Most functions now take a StorePath argument rather than a Path (which
is just an alias for std::string). The StorePath constructor ensures
that the path is syntactically correct (i.e. it looks like
<store-dir>/<base32-hash>-<name>). Similarly, functions like
buildPaths() now take a StorePathWithOutputs, rather than abusing Path
by adding a '!<outputs>' suffix.
Note that the StorePath type is implemented in Rust. This involves
some hackery to allow Rust values to be used directly in C++, via a
helper type whose destructor calls the Rust type's drop()
function. The main issue is the dynamic nature of C++ move semantics:
after we have moved a Rust value, we should not call the drop function
on the original value. So when we move a value, we set the original
value to bitwise zero, and the destructor only calls drop() if the
value is not bitwise zero. This should be sufficient for most types.
Also lots of minor cleanups to the C++ API to make it more modern
(e.g. using std::optional and std::string_view in some places).
POSIX file locks are essentially incompatible with multithreading. BSD
locks have much saner semantics. We need this now that there can be
multiple concurrent LocalStore::buildPaths() invocations.
This currently fails because we're using POSIX file locks. So when the
garbage collector opens and closes its own temproots file, it causes
the lock to be released and then deleted by another GC instance.
Scanning of /proc/<pid>/{exe,cwd} was broken because '{memory:' was
prepended twice. Also, get rid of the whole '{memory:...}' thing
because it's unnecessary, we can just list the file in /proc directly.
This new structure makes more sense as there may be many sources rooting
the same store path. Many profiles can reference the same path but this
is even more true with /proc/<pid>/maps where distinct pids can and
often do map the same store path.
This implementation is also more efficient as the `Roots` map contains
only one entry per rooted store path.
If a process disappears between the time /proc/[pid]/maps is opened and
the time it is read, the read() syscall will return ESRCH. This should be ignored.
For example,
$ nix-store -q --roots /nix/store/7phd2sav7068nivgvmj2vpm3v47fd27l-patchelf-0.8pre845_0315148
{temp:1}
denotes that the path is only being kept alive by a temporary root
(i.e. /nix/var/nix/temproots/). Similarly,
$ nix-store --gc --print-roots
...
{memory:9} -> /nix/store/094gpjn9f15ip17wzxhma4r51nvsj17p-curl-7.53.1
shows that curl is being used by some process.
Nix can now automatically run the garbage collector during builds or
while adding paths to the store. The option "min-free = <bytes>"
specifies that Nix should run the garbage collector whenever free
space in the Nix store drops below <bytes>. It will then delete
garbage until "max-free" bytes are available.
Garbage collection during builds is asynchronous; running builds are
not paused and new builds are not blocked. However, there also is a
synchronous GC run prior to the first build/substitution.
Currently, no old GC roots are deleted (as in "nix-collect-garbage
-d").
Since file locks are per-process rather than per-file-descriptor, the
garbage collector would always acquire a lock on its own temproots
file and conclude that it's stale.
In particular, drop the "build-" and "gc-" prefixes which are
pointless. So now you can say
nix build --no-sandbox
instead of
nix build --no-build-use-sandbox
This is primarily to subsume the functionality of the
copy-from-other-stores substituter. For example, in the NixOS
installer, we can now do (assuming we're in the target chroot, and the
Nix store of the installation CD is bind-mounted on /tmp/nix):
$ nix-build ... --option substituters 'local?state=/tmp/nix/var&real=/tmp/nix/store'
However, unlike copy-from-other-stores, this also allows write access
to such a store. One application might be fetching substitutes for
/nix/store in a situation where the user doesn't have sufficient
privileges to create /nix, e.g.:
$ NIX_REMOTE="local?state=/home/alice/nix/var&real=/home/alice/nix/store" nix-build ...
Caching path info is generally useful. For instance, it speeds up "nix
path-info -rS /run/current-system" (i.e. showing the closure sizes of
all paths in the closure of the current system) from 5.6s to 0.15s.
This also eliminates some APIs like Store::queryDeriver() and
Store::queryReferences().
Also, move a few free-standing functions into StoreAPI and Derivation.
Also, introduce a non-nullable smart pointer, ref<T>, which is just a
wrapper around std::shared_ptr ensuring that the pointer is never
null. (For reference-counted values, this is better than passing a
"T&", because the latter doesn't maintain the refcount. Usually, the
caller will have a shared_ptr keeping the value alive, but that's not
always the case, e.g., when passing a reference to a std::thread via
std::bind.)
Especially in WAL mode on a highly loaded machine, this is not a good
idea because it results in a WAL file of approximately the same size
ad the database, which apparently cannot be deleted while anybody is
accessing it.
If a root is a regular file, then its name must denote a store
path. For instance, the existence of the file
/nix/var/nix/gcroots/per-user/eelco/hydra-roots/wzc3cy1wwwd6d0dgxpa77ijr1yp50s6v-libxml2-2.7.7
would cause
/nix/store/wzc3cy1wwwd6d0dgxpa77ijr1yp50s6v-libxml2-2.7.7
to be a root.
This is useful because it involves less I/O (no need for a readlink()
call) and takes up less disk space (the symlink target typically takes
up a full disk block, while directory entries are packed more
efficiently). This is particularly important for hydra.nixos.org,
which has hundreds of thousands of roots, and where reading the roots
can take 25 minutes.
I.e. "nix-store -q --roots" will now show (for example)
/home/eelco/Dev/nixpkgs/result
rather than
/nix/var/nix/gcroots/auto/53222qsppi12s2hkap8dm2lg8xhhyk6v
But this time it's *obviously* correct! No more segfaults due to
infinite recursions for sure, etc.
Also, move directories to /nix/store/trash instead of renaming them to
/nix/store/bla-gc-<pid>. Then we can just delete /nix/store/trash at
the end.
This prevents zillions of derivations from being kept, and fixes an
infinite recursion in the garbage collector (due to an obscure cycle
that can occur with fixed-output derivations).
The outputs of a derivation can refer to each other (even though they
cannot have cycles), so they have to be deleted in the right order.
http://hydra.nixos.org/build/3026118
If the options gc-keep-outputs and gc-keep-derivations are both
enabled, you can get a cycle in the liveness graph. There was a hack
to handle this, but it didn't work with multiple-output derivations,
causing the garbage collector to fail with errors like ‘error: cannot
delete path `...' because it is in use by `...'’. The garbage
collector now handles strongly connected components in the liveness
graph as a unit and decides whether to delete all or none of the paths
in an SCC.
Incremental optimisation requires creating links in /nix/store/.links
to all files in the store. However, this means that if we delete a
store path, no files are actually deleted because links in
/nix/store/.links still exists. So we need to check /nix/store/.links
for files with a link count of 1 and delete them.