#pragma once #include #include "symbol-table.hh" #if HAVE_BOEHMGC #include #endif namespace nix { class BindingsBuilder; typedef enum { tInt = 1, tBool, tString, tPath, tNull, tAttrs, tList1, tList2, tListN, tThunk, tApp, tLambda, tBlackhole, tPrimOp, tPrimOpApp, tExternal, tFloat } InternalType; // This type abstracts over all actual value types in the language, // grouping together implementation details like tList*, different function // types, and types in non-normal form (so thunks and co.) typedef enum { nThunk, nInt, nFloat, nBool, nString, nPath, nNull, nAttrs, nList, nFunction, nExternal } ValueType; class Bindings; struct Env; struct Expr; struct ExprLambda; struct PrimOp; class Symbol; struct Pos; class StorePath; class Store; class EvalState; class XMLWriter; class JSONPlaceholder; typedef int64_t NixInt; typedef double NixFloat; typedef std::pair NixStringContextElem; typedef std::vector NixStringContext; /* External values must descend from ExternalValueBase, so that * type-agnostic nix functions (e.g. showType) can be implemented */ class ExternalValueBase { friend std::ostream & operator << (std::ostream & str, const ExternalValueBase & v); protected: /* Print out the value */ virtual std::ostream & print(std::ostream & str) const = 0; public: /* Return a simple string describing the type */ virtual std::string showType() const = 0; /* Return a string to be used in builtins.typeOf */ virtual std::string typeOf() const = 0; /* Coerce the value to a string. Defaults to uncoercable, i.e. throws an * error. */ virtual std::string coerceToString(const Pos & pos, PathSet & context, bool copyMore, bool copyToStore) const; /* Compare to another value of the same type. Defaults to uncomparable, * i.e. always false. */ virtual bool operator ==(const ExternalValueBase & b) const; /* Print the value as JSON. Defaults to unconvertable, i.e. throws an error */ virtual void printValueAsJSON(EvalState & state, bool strict, JSONPlaceholder & out, PathSet & context) const; /* Print the value as XML. Defaults to unevaluated */ virtual void printValueAsXML(EvalState & state, bool strict, bool location, XMLWriter & doc, PathSet & context, PathSet & drvsSeen, const Pos & pos) const; virtual ~ExternalValueBase() { }; }; std::ostream & operator << (std::ostream & str, const ExternalValueBase & v); struct Value { private: InternalType internalType; friend std::string showType(const Value & v); friend void printValue(std::ostream & str, std::set & seen, const Value & v); public: // Functions needed to distinguish the type // These should be removed eventually, by putting the functionality that's // needed by callers into methods of this type // type() == nThunk inline bool isThunk() const { return internalType == tThunk; }; inline bool isApp() const { return internalType == tApp; }; inline bool isBlackhole() const { return internalType == tBlackhole; }; // type() == nFunction inline bool isLambda() const { return internalType == tLambda; }; inline bool isPrimOp() const { return internalType == tPrimOp; }; inline bool isPrimOpApp() const { return internalType == tPrimOpApp; }; union { NixInt integer; bool boolean; /* Strings in the evaluator carry a so-called `context' which is a list of strings representing store paths. This is to allow users to write things like "--with-freetype2-library=" + freetype + "/lib" where `freetype' is a derivation (or a source to be copied to the store). If we just concatenated the strings without keeping track of the referenced store paths, then if the string is used as a derivation attribute, the derivation will not have the correct dependencies in its inputDrvs and inputSrcs. The semantics of the context is as follows: when a string with context C is used as a derivation attribute, then the derivations in C will be added to the inputDrvs of the derivation, and the other store paths in C will be added to the inputSrcs of the derivations. For canonicity, the store paths should be in sorted order. */ struct { const char * s; const char * * context; // must be in sorted order } string; const char * path; Bindings * attrs; struct { size_t size; Value * * elems; } bigList; Value * smallList[2]; struct { Env * env; Expr * expr; } thunk; struct { Value * left, * right; } app; struct { Env * env; ExprLambda * fun; } lambda; PrimOp * primOp; struct { Value * left, * right; } primOpApp; ExternalValueBase * external; NixFloat fpoint; }; // Returns the normal type of a Value. This only returns nThunk if the // Value hasn't been forceValue'd inline ValueType type() const { switch (internalType) { case tInt: return nInt; case tBool: return nBool; case tString: return nString; case tPath: return nPath; case tNull: return nNull; case tAttrs: return nAttrs; case tList1: case tList2: case tListN: return nList; case tLambda: case tPrimOp: case tPrimOpApp: return nFunction; case tExternal: return nExternal; case tFloat: return nFloat; case tThunk: case tApp: case tBlackhole: return nThunk; } abort(); } /* After overwriting an app node, be sure to clear pointers in the Value to ensure that the target isn't kept alive unnecessarily. */ inline void clearValue() { app.left = app.right = 0; } inline void mkInt(NixInt n) { clearValue(); internalType = tInt; integer = n; } inline void mkBool(bool b) { clearValue(); internalType = tBool; boolean = b; } inline void mkString(const char * s, const char * * context = 0) { internalType = tString; string.s = s; string.context = context; } void mkString(std::string_view s); void mkString(std::string_view s, const PathSet & context); void mkStringMove(const char * s, const PathSet & context); inline void mkString(const Symbol & s) { mkString(((const std::string &) s).c_str()); } inline void mkPath(const char * s) { clearValue(); internalType = tPath; path = s; } void mkPath(std::string_view s); inline void mkNull() { clearValue(); internalType = tNull; } inline void mkAttrs(Bindings * a) { clearValue(); internalType = tAttrs; attrs = a; } Value & mkAttrs(BindingsBuilder & bindings); inline void mkList(size_t size) { clearValue(); if (size == 1) internalType = tList1; else if (size == 2) internalType = tList2; else { internalType = tListN; bigList.size = size; } } inline void mkThunk(Env * e, Expr * ex) { internalType = tThunk; thunk.env = e; thunk.expr = ex; } inline void mkApp(Value * l, Value * r) { internalType = tApp; app.left = l; app.right = r; } inline void mkLambda(Env * e, ExprLambda * f) { internalType = tLambda; lambda.env = e; lambda.fun = f; } inline void mkBlackhole() { internalType = tBlackhole; // Value will be overridden anyways } inline void mkPrimOp(PrimOp * p) { clearValue(); internalType = tPrimOp; primOp = p; } inline void mkPrimOpApp(Value * l, Value * r) { internalType = tPrimOpApp; app.left = l; app.right = r; } inline void mkExternal(ExternalValueBase * e) { clearValue(); internalType = tExternal; external = e; } inline void mkFloat(NixFloat n) { clearValue(); internalType = tFloat; fpoint = n; } bool isList() const { return internalType == tList1 || internalType == tList2 || internalType == tListN; } Value * * listElems() { return internalType == tList1 || internalType == tList2 ? smallList : bigList.elems; } const Value * const * listElems() const { return internalType == tList1 || internalType == tList2 ? smallList : bigList.elems; } size_t listSize() const { return internalType == tList1 ? 1 : internalType == tList2 ? 2 : bigList.size; } Pos determinePos(const Pos & pos) const; /* Check whether forcing this value requires a trivial amount of computation. In particular, function applications are non-trivial. */ bool isTrivial() const; NixStringContext getContext(const Store &); auto listItems() { struct ListIterable { typedef Value * const * iterator; iterator _begin, _end; iterator begin() const { return _begin; } iterator end() const { return _end; } }; assert(isList()); auto begin = listElems(); return ListIterable { begin, begin + listSize() }; } auto listItems() const { struct ConstListIterable { typedef const Value * const * iterator; iterator _begin, _end; iterator begin() const { return _begin; } iterator end() const { return _end; } }; assert(isList()); auto begin = listElems(); return ConstListIterable { begin, begin + listSize() }; } }; #if HAVE_BOEHMGC typedef std::vector > ValueVector; typedef std::map, traceable_allocator > > ValueMap; typedef std::map, traceable_allocator > > ValueVectorMap; #else typedef std::vector ValueVector; typedef std::map ValueMap; typedef std::map ValueVectorMap; #endif /* A value allocated in traceable memory. */ typedef std::shared_ptr RootValue; RootValue allocRootValue(Value * v); }