Caching path info is generally useful. For instance, it speeds up "nix
path-info -rS /run/current-system" (i.e. showing the closure sizes of
all paths in the closure of the current system) from 5.6s to 0.15s.
This also eliminates some APIs like Store::queryDeriver() and
Store::queryReferences().
Also, move a few free-standing functions into StoreAPI and Derivation.
Also, introduce a non-nullable smart pointer, ref<T>, which is just a
wrapper around std::shared_ptr ensuring that the pointer is never
null. (For reference-counted values, this is better than passing a
"T&", because the latter doesn't maintain the refcount. Usually, the
caller will have a shared_ptr keeping the value alive, but that's not
always the case, e.g., when passing a reference to a std::thread via
std::bind.)
Especially in WAL mode on a highly loaded machine, this is not a good
idea because it results in a WAL file of approximately the same size
ad the database, which apparently cannot be deleted while anybody is
accessing it.
If a root is a regular file, then its name must denote a store
path. For instance, the existence of the file
/nix/var/nix/gcroots/per-user/eelco/hydra-roots/wzc3cy1wwwd6d0dgxpa77ijr1yp50s6v-libxml2-2.7.7
would cause
/nix/store/wzc3cy1wwwd6d0dgxpa77ijr1yp50s6v-libxml2-2.7.7
to be a root.
This is useful because it involves less I/O (no need for a readlink()
call) and takes up less disk space (the symlink target typically takes
up a full disk block, while directory entries are packed more
efficiently). This is particularly important for hydra.nixos.org,
which has hundreds of thousands of roots, and where reading the roots
can take 25 minutes.
I.e. "nix-store -q --roots" will now show (for example)
/home/eelco/Dev/nixpkgs/result
rather than
/nix/var/nix/gcroots/auto/53222qsppi12s2hkap8dm2lg8xhhyk6v
But this time it's *obviously* correct! No more segfaults due to
infinite recursions for sure, etc.
Also, move directories to /nix/store/trash instead of renaming them to
/nix/store/bla-gc-<pid>. Then we can just delete /nix/store/trash at
the end.
This prevents zillions of derivations from being kept, and fixes an
infinite recursion in the garbage collector (due to an obscure cycle
that can occur with fixed-output derivations).
The outputs of a derivation can refer to each other (even though they
cannot have cycles), so they have to be deleted in the right order.
http://hydra.nixos.org/build/3026118
If the options gc-keep-outputs and gc-keep-derivations are both
enabled, you can get a cycle in the liveness graph. There was a hack
to handle this, but it didn't work with multiple-output derivations,
causing the garbage collector to fail with errors like ‘error: cannot
delete path `...' because it is in use by `...'’. The garbage
collector now handles strongly connected components in the liveness
graph as a unit and decides whether to delete all or none of the paths
in an SCC.
Incremental optimisation requires creating links in /nix/store/.links
to all files in the store. However, this means that if we delete a
store path, no files are actually deleted because links in
/nix/store/.links still exists. So we need to check /nix/store/.links
for files with a link count of 1 and delete them.
This should fix rare Hydra errors of the form:
error: symlinking `/nix/var/nix/gcroots/per-user/hydra/hydra-roots/7sfhs5fdmjxm8sqgcpd0pgcsmz1kq0l0-nixos-iso-0.1pre33785-33795' to `/nix/store/7sfhs5fdmjxm8sqgcpd0pgcsmz1kq0l0-nixos-iso-0.1pre33785-33795': File exists
Make the garbage collector more concurrent by deleting valid paths
outside the region where we're holding the global GC lock. This
should greatly reduce the time during which new builds are blocked,
since the deletion accounts for the vast majority of the time spent in
the GC.
To ensure that this is safe, the valid paths are invalidated and
renamed to some arbitrary path while we're holding the lock. This
ensures that we when we finally delete the path, it's not a (newly)
valid or locked path.
By moving the destructor object to libstore.so, it's also run when
download-using-manifests and nix-prefetch-url exit. This prevents
them from cluttering /nix/var/nix/temproots with stale files.
unreachable paths. This matters when using --max-freed etc.:
unreachable paths could become reachable again, so it's nicer to
keep them if there is "real" garbage to be deleted. Also, don't use
readDirectory() but read the Nix store and delete invalid paths in
parallel. This reduces GC latency on very large Nix stores.
This should also fix:
nix-instantiate: ./../boost/shared_ptr.hpp:254: T* boost::shared_ptr<T>::operator->() const [with T = nix::StoreAPI]: Assertion `px != 0' failed.
which was caused by hashDerivationModulo() calling the ‘store’
object (during store upgrades) before openStore() assigned it.
race with other processes that add new referrers to a path,
resulting in the garbage collector crashing with "foreign key
constraint failed". (Nix/4)
* Make --gc --print-dead etc. interruptible.
* If a path has disappeared, check its referrers first, and don't try
to invalidate paths that have valid referrers. Otherwise we get a
foreign key constraint violation.
* Read the whole Nix store directory instead of statting each valid
path, which is slower.
* Acquire the global GC lock.
hook script proper, and the stdout/stderr of the builder. Only the
latter should be saved in /nix/var/log/nix/drvs.
* Allow the verbosity to be set through an option.
* Added a flag --quiet to lower the verbosity level.
complete set of live and dead paths before starting the actual
deletion, but determines liveness on demand. I.e. for any path in
the store, it first tries to delete all the referrers, and then the
path itself. This means that the collector can start deleting paths
almost immediately.
(Linux) machines no longer maintain the atime because it's too
expensive, and on the machines where --use-atime is useful (like the
buildfarm), reading the atimes on the entire Nix store takes way too
much time to make it practical.
accessed time of paths that may be deleted. Anything more recently
used won't be deleted. The time is specified in time_t,
e.g. seconds since 1970-01-01 00:00:00 UTC; use `date +%s' to
convert to time_t from the command line.
Example: to delete everything that hasn't been used in the last two
months:
$ nix-store --gc -v --max-atime $(date +%s -d "2 months ago")
order of ascending last access time. This is useful in conjunction
with --max-freed or --max-links to prefer deleting non-recently used
garbage, which is good (especially in the build farm) since garbage
may become live again.
The code could easily be modified to accept other criteria for
ordering garbage by changing the comparison operator used by the
priority queue in collectGarbage().
bytes have been freed, `--max-links' to stop when the Nix store
directory has fewer than N hard links (the latter being important
for very large Nix stores on filesystems with a 32000 subdirectories
limit).
store under the reference relation, since that means that the
garbage collector will need a long time to start deleting paths.
Instead just delete the referrers of a path first.
$ nix-env -e $(which firefox)
or
$ nix-env -e /nix/store/nywzlygrkfcgz7dfmhm5xixlx1l0m60v-pan-0.132
* nix-env -i: if an argument contains a slash anywhere, treat it as a
path and follow it through symlinks into the Nix store. This allows
things like
$ nix-build -A firefox
$ nix-env -i ./result
* nix-env -q/-i/-e: don't complain when the `*' selector doesn't match
anything. In particular, `nix-env -q \*' doesn't fail anymore on an
empty profile.
need any info on substitutable paths, we just call the substituters
(such as download-using-manifests.pl) directly. This means that
it's no longer necessary for nix-pull to register substitutes or for
nix-channel to clear them, which makes those operations much faster
(NIX-95). Also, we don't have to worry about keeping nix-pull
manifests (in /nix/var/nix/manifests) and the database in sync with
each other.
The downside is that there is some overhead in calling an external
program to get the substitutes info. For instance, "nix-env -qas"
takes a bit longer.
Abolishing the substitutes table also makes the logic in
local-store.cc simpler, as we don't need to store info for invalid
paths. On the downside, you cannot do things like "nix-store -qR"
on a substitutable but invalid path (but nobody did that anyway).
* Never catch interrupts (the Interrupted exception).
`nix-store --delete'. But unprivileged users are not allowed to
ignore liveness.
* `nix-store --delete --ignore-liveness': ignore the runtime roots as
well.
process, so forward the operation.
* Spam the user about GC misconfigurations (NIX-71).
* findRoots: skip all roots that are unreadable - the warnings with
which we spam the user should be enough.
processes can register indirect roots. Of course, there is still
the problem that the garbage collector can only read the targets of
the indirect roots when it's running as root...
containing functions that operate on the Nix store. One
implementation is LocalStore, which operates on the Nix store
directly. The next step, to enable secure multi-user Nix, is to
create a different implementation RemoteStore that talks to a
privileged daemon process that uses LocalStore to perform the actual
operations.
Nix-env failed to call addPermRoot(), which is necessary to safely
add a new root. So if nix-env started after and finished before the
garbage collector, the user environment (plus all other new stuff)
it built might be garbage collected, leading to a dangling symlink
chain in ~/.nix-profile...
* Be more explicit if we block on the GC lock ("waiting for the big
garbage collector lock...").
* Don't loop trying to create a new generation. It's not necessary
anymore since profiles are locked nowadays.
deletes a path even if it is reachable from a root. However, it
won't delete a path that still has referrers (since that would
violate store invariants).
Don't try this at home. It's a useful hack for recovering from
certain situations in a somewhat clean way (e.g., holes in closures
due to disk corruption).
nix-store query options `--referer' and `--referer-closure' have
been changed to `--referrer' and `--referrer-closure' (but the old
ones are still accepted for compatibility).
to derivations in user environments. Nice for developers (since it
prevents build-time-only dependencies from being GC'ed, in
conjunction with `gc-keep-outputs'). Turned off by default.
for finding build-time dependencies (possibly after a build). E.g.,
$ nix-store -qb aterm $(nix-store -qd $(which strc))
/nix/store/jw7c7s65n1gwhxpn35j9rgcci6ilzxym-aterm-2.3.1
* Arguments to nix-store can be files within store objects, e.g.,
/nix/store/jw7c...-aterm-2.3.1/bin/baffle.
* Idem for garbage collector roots.
This was necessary becase root finding must be done after
acquisition of the global GC lock.
This makes `nix-collect-garbage' obsolete; it is now just a wrapper
around `nix-store --gc'.
* Automatically remove stale GC roots (i.e., indirect GC roots that
point to non-existent paths).
get rid of GC roots. Nix-build places a symlink `result' in the
current directory. Previously, removing that symlink would not
remove the store path being linked to as a GC root. Now, the GC
root created by nix-build is actually a symlink in
`/nix/var/nix/gcroots/auto' to `result'. So if that symlink is
removed the GC root automatically becomes invalid (since it can no
longer be resolved). The root itself is not automatically removed -
the garbage collector should delete dangling roots.
immediately add the result as a permanent GC root. This is the only
way to prevent a race with the garbage collector. For instance, the
old style
ln -s $(nix-store -r $(nix-instantiate foo.nix)) \
/nix/var/nix/gcroots/result
has two time windows in which the garbage collector can interfere
(by GC'ing the derivation and the output, respectively). On the
other hand,
nix-store --add-root /nix/var/nix/gcroots/result -r \
$(nix-instantiate --add-root /nix/var/nix/gcroots/drv \
foo.nix)
is safe.
* nix-build: use `--add-root' to prevent GC races.
being created after the garbage collector has read the temproots
directory. This blocks the creation of new processes, but the
garbage collector could periodically release the GC lock to allow
them to run.
that they are deleted in an order that maintains the closure
invariant.
* Presence of a path in a temporary roots file does not imply that all
paths in its closure are also present, so add the closure.
roots to a per-process temporary file in /nix/var/nix/temproots
while holding a write lock on that file. The garbage collector
acquires read locks on all those files, thus blocking further
progress in other Nix processes, and reads the sets of temporary
roots.
though). In particular it's now much easier to register a GC root.
Just place a symlink to whatever store path it is that you want to
keep in /nix/var/nix/gcroots.
`derivations.cc', etc.
* Store the SHA-256 content hash of store paths in the database after
they have been built/added. This is so that we can check whether
the store has been messed with (a la `rpm --verify').
* When registering path validity, verify that the closure property
holds.