SRI hashes (https://www.w3.org/TR/SRI/) combine the hash algorithm and
a base-64 hash. This allows more concise and standard hash
specifications. For example, instead of
import <nix/fetchurl.nl> {
url = https://nixos.org/releases/nix/nix-2.1.3/nix-2.1.3.tar.xz;
sha256 = "5d22dad058d5c800d65a115f919da22938c50dd6ba98c5e3a183172d149840a4";
};
you can write
import <nix/fetchurl.nl> {
url = https://nixos.org/releases/nix/nix-2.1.3/nix-2.1.3.tar.xz;
hash = "sha256-XSLa0FjVyADWWhFfkZ2iKTjFDda6mMXjoYMXLRSYQKQ=";
};
In fixed-output derivations, the outputHashAlgo is no longer mandatory
if outputHash specifies the hash (either as an SRI or in the old
"<type>:<hash>" format).
'nix hash-{file,path}' now print hashes in SRI format by default. I
also reverted them to use SHA-256 by default because that's what we're
using most of the time in Nixpkgs.
Suggested by @zimbatm.
This prints the references graph of the store paths in the graphML
format [1]. The graphML format is supported by several graph tools
such as the Python Networkx library or the Apache Thinkerpop project.
[1] http://graphml.graphdrawing.org
It adds a new operation, cmdAddToStoreNar, that does the same thing as
the corresponding nix-daemon operation, i.e. call addToStore(). This
replaces cmdImportPaths, which has the major issue that it sends the
NAR first and the store path second, thus requiring us to store the
incoming NAR either in memory or on disk until we decide what to do
with it.
For example, this reduces the memory usage of
$ nix copy --to 'ssh://localhost?remote-store=/tmp/nix' /nix/store/95cwv4q54dc6giaqv6q6p4r02ia2km35-blender-2.79
from 267 MiB to 12 MiB.
Probably fixes#1988.
nix-store --export, nix-store --dump, and nix dump-path would previously
fail silently if writing the data out failed, because
a) FdSink::write ignored exceptions, and
b) the commands relied on FdSink's destructor, which ignores
exceptions, to flush the data out.
This could cause rather opaque issues with installing nixos, because
nix-store --export would happily proceed even if it couldn't write its
data out (e.g. if nix-store --import on the other side of the pipe
failed).
This commit adds tests that expose these issues in the nix-store
commands, and fixes them for all three.
Instead, if a fixed-output derivation produces has an incorrect output
hash, we now unconditionally move the outputs to the path
corresponding with the actual hash and register it as valid. Thus,
after correcting the hash in the Nix expression (e.g. in a fetchurl
call), the fixed-output derivation doesn't have to be built again.
It would still be good to have a command for reporting the actual hash
of a fixed-output derivation (instead of throwing an error), but
"nix-build --hash" didn't do that.
Functions like copyClosure() had 3 bool arguments, which creates a
severe risk of mixing up arguments.
Also, implement copyClosure() using copyPaths().
This allows various Store implementations to provide different ways to
get build logs. For example, BinaryCacheStore can get the build logs
from the binary cache.
Also, remove the log-servers option since we can use substituters for
this.
Previously, the Settings class allowed other code to query for string
properties, which led to a proliferation of code all over the place making
up new options without any sort of central registry of valid options. This
commit pulls all those options back into the central Settings class and
removes the public get() methods, to discourage future abuses like that.
Furthermore, because we know the full set of options ahead of time, we
now fail loudly if someone enters an unrecognized option, thus preventing
subtle typos. With some template fun, we could probably also dump the full
set of options (with documentation, defaults, etc.) to the command line,
but I'm not doing that yet here.
This makes it easier to create a diverted store, i.e.
NIX_REMOTE="local?root=/tmp/root"
instead of
NIX_REMOTE="local?real=/tmp/root/nix/store&state=/tmp/root/nix/var/nix" NIX_LOG_DIR=/tmp/root/nix/var/log
Caching path info is generally useful. For instance, it speeds up "nix
path-info -rS /run/current-system" (i.e. showing the closure sizes of
all paths in the closure of the current system) from 5.6s to 0.15s.
This also eliminates some APIs like Store::queryDeriver() and
Store::queryReferences().
This enables an optimisation in hydra-queue-runner, preventing a
download of a NAR it just uploaded to the cache when reading files
like hydra-build-products.
Also, move a few free-standing functions into StoreAPI and Derivation.
Also, introduce a non-nullable smart pointer, ref<T>, which is just a
wrapper around std::shared_ptr ensuring that the pointer is never
null. (For reference-counted values, this is better than passing a
"T&", because the latter doesn't maintain the refcount. Usually, the
caller will have a shared_ptr keeping the value alive, but that's not
always the case, e.g., when passing a reference to a std::thread via
std::bind.)
For example,
$ nix-build --hash -A nix-repl.src
will build the fixed-output derivation nix-repl.src (a fetchFromGitHub
call), but instead of *verifying* the hash given in the Nix
expression, it prints out the resulting hash, and then moves the
result to its content-addressed location in the Nix store. E.g
build produced path ‘/nix/store/504a4k6zi69dq0yjc0bm12pa65bccxam-nix-repl-8a2f5f0607540ffe56b56d52db544373e1efb980-src’ with sha256 hash ‘0cjablz01i0g9smnavhf86imwx1f9mnh5flax75i615ml71gsr88’
The goal of this is to make all nix-prefetch-* scripts unnecessary: we
can just let Nix run the real thing (i.e., the corresponding fetch*
derivation).
Another example:
$ nix-build --hash -E 'with import <nixpkgs> {}; fetchgit { url = "https://github.com/NixOS/nix.git"; sha256 = "ffffffffffffffffffffffffffffffffffffffffffffffffffff"; }'
...
git revision is 9e7c1a4bbd
...
build produced path ‘/nix/store/gmsnh9i7x4mb7pyd2ns7n3c9l90jfsi1-nix’ with sha256 hash ‘1188xb621diw89n25rifqg9lxnzpz7nj5bfh4i1y3dnis0dmc0zp’
(Having to specify a fake sha256 hash is a bit annoying...)
Previously, to build a derivation remotely, we had to copy the entire
closure of the .drv file to the remote machine, even though we only
need the top-level derivation. This is very wasteful: the closure can
contain thousands of store paths, and in some Hydra use cases, include
source paths that are very large (e.g. Git/Mercurial checkouts).
So now there is a new operation, StoreAPI::buildDerivation(), that
performs a build from an in-memory representation of a derivation
(BasicDerivation) rather than from a on-disk .drv file. The only files
that need to be in the Nix store are the sources of the derivation
(drv.inputSrcs), and the needed output paths of the dependencies (as
described by drv.inputDrvs). "nix-store --serve" exposes this
interface.
Note that this is a privileged operation, because you can construct a
derivation that builds any store path whatsoever. Fixing this will
require changing the hashing scheme (i.e., the output paths should be
computed from the other fields in BasicDerivation, allowing them to be
verified without access to other derivations). However, this would be
quite nice because it would allow .drv-free building (e.g. "nix-env
-i" wouldn't have to write any .drv files to disk).
Fixes#173.
Sodium's Ed25519 signatures are much shorter than OpenSSL's RSA
signatures. Public keys are also much shorter, so they're now
specified directly in the nix.conf option ‘binary-cache-public-keys’.
The new command ‘nix-store --generate-binary-cache-key’ generates and
prints a public and secret key.
Other operations cannot hang indefinitely (except when we're reading
from stdin, in which case we'll notice a client disconnect). But
monitoring works badly during compressed imports, since there the
client can close the connection before we've sent an ack.
http://hydra.nixos.org/build/12711638
This is necessary because build-remote.pl now builds via ‘nix-store
--serve’. So if a build hangs without writing to stdout/stderr, and
the client disconnects, then we need to detect that.
This makes things more efficient (we don't need to use an SSH master
connection, and we only start a single remote process) and gets rid of
locking issues (the remote nix-store process will keep inputs and
outputs locked as long as they're needed).
It also makes it more or less secure to connect directly to the root
account on the build machine, using a forced command
(e.g. ‘command="nix-store --serve --write"’). This bypasses the Nix
daemon and is therefore more efficient.
Also, don't call nix-store to import the output paths.
There is a long-standing race condition when copying a closure to a
remote machine, particularly affecting build-remote.pl: the client
first asks the remote machine which paths it already has, then copies
over the missing paths. If the garbage collector kicks in on the
remote machine between the first and second step, the already-present
paths may be deleted. The missing paths may then refer to deleted
paths, causing nix-copy-closure to fail. The client now performs both
steps using a single remote Nix call (using ‘nix-store --serve’),
locking all paths in the closure while querying.
I changed the --serve protocol a bit (getting rid of QueryCommand), so
this breaks the SSH substituter from older versions. But it was marked
experimental anyway.
Fixes#141.
If a build log is not available locally, then ‘nix-store -l’ will now
try to download it from the servers listed in the ‘log-servers’ option
in nix.conf. For instance, if you have:
log-servers = http://hydra.nixos.org/log
then it will try to get logs from http://hydra.nixos.org/log/<base
name of the store path>. So you can do things like:
$ nix-store -l $(which xterm)
and get a log even if xterm wasn't built locally.
The flag ‘--check’ to ‘nix-store -r’ or ‘nix-build’ will cause Nix to
redo the build of a derivation whose output paths are already valid.
If the new output differs from the original output, an error is
printed. This makes it easier to test if a build is deterministic.
(Obviously this cannot catch all sources of non-determinism, but it
catches the most common one, namely the current time.)
For example:
$ nix-build '<nixpkgs>' -A patchelf
...
$ nix-build '<nixpkgs>' -A patchelf --check
error: derivation `/nix/store/1ipvxsdnbhl1rw6siz6x92s7sc8nwkkb-patchelf-0.6' may not be deterministic: hash mismatch in output `/nix/store/4pc1dmw5xkwmc6q3gdc9i5nbjl4dkjpp-patchelf-0.6.drv'
The --check build fails if not all outputs are valid. Thus the first
call to nix-build is necessary to ensure that all outputs are valid.
The current outputs are left untouched: the new outputs are either put
in a chroot or diverted to a different location in the store using
hash rewriting.
This is essentially the substituter API operating on the local store,
which will be used by the ssh substituter. It runs in a loop rather than
just taking one command so that in the future nix will be able to keep
one connection open for multiple instances of the substituter.
Signed-off-by: Shea Levy <shea@shealevy.com>
It turns out that in multi-user Nix, a builder may be able to do
ln /etc/shadow $out/foo
Afterwards, canonicalisePathMetaData() will be applied to $out/foo,
causing /etc/shadow's mode to be set to 444 (readable by everybody but
writable by nobody). That's obviously Very Bad.
Fortunately, this fails in NixOS's default configuration because
/nix/store is a bind mount, so "ln" will fail with "Invalid
cross-device link". It also fails if hard-link restrictions are
enabled, so a workaround is:
echo 1 > /proc/sys/fs/protected_hardlinks
The solution is to check that all files in $out are owned by the build
user. This means that innocuous operations like "ln
${pkgs.foo}/some-file $out/" are now rejected, but that already failed
in chroot builds anyway.
...where <XX> is the first two characters of the derivation.
Otherwise /nix/var/log/nix/drvs may become so large that we run into
all sorts of weird filesystem limits/inefficiences. For instance,
ext3/ext4 filesystems will barf with "ext4_dx_add_entry:1551:
Directory index full!" once you hit a few million files.
So if a path is not garbage solely because it's reachable from a root
due to the gc-keep-outputs or gc-keep-derivations settings, ‘nix-store
-q --roots’ now shows that root.
For example, given a derivation with outputs "out", "man" and "bin":
$ nix-build -A pkg
produces ./result pointing to the "out" output;
$ nix-build -A pkg.man
produces ./result-man pointing to the "man" output;
$ nix-build -A pkg.all
produces ./result, ./result-man and ./result-bin;
$ nix-build -A pkg.all -A pkg2
produces ./result, ./result-man, ./result-bin and ./result-2.
This flag causes paths that do not have a known substitute to be
quietly ignored. This is mostly useful for Charon, allowing it to
speed up deployment by letting a machine use substitutes for all
substitutable paths, instead of uploading them. The latter is
frequently faster, e.g. if the target machine has a fast Internet
connection while the source machine is on a slow ADSL line.
I.e. do what git does. I'm too lazy to keep the builtin help text up
to date :-)
Also add ‘--help’ to various commands that lacked it
(e.g. nix-collect-garbage).
With this flag, if any valid derivation output is missing or corrupt,
it will be recreated by using a substitute if available, or by
rebuilding the derivation. The latter may use hash rewriting if
chroots are not available.
This operation allows fixing corrupted or accidentally deleted store
paths by redownloading them using substituters, if available.
Since the corrupted path cannot be replaced atomically, there is a
very small time window (one system call) during which neither the old
(corrupted) nor the new (repaired) contents are available. So
repairing should be used with some care on critical packages like
Glibc.
Output names are now appended to resulting GC symlinks, e.g. by
nix-build. For backwards compatibility, if the output is named "out",
nothing is appended. E.g. doing "nix-build -A foo" on a derivation
that produces outputs "out", "bin" and "dev" will produce symlinks
"./result", "./result-bin" and "./result-dev", respectively.
optimiseStore() now creates persistent, content-addressed hard links
in /nix/store/.links. For instance, if it encounters a file P with
hash H, it will create a hard link
P' = /nix/store/.link/<H>
to P if P' doesn't already exist; if P' exist, then P is replaced by a
hard link to P'. This is better than the previous in-memory map,
because it had the tendency to unnecessarily replace hard links with a
hard link to whatever happened to be the first file with a given hash
it encountered. It also allows on-the-fly, incremental optimisation.
We can't open a SQLite database if the disk is full. Since this
prevents the garbage collector from running when it's most needed, we
reserve some dummy space that we can free just before doing a garbage
collection. This actually revives some old code from the Berkeley DB
days.
Fixes#27.
environment of the given derivation in a format that can be sourced
by the shell, e.g.
$ eval "$(nix-store --print-env $(nix-instantiate /etc/nixos/nixpkgs -A pkg))"
$ NIX_BUILD_TOP=/tmp
$ source $stdenv/setup
This is especially useful to reproduce the environment used to build
a package outside of its builder for development purposes.
TODO: add a nix-build option to do the above and fetch the
dependencies of the derivation as well.
‘nix-store --export’.
* Add a Perl module that provides the functionality of
‘nix-copy-closure --to’. This is used by build-remote.pl so it no
longer needs to start a separate nix-copy-closure process. Also, it
uses the Perl API to do the export, so it doesn't need to start a
separate nix-store process either. As a result, nix-copy-closure
and build-remote.pl should no longer fail on very large closures due
to an "Argument list too long" error. (Note that having very many
dependencies in a single derivation can still fail because the
environment can become too large. Can't be helped though.)
the contents of any of the given store paths have been modified.
E.g.
$ nix-store --verify-path $(nix-store -qR /var/run/current-system)
path `/nix/store/m2smyiwbxidlprfxfz4rjlvz2c3mg58y-etc' was modified! expected hash `fc87e271c5fdf179b47939b08ad13440493805584b35e3014109d04d8436e7b8', got `20f1a47281b3c0cbe299ce47ad5ca7340b20ab34246426915fce0ee9116483aa'
All paths are checked; the exit code is 1 if any path has been
modified, 0 otherwise.
This should also fix:
nix-instantiate: ./../boost/shared_ptr.hpp:254: T* boost::shared_ptr<T>::operator->() const [with T = nix::StoreAPI]: Assertion `px != 0' failed.
which was caused by hashDerivationModulo() calling the ‘store’
object (during store upgrades) before openStore() assigned it.
because it defines _FILE_OFFSET_BITS. Without this, on
OpenSolaris the system headers define it to be 32, and then
the 32-bit stat() ends up being called with a 64-bit "struct
stat", or vice versa.
This also ensures that we get 64-bit file sizes everywhere.
* Remove the redundant call to stat() in parseExprFromFile().
The file cannot be a symlink because that's the exit condition
of the loop before.