This allows an unprivileged user to perform builds on a diverted store
(i.e. where the physical store location differs from the logical
location).
Example:
$ NIX_LOG_DIR=/tmp/log NIX_REMOTE="local?real=/tmp/store&state=/tmp/var" nix-build -E \
'with import <nixpkgs> {}; runCommand "foo" { buildInputs = [procps nettools]; } "id; ps; ifconfig; echo $out > $out"'
will do a build in the Nix store physically in /tmp/store but
logically in /nix/store (and thus using substituters for the latter).
This is primarily to subsume the functionality of the
copy-from-other-stores substituter. For example, in the NixOS
installer, we can now do (assuming we're in the target chroot, and the
Nix store of the installation CD is bind-mounted on /tmp/nix):
$ nix-build ... --option substituters 'local?state=/tmp/nix/var&real=/tmp/nix/store'
However, unlike copy-from-other-stores, this also allows write access
to such a store. One application might be fetching substitutes for
/nix/store in a situation where the user doesn't have sufficient
privileges to create /nix, e.g.:
$ NIX_REMOTE="local?state=/home/alice/nix/var&real=/home/alice/nix/store" nix-build ...
If --no-build-output is given (which will become the default for the
"nix" command at least), show the last 10 lines of the build output if
the build fails.
Caching path info is generally useful. For instance, it speeds up "nix
path-info -rS /run/current-system" (i.e. showing the closure sizes of
all paths in the closure of the current system) from 5.6s to 0.15s.
This also eliminates some APIs like Store::queryDeriver() and
Store::queryReferences().
These are content-addressed paths or outputs of locally performed
builds. They are trusted even if they don't have signatures, so "nix
verify-paths" won't complain about them.
Also, move a few free-standing functions into StoreAPI and Derivation.
Also, introduce a non-nullable smart pointer, ref<T>, which is just a
wrapper around std::shared_ptr ensuring that the pointer is never
null. (For reference-counted values, this is better than passing a
"T&", because the latter doesn't maintain the refcount. Usually, the
caller will have a shared_ptr keeping the value alive, but that's not
always the case, e.g., when passing a reference to a std::thread via
std::bind.)
For example,
$ nix-build --hash -A nix-repl.src
will build the fixed-output derivation nix-repl.src (a fetchFromGitHub
call), but instead of *verifying* the hash given in the Nix
expression, it prints out the resulting hash, and then moves the
result to its content-addressed location in the Nix store. E.g
build produced path ‘/nix/store/504a4k6zi69dq0yjc0bm12pa65bccxam-nix-repl-8a2f5f0607540ffe56b56d52db544373e1efb980-src’ with sha256 hash ‘0cjablz01i0g9smnavhf86imwx1f9mnh5flax75i615ml71gsr88’
The goal of this is to make all nix-prefetch-* scripts unnecessary: we
can just let Nix run the real thing (i.e., the corresponding fetch*
derivation).
Another example:
$ nix-build --hash -E 'with import <nixpkgs> {}; fetchgit { url = "https://github.com/NixOS/nix.git"; sha256 = "ffffffffffffffffffffffffffffffffffffffffffffffffffff"; }'
...
git revision is 9e7c1a4bbd
...
build produced path ‘/nix/store/gmsnh9i7x4mb7pyd2ns7n3c9l90jfsi1-nix’ with sha256 hash ‘1188xb621diw89n25rifqg9lxnzpz7nj5bfh4i1y3dnis0dmc0zp’
(Having to specify a fake sha256 hash is a bit annoying...)
E.g.
$ nix-build pkgs/stdenv/linux/ -A stage1.pkgs.perl --check
nix-store: src/libstore/build.cc:1323: void nix::DerivationGoal::tryToBuild(): Assertion `buildMode != bmCheck || validPaths.size() == drv->outputs.size()' failed.
when perl.out exists but perl.man doesn't. The fix is to only check
the outputs that exist. Note that "nix-build -A stage1.pkgs.all
--check" will still give a (proper) error in this case.
This was observed in the deb_debian7x86_64 build:
http://hydra.nixos.org/build/29973215
Calling c_str() on a temporary should be fine because the temporary
shouldn't be destroyed until after the execl() call, but who knows...
If repair found a corrupted/missing path that depended on a
multiple-output derivation, and some of the outputs of the latter were
not present, it failed with a message like
error: path ‘/nix/store/cnfn9d5fjys1y93cz9shld2xwaibd7nn-bash-4.3-p42-doc’ is not valid
This makes Darwin consistent with Linux: Nix expressions can't break
out of the sandbox unless relaxed sandbox mode is enabled.
For the normal sandbox mode this will require fixing #759 however.
Caused by 8063fc497a. If tmpDir !=
tmpDirInSandbox (typically when there are multiple concurrent builds
with the same name), the *Path attribute would not point to an
existing file. This caused Nixpkgs' writeTextFile to write an empty
file. In particular this showed up as hanging VM builds (because it
would run an empty run-nixos-vm script and then wait for it to finish
booting).
This is arguably nitpicky, but I think this new formulation is even
clearer. My thinking is that it's easier to comprehend when the
calculated hash value is displayed close to the output path. (I think it
is somewhat similar to eliminating double negatives in logic
statements.)
The formulation is inspired / copied from the OpenEmbedded build tool,
bitbake.
Rather than using $<host-TMPDIR>/nix-build-<drvname>-<number>, the
temporary directory is now always /tmp/nix-build-<drvname>-0. This
improves bitwise-exact reproducibility for builds that store $TMPDIR
in their build output. (Of course, those should still be fixed...)
Temporarily allow derivations to describe their full sandbox profile.
This will be eventually scaled back to a more secure setup, see the
discussion at #695
Nix reports a hash mismatch saying:
output path ‘foo’ should have sha256 hash ‘abc’, instead has ‘xyz’
That message is slightly ambiguous and some people read that statement
to mean the exact opposite of what it is supposed to mean. After this
patch, the message will be:
Nix expects output path ‘foo’ to have sha256 hash ‘abc’, instead it has ‘xyz’
- rename options but leav old names as lower-priority aliases,
also "-dirs" -> "-paths" to get closer to the meaning
- update docs to reflect the new names (old aliases are not documented),
including a new file with release notes
- tests need an update after corresponding changes to nixpkgs
- __noChroot is left as it is (after discussion on the PR)
Passing "--option build-repeat <N>" will cause every build to be
repeated N times. If the build output differs between any round, the
build is rejected, and the output paths are not registered as
valid. This is primarily useful to verify build determinism. (We
already had a --check option to repeat a previously succeeded
build. However, with --check, non-deterministic builds are registered
in the DB. Preventing that is useful for Hydra to ensure that
non-deterministic builds don't end up getting published at all.)
This reverts commit 79ca503332. Ouch,
never noticed this. We definitely don't want to allow builds to have
arbitrary access to /bin and /usr/bin, because then they can (for
instance) bring in a bunch of setuid programs. Also, we shouldn't be
encouraging the use of impurities in the default configuration.
The stack allocated for the builder was way too small (32 KB). This is
sufficient for normal derivations, because they just do some setup and
then exec() the actual builder. But for the fetchurl builtin
derivation it's not enough. Also, allocating the stack on the caller's
stack was fishy business.
Fixes https://github.com/NixOS/nixpkgs/issues/9504.
Note that this means we may have a non-functional /bin/sh in the
chroot while rebuilding Bash or one of its dependencies. Ideally those
packages don't rely on /bin/sh though.
This ensures that 1) the derivation doesn't change when Nix changes;
2) the derivation closure doesn't contain Nix and its dependencies; 3)
we don't have to rely on ugly chroot hacks.
In particular, hydra-queue-runner can now distinguish between remote
build / substitution / already-valid. For instance, if a path already
existed on the remote side, we don't want to store a log file.
Previously, to build a derivation remotely, we had to copy the entire
closure of the .drv file to the remote machine, even though we only
need the top-level derivation. This is very wasteful: the closure can
contain thousands of store paths, and in some Hydra use cases, include
source paths that are very large (e.g. Git/Mercurial checkouts).
So now there is a new operation, StoreAPI::buildDerivation(), that
performs a build from an in-memory representation of a derivation
(BasicDerivation) rather than from a on-disk .drv file. The only files
that need to be in the Nix store are the sources of the derivation
(drv.inputSrcs), and the needed output paths of the dependencies (as
described by drv.inputDrvs). "nix-store --serve" exposes this
interface.
Note that this is a privileged operation, because you can construct a
derivation that builds any store path whatsoever. Fixing this will
require changing the hashing scheme (i.e., the output paths should be
computed from the other fields in BasicDerivation, allowing them to be
verified without access to other derivations). However, this would be
quite nice because it would allow .drv-free building (e.g. "nix-env
-i" wouldn't have to write any .drv files to disk).
Fixes#173.
The following patch is an attempt to address this bug (see
<http://bugs.gnu.org/18994>) by preserving the supplementary groups of
build users in the build environment.
In practice, I would expect that supplementary groups would contain only
one or two groups: the build users group, and possibly the “kvm” group.
[Changed &at(0) to data() and removed tabs - Eelco]
Not substituting builds with "preferLocalBuild = true" was a bad idea,
because it didn't take the cost of dependencies into account. For
instance, if we can't substitute a fetchgit call, then we have to
download/build git and all its dependencies.
Partially reverts 5558652709 and adds a
new derivation attribute "allowSubstitutes" to specify whether a
derivation may be substituted.
Nixpkgs' writeTextAsFile does this:
mv "$textPath" "$n"
Since $textPath was owned by root, if $textPath is on the same
filesystem as $n, $n will be owned as root. As a result, the build
result was rejected as having suspicious ownership.
http://hydra.nixos.org/build/22836807
This hook can be used to set system-specific per-derivation build
settings that don't fit into the derivation model and are too complex or
volatile to be hard-coded into nix. Currently, the pre-build hook can
only add chroot dirs/files through the interface, but it also has full
access to the chroot root.
The specific use case for this is systems where the operating system ABI
is more complex than just the kernel-support system calls. For example,
on OS X there is a set of system-provided frameworks that can reliably
be accessed by any program linked to them, no matter the version the
program is running on. Unfortunately, those frameworks do not
necessarily live in the same locations on each version of OS X, nor do
their dependencies, and thus nix needs to know the specific version of
OS X currently running in order to make those frameworks available. The
pre-build hook is a perfect mechanism for doing just that.
This hook can be used to set system specific per-derivation build
settings that don't fit into the derivation model and are too complex or
volatile to be hard-coded into nix. Currently, the pre-build hook can
only add chroot dirs/files.
The specific use case for this is systems where the operating system ABI
is more complex than just the kernel-supported system calls. For
example, on OS X there is a set of system-provided frameworks that can
reliably be accessed by any program linked to them, no matter the
version the program is running on. Unfortunately, those frameworks do
not necessarily live in the same locations on each version of OS X, nor
do their dependencies, and thus nix needs to know the specific version
of OS X currently running in order to make those frameworks available.
The pre-build hook is a perfect mechanism for doing just that.
This was causing NixOS VM tests to fail mysteriously since
5ce50cd99e. Nscd could (sometimes) no
longer read /etc/hosts:
open("/etc/hosts", O_RDONLY|O_CLOEXEC) = -1 EACCES (Permission denied)
Probably there was some wacky interaction between the guest kernel and
the 9pfs implementation in QEMU.
Thus, for example, to get /bin/sh in a chroot, you only need to
specify /bin/sh=${pkgs.bash}/bin/sh in build-chroot-dirs. The
dependencies of sh will be added automatically.
I'm seeing hangs in Glibc's setxid_mark_thread() again. This is
probably because the use of an intermediate process to make clone()
safe from a multi-threaded program (see
524f89f139) is defeated by the use of
vfork(), since the intermediate process will have a copy of Glibc's
threading data structures due to the vfork(). So use a regular fork()
again.
If ‘build-use-chroot’ is set to ‘true’, fixed-output derivations are
now also chrooted. However, unlike normal derivations, they don't get
a private network namespace, so they can still access the
network. Also, the use of the ‘__noChroot’ derivation attribute is
no longer allowed.
Setting ‘build-use-chroot’ to ‘relaxed’ gives the old behaviour.
chroot only changes the process root directory, not the mount namespace root
directory, and it is well-known that any process with chroot capability can
break out of a chroot "jail". By using pivot_root as well, and unmounting the
original mount namespace root directory, breaking out becomes impossible.
Non-root processes typically have no ability to use chroot() anyway, but they
can gain that capability through the use of clone() or unshare(). For security
reasons, these syscalls are limited in functionality when used inside a normal
chroot environment. Using pivot_root() this way does allow those syscalls to be
put to their full use.
I.e., not readable to the nixbld group. This improves purity a bit for
non-chroot builds, because it prevents a builder from enumerating
store paths (i.e. it can only access paths it knows about).
For the "stdenv accidentally referring to bootstrap-tools", it seems
easier to specify the path that we don't want to depend on, e.g.
disallowedRequisites = [ bootstrapTools ];
It turns out that using clone() to start a child process is unsafe in
a multithreaded program. It can cause the initialisation of a build
child process to hang in setgroups(), as seen several times in the
build farm:
The reason is that Glibc thinks that the other threads of the parent
exist in the child, so in setxid_mark_thread() it tries to get a futex
that has been acquired by another thread just before the clone(). With
fork(), Glibc runs pthread_atfork() handlers that take care of this
(in particular, __reclaim_stacks()). But clone() doesn't do that.
Fortunately, we can use fork()+unshare() instead of clone() to set up
private namespaces.
See also https://www.mail-archive.com/lxc-devel@lists.linuxcontainers.org/msg03434.html.
The Nixpkgs stdenv prints some custom escape sequences to denote
nesting and stuff like that. Most terminals (e.g. xterm, konsole)
ignore them, but some do not (e.g. xfce4-terminal). So for the benefit
of the latter, filter them out.
While running Python 3’s test suite, we noticed that on some systems
/dev/pts/ptmx is created with permissions 0 (that’s the case with my
Nixpkgs-originating 3.0.43 kernel, but someone with a Debian-originating
3.10-3 reported not having this problem.)
There’s still the problem that people without
CONFIG_DEVPTS_MULTIPLE_INSTANCES=y are screwed (as noted in build.cc),
but I don’t see how we could work around it.
Since the addition of build-max-log-size, a call to
handleChildOutput() can result in cancellation of a goal. This
invalidated the "j" iterator in the waitForInput() loop, even though
it was still used afterwards. Likewise for the maxSilentTime
handling.
Probably fixes#231. At least it gets rid of the valgrind warnings.
The daemon now creates /dev deterministically (thanks!). However, it
expects /dev/kvm to be present.
The patch below restricts that requirement (1) to Linux-based systems,
and (2) to systems where /dev/kvm already exists.
I’m not sure about the way to handle (2). We could special-case
/dev/kvm and create it (instead of bind-mounting it) in the chroot, so
it’s always available; however, it wouldn’t help much since most likely,
if /dev/kvm missing, then KVM support is missing.
We were relying on SubstitutionGoal's destructor releasing the lock,
but if a goal is a top-level goal, the destructor won't run in a
timely manner since its reference count won't drop to zero. So
release it explicitly.
Fixes#178.
The flag ‘--check’ to ‘nix-store -r’ or ‘nix-build’ will cause Nix to
redo the build of a derivation whose output paths are already valid.
If the new output differs from the original output, an error is
printed. This makes it easier to test if a build is deterministic.
(Obviously this cannot catch all sources of non-determinism, but it
catches the most common one, namely the current time.)
For example:
$ nix-build '<nixpkgs>' -A patchelf
...
$ nix-build '<nixpkgs>' -A patchelf --check
error: derivation `/nix/store/1ipvxsdnbhl1rw6siz6x92s7sc8nwkkb-patchelf-0.6' may not be deterministic: hash mismatch in output `/nix/store/4pc1dmw5xkwmc6q3gdc9i5nbjl4dkjpp-patchelf-0.6.drv'
The --check build fails if not all outputs are valid. Thus the first
call to nix-build is necessary to ensure that all outputs are valid.
The current outputs are left untouched: the new outputs are either put
in a chroot or diverted to a different location in the store using
hash rewriting.
*headdesk*
*headdesk*
*headdesk*
So since commit 22144afa8d, Nix hasn't
actually checked whether the content of a downloaded NAR matches the
hash specified in the manifest / NAR info file. Urghhh...
On Linux, Nix can build i686 packages even on x86_64 systems. It's not
enough to recognize this situation by settings.thisSystem, we also have
to consult uname(). E.g. we can be running on a i686 Debian with an
amd64 kernel. In that situation settings.thisSystem is i686-linux, but
we still need to change personality to i686 to make builds consistent.
On a system with multiple CPUs, running Nix operations through the
daemon is significantly slower than "direct" mode:
$ NIX_REMOTE= nix-instantiate '<nixos>' -A system
real 0m0.974s
user 0m0.875s
sys 0m0.088s
$ NIX_REMOTE=daemon nix-instantiate '<nixos>' -A system
real 0m2.118s
user 0m1.463s
sys 0m0.218s
The main reason seems to be that the client and the worker get moved
to a different CPU after every call to the worker. This patch adds a
hack to lock them to the same CPU. With this, the overhead of going
through the daemon is very small:
$ NIX_REMOTE=daemon nix-instantiate '<nixos>' -A system
real 0m1.074s
user 0m0.809s
sys 0m0.098s
This reverts commit 69b8f9980f.
The timeout should be enforced remotely. Otherwise, if the garbage
collector is running either locally or remotely, if will block the
build or closure copying for some time. If the garbage collector
takes too long, the build may time out, which is not what we want.
Also, on heavily loaded systems, copying large paths to and from the
remote machine can take a long time, also potentially resulting in a
timeout.
mount(2) with MS_BIND allows mounting a regular file on top of a regular
file, so there's no reason to only bind directories. This allows finer
control over just which files are and aren't included in the chroot
without having to build symlink trees or the like.
Signed-off-by: Shea Levy <shea@shealevy.com>
With C++ std::map, doing a comparison like ‘map["foo"] == ...’ has the
side-effect of adding a mapping from "foo" to the empty string if
"foo" doesn't exist in the map. So we ended up setting some
environment variables by accident.
In particular this means that "trivial" derivations such as writeText
are not substituted, reducing the number of GET requests to the binary
cache by about 200 on a typical NixOS configuration.
Before calling dumpPath(), we have to make sure the files are owned by
the build user. Otherwise, the build could contain a hard link to
(say) /etc/shadow, which would then be read by the daemon and
rewritten as a world-readable file.
This only affects systems that don't have hard link restrictions
enabled.
The assertion in canonicalisePathMetaData() failed because the
ownership of the path already changed due to the hash rewriting. The
solution is not to check the ownership of rewritten paths.
Issue #122.
Otherwise subsequent invocations of "--repair" will keep rebuilding
the path. This only happens if the path content differs between
builds (e.g. due to timestamps).
Don't pass --timeout / --max-silent-time to the remote builder.
Instead, let the local Nix process terminate the build if it exceeds a
timeout. The remote builder will be killed as a side-effect. This
gives better error reporting (since the timeout message from the
remote side wasn't properly propagated) and handles non-Nix problems
like SSH hangs.
I'm not sure if it has ever worked correctly. The line "lastWait =
after;" seems to mean that the timer was reset every time a build
produced log output.
Note that the timeout is now per build, as documented ("the maximum
number of seconds that a builder can run").
It turns out that in multi-user Nix, a builder may be able to do
ln /etc/shadow $out/foo
Afterwards, canonicalisePathMetaData() will be applied to $out/foo,
causing /etc/shadow's mode to be set to 444 (readable by everybody but
writable by nobody). That's obviously Very Bad.
Fortunately, this fails in NixOS's default configuration because
/nix/store is a bind mount, so "ln" will fail with "Invalid
cross-device link". It also fails if hard-link restrictions are
enabled, so a workaround is:
echo 1 > /proc/sys/fs/protected_hardlinks
The solution is to check that all files in $out are owned by the build
user. This means that innocuous operations like "ln
${pkgs.foo}/some-file $out/" are now rejected, but that already failed
in chroot builds anyway.
...where <XX> is the first two characters of the derivation.
Otherwise /nix/var/log/nix/drvs may become so large that we run into
all sorts of weird filesystem limits/inefficiences. For instance,
ext3/ext4 filesystems will barf with "ext4_dx_add_entry:1551:
Directory index full!" once you hit a few million files.
If a derivation has multiple outputs, then we only want to download
those outputs that are actuallty needed. So if we do "nix-build -A
openssl.man", then only the "man" output should be downloaded.
Likewise if another package depends on ${openssl.man}.
The tricky part is that different derivations can depend on different
outputs of a given derivation, so we may need to restart the
corresponding derivation goal if that happens.
For example, given a derivation with outputs "out", "man" and "bin":
$ nix-build -A pkg
produces ./result pointing to the "out" output;
$ nix-build -A pkg.man
produces ./result-man pointing to the "man" output;
$ nix-build -A pkg.all
produces ./result, ./result-man and ./result-bin;
$ nix-build -A pkg.all -A pkg2
produces ./result, ./result-man, ./result-bin and ./result-2.
vfork() is just too weird. For instance, in this build:
http://hydra.nixos.org/build/3330487
the value fromHook.writeSide becomes corrupted in the parent, even
though the child only reads from it. At -O0 the problem goes away.
Probably the child is overriding some spilled temporary variable.
If I get bored I may implement using posix_spawn() instead.
With this flag, if any valid derivation output is missing or corrupt,
it will be recreated by using a substitute if available, or by
rebuilding the derivation. The latter may use hash rewriting if
chroots are not available.
This operation allows fixing corrupted or accidentally deleted store
paths by redownloading them using substituters, if available.
Since the corrupted path cannot be replaced atomically, there is a
very small time window (one system call) during which neither the old
(corrupted) nor the new (repaired) contents are available. So
repairing should be used with some care on critical packages like
Glibc.
Using the immutable bit is problematic, especially in conjunction with
store optimisation. For instance, if the garbage collector deletes a
file, it has to clear its immutable bit, but if the file has
additional hard links, we can't set the bit afterwards because we
don't know the remaining paths.
So now that we support having the entire Nix store as a read-only
mount, we may as well drop the immutable bit. Unfortunately, we have
to keep the code to clear the immutable bit for backwards
compatibility.
Note that this will only work if the client has a very recent Nix
version (post 15e1b2c223), otherwise the
--option flag will just be ignored.
Fixes#50.
This handles the chroot and build hook cases, which are easy.
Supporting the non-chroot-build case will require more work (hash
rewriting!).
Issue #21.
This is required on systemd, which mounts filesystems as "shared"
subtrees. Changes to shared trees in a private mount namespace are
propagated to the outside world, which is bad.
Since SubstitutionGoal::finished() in build.cc computes the hash
anyway, we can prevent the inefficiency of computing the hash twice by
letting the substituter tell Nix about the expected hash, which can
then verify it.
Instead make a single call to querySubstitutablePathInfo() per
derivation output. This is faster and prevents having to implement
the "have" function in the binary cache substituter.
Getting substitute information using the binary cache substituter has
non-trivial latency overhead. A package or NixOS system configuration
can have hundreds of dependencies, and in the worst case (when the
local info cache is empty) we have to do a separate HTTP request for
each of these. If the ping time to the server is t, getting N info
files will take tN seconds; e.g., with a ping time of 0.1s to
nixos.org, sequentially downloading 1000 info files (a typical NixOS
config) will take at least 100 seconds.
To fix this problem, the binary cache substituter can now perform
requests in parallel. This required changing the substituter
interface to support a function querySubstitutablePathInfos() that
queries multiple paths at the same time, and rewriting queryMissing()
to take advantage of parallelism. (Due to local caching,
parallelising queryMissing() is sufficient for most use cases, since
it's almost always called before building a derivation and thus fills
the local info cache.)
For example, parallelism speeds up querying all 1056 paths in a
particular NixOS system configuration from 116s to 2.6s. It works so
well because the eccentricity of the top-level derivation in the
dependency graph is only 9. So we only need 10 round-trips (when
using an unlimited number of parallel connections) to get everything.
Currently we do a maximum of 150 parallel connections to the server.
Thus it's important that the binary cache server (e.g. nixos.org) has
a high connection limit. Alternatively we could use HTTP pipelining,
but WWW::Curl doesn't support it and libcurl has a hard-coded limit of
5 requests per pipeline.
In a private PID namespace, processes have PIDs that are separate from
the rest of the system. The initial child gets PID 1. Processes in
the chroot cannot see processes outside of the chroot. This improves
isolation between builds. However, processes on the outside can see
processes in the chroot and send signals to them (if they have
appropriate rights).
Since the builder gets PID 1, it serves as the reaper for zombies in
the chroot. This might turn out to be a problem. In that case we'll
need to have a small PID 1 process that sits in a loop calling wait().
In chroot builds, set the host name to "localhost" and the domain name
to "(none)" (the latter being the kernel's default). This improves
determinism a bit further.
P.S. I have to idea what UTS stands for.
This improves isolation a bit further, and it's just one extra flag in
the unshare() call.
P.S. It would be very cool to use CLONE_NEWPID (to put the builder in
a private PID namespace) as well, but that's slightly more risky since
having a builder start as PID 1 may cause problems.
On Linux it's possible to run a process in its own network namespace,
meaning that it gets its own set of network interfaces, disjunct from
the rest of the system. We use this to completely remove network
access to chroot builds, except that they get a private loopback
interface. This means that:
- Builders cannot connect to the outside network or to other processes
on the same machine, except processes within the same build.
- Vice versa, other processes cannot connect to processes in a chroot
build, and open ports/connections do not show up in "netstat".
- If two concurrent builders try to listen on the same port (e.g. as
part of a test), they no longer conflict with each other.
This was inspired by the "PrivateNetwork" flag in systemd.
There is a race condition when doing parallel builds with chroots and
the immutable bit enabled. One process may call makeImmutable()
before the other has called link(), in which case link() will fail
with EPERM. We could retry or wrap the operation in a lock, but since
this condition is rare and I'm lazy, we just use the existing copy
fallback.
Fixes#9.
Setting the UNAME26 personality causes "uname" to return "2.6.x",
regardless of the kernel version. This improves determinism in
a few misbehaved packages.
The variable ‘useChroot’ was not initialised properly. This caused
random failures if using the build hook. Seen on Mac OS X 10.7 with Clang.
Thanks to KolibriFX for finding this :-)
Chroots are initialised by hard-linking inputs from the Nix store to
the chroot. This doesn't work if the input has its immutable bit set,
because it's forbidden to create hard links to immutable files. So
temporarily clear the immutable bit when creating and destroying the
chroot.
Note that making regular files in the Nix store immutable isn't very
reliable, since the bit can easily become cleared: for instance, if we
run the garbage collector after running ‘nix-store --optimise’. So
maybe we should only make directories immutable.
This should also fix:
nix-instantiate: ./../boost/shared_ptr.hpp:254: T* boost::shared_ptr<T>::operator->() const [with T = nix::StoreAPI]: Assertion `px != 0' failed.
which was caused by hashDerivationModulo() calling the ‘store’
object (during store upgrades) before openStore() assigned it.
derivations added to the store by clients have "correct" output
paths (meaning that the output paths are computed by hashing the
derivation according to a certain algorithm). This means that a
malicious user could craft a special .drv file to build *any*
desired path in the store with any desired contents (so long as the
path doesn't already exist). Then the attacker just needs to wait
for a victim to come along and install the compromised path.
For instance, if Alice (the attacker) knows that the latest Firefox
derivation in Nixpkgs produces the path
/nix/store/1a5nyfd4ajxbyy97r1fslhgrv70gj8a7-firefox-5.0.1
then (provided this path doesn't already exist) she can craft a .drv
file that creates that path (i.e., has it as one of its outputs),
add it to the store using "nix-store --add", and build it with
"nix-store -r". So the fake .drv could write a Trojan to the
Firefox path. Then, if user Bob (the victim) comes along and does
$ nix-env -i firefox
$ firefox
he executes the Trojan injected by Alice.
The fix is to have the Nix daemon verify that derivation outputs are
correct (in addValidPath()). This required some refactoring to move
the hash computation code to libstore.
hook script proper, and the stdout/stderr of the builder. Only the
latter should be saved in /nix/var/log/nix/drvs.
* Allow the verbosity to be set through an option.
* Added a flag --quiet to lower the verbosity level.
it requires a certain feature on the build machine, e.g.
requiredSystemFeatures = [ "kvm" ];
We need this in Hydra to make sure that builds that require KVM
support are forwarded to machines that have KVM support. Probably
this should also be enforced for local builds.
the hook every time we want to ask whether we can run a remote build
(which can be very often), we now reuse a hook process for answering
those queries until it accepts a build. So if there are N
derivations to be built, at most N hooks will be started.
using the build hook mechanism, by setting the derivation attribute
"preferLocalBuild" to true. This has a few use cases:
- The user environment builder. Since it just creates a bunch of
symlinks without much computation, there is no reason to do it
remotely. In fact, doing it remotely requires the entire closure
of the user environment to be copied to the remote machine, which
is extremely wasteful.
- `fetchurl'. Performing the download on a remote machine and then
copying it to the local machine involves twice as much network
traffic as performing the download locally, and doesn't save any
CPU cycles on the local machine.
An "using namespace std" was added locally in those functions that refer to
names from <cstring>. That is not pretty, but it's a very portable solution,
because strcpy() and friends will be found in both the 'std' and in the global
namespace.
This patch adds the configuration file variable "build-cores" and the
command line argument "--cores". These settings specify the number of
CPU cores to utilize for parallel building within a job, i.e. by passing
an appropriate "-j" flag to GNU Make. The default value is 1, which
means that parallel building is *disabled*. If the number of build cores
is specified as 0 (synonymously: "guess" or "auto"), then the actual
value is supposed to be auto-detected by builders at run-time, i.e by
calling the nproc(1) utility from coreutils.
The environment variable $NIX_BUILD_CORES is available to builders, but
the contents of that variable does *not* influence the hash that goes
into the $out store path, i.e. the number of build cores to be utilized
can be changed at will without requiring any re-builds.