't leave it
unchanged; an explicit value must be specified).
unreachable paths that haven't been used for N hours. For instance,
`nix-collect-garbage --min-age 168' only deletes paths that haven't
been accessed in the last week.
This is useful for instance in the build farm where many derivations
can be shared between consecutive builds, and we wouldn't want a
garbage collect to throw them all away. We could of course register
them as roots, but then we'd to unregister them at some point, which
would be a pain to manage. The `--min-age' flag gives us a sort of
MRU caching scheme.
BUG: this really shouldn't be in gc.cc since that violates
mechanism/policy separation.
suboperations `--print-live', `--print-dead', and `--delete'. The
roots are not determined by nix-store; they are read from standard
input. This is to make it easy to customise what the roots are.
The collector now no longer fails when store expressions are missing
(which legally happens when using substitutes). It never tries to
fetch paths through substitutes.
TODO: acquire a global lock on the store while garbage collecting.
* Removed `nix-store --delete'.
* Builder output is written to standard error by default.
* The option `-B' is gone.
* The option `-Q' suppresses builder output.
The result of this is that most Nix invocations shouldn't need any
flags w.r.t. logging.
derivation disables scanning for dependencies. Use at your own
risk. This is a quick hack to speed up UML image generation (image
are very big, say 1 GB).
It would be better if the scanner were faster, and didn't read the
whole file into memory.