This fixes a class of crashes and introduces ptr<T> to make the
code robust against this failure mode going forward.
Thanks regnat for the idea of a ref<T> without overhead!
Closes#4895Closes#4893Closes#5127Closes#5113
Previously, despite having a boolean that tracked initialization, the
decode characters have been "calculated" every single time a base64
string was being decoded.
With this change we only initialize the decode array once in a
thread-safe manner.
Otherwise I get a compiler error when building for NetBSD:
src/libutil/util.cc: In function 'void nix::_deletePath(const Path&, uint64_t&)':
src/libutil/util.cc:438:17: error: base operand of '->' is not a pointer
438 | AutoCloseFD dirfd(open(dir.c_str(), O_RDONLY));
| ^~~~~
src/libutil/util.cc:439:10: error: 'dirfd' was not declared in this scope
439 | if (!dirfd) {
| ^~~~~
src/libutil/util.cc:444:17: error: 'dirfd' was not declared in this scope
444 | _deletePath(dirfd.get(), path, bytesFreed);
| ^~~~~
Fill `NIX_CONFIG` with the value of the current Nix configuration before
calling the post-build-hook.
That way the whole configuration (including the possible
`experimental-features`, a possibly `--store` option or whatever) will
be made available to the hook
Move the `closure` logic of `computeFSClosure` to its own (templated) function.
This doesn’t bring much by itself (except for the ability to properly
test the “closure” functionality independently from the rest), but it
allows reusing it (in particular for the realisations which will require
a very similar closure computation)
When you have a symlink like:
/tmp -> ./private/tmp
you need to resolve ./private/tmp relative to /tmp’s dir: ‘/’. Unlike
any other path output by dirOf, / ends with a slash. We don’t want
trailing slashes here since we will append another slash in the next
comoponent, so clear s like we would if it was a symlink to an absoute
path.
This should fix at least part of the issue in
https://github.com/NixOS/nix/issues/4822, will need confirmation that
it actually fixes the problem to close though.
Introduced in f3f228700a.
This function doesn't support all compression methods (i.e. 'none' and
'br') so it shouldn't be exposed.
Also restore the original decompress() as a wrapper around
makeDecompressionSink().
The S3 store relies on the ability to be able to decompress things with
an empty method, because it just passes the value of the Content-Encoding
directly to decompress.
If the file is not compressed, then this will cause the compression
routine to get confused.
This caused NixOS/nixpkgs#120120.
If there were many top-level goals (which are not destroyed until the
very end), commands like
$ nix copy --to 'ssh://localhost?remote-store=/tmp/nix' \
/run/current-system --no-check-sigs --substitute-on-destination
could fail with "Too many open files". So now we do some explicit
cleanup from amDone(). It would be cleaner to separate goals from
their temporary internal state, but that would be a bigger refactor.
According to RFC4007[1], IPv6 addresses can have a so-called zone_id
separated from the actual address with `%` as delimiter. In contrast to
Nix 2.3, the version on `master` doesn't recognize it as such:
$ nix ping-store --store ssh://root@fe80::1%18 --experimental-features nix-command
warning: 'ping-store' is a deprecated alias for 'store ping'
error: --- Error ----------------------------------------------------------------- nix
don't know how to open Nix store 'ssh://root@fe80::1%18'
I modified the IPv6 match-regex accordingly to optionally detect this
part of the address. As we don't seem to do anything special with it, I
decided to leave it as part of the URL for now.
Fixes#4490
[1] https://tools.ietf.org/html/rfc4007
This is probably what most people expect it to do. Fixes#3781.
There is a new command 'nix flake lock' that has the old behaviour of
'nix flake update', i.e. it just adds missing lock file entries unless
overriden using --update-input.
This is technically a breaking change, since attempting to set plugin
files after the first non-flag argument will now throw an error. This
is acceptable given the relative lack of stability in a plugin
interface and the need to tie the knot somewhere once plugins can
actually define new subcommands.
When performing distributed builds of machine learning packages, it
would be nice if builders without the required SIMD instructions can
be excluded as build nodes.
Since x86_64 has accumulated a large number of different instruction
set extensions, listing all possible extensions would be unwieldy.
AMD, Intel, Red Hat, and SUSE have recently defined four different
microarchitecture levels that are now part of the x86-64 psABI
supplement and will be used in glibc 2.33:
https://gitlab.com/x86-psABIs/x86-64-ABIhttps://lwn.net/Articles/844831/
This change uses libcpuid to detect CPU features and then uses them to
add the supported x86_64 levels to the additional system types. For
example on a Ryzen 3700X:
$ ~/aps/bin/nix -vv --version | grep "Additional system"
Additional system types: i686-linux, x86_64-v1-linux, x86_64-v2-linux, x86_64-v3-linux
I tested a trivial program that called kill(-1, SIGKILL), which was
run as the only process for an unpriveleged user, on Linux and
FreeBSD. On Linux, kill reported success, while on FreeBSD it failed
with EPERM.
POSIX says:
> If pid is -1, sig shall be sent to all processes (excluding an
> unspecified set of system processes) for which the process has
> permission to send that signal.
and
> The kill() function is successful if the process has permission to
> send sig to any of the processes specified by pid. If kill() fails,
> no signal shall be sent.
and
> [EPERM]
> The process does not have permission to send the signal to any
> receiving process.
My reading of this is that kill(-1, ...) may fail with EPERM when
there are no other processes to kill (since the current process is
ignored). Since kill(-1, ...) only attempts to kill processes the
user has permission to kill, it can't mean that we tried to do
something we didn't have permission to kill, so it should be fine to
interpret EPERM the same as success here for any POSIX-compliant
system.
This fixes an issue that Mic92 encountered[1] when he tried to review a
Nixpkgs PR on FreeBSD.
[1]: https://github.com/NixOS/nixpkgs/pull/81459#issuecomment-606073668
It's now
at /home/eelco/Dev/nixpkgs/pkgs/applications/misc/hello/default.nix:7:7:
instead of
at: (7:7) in file: /home/eelco/Dev/nixpkgs/pkgs/applications/misc/hello/default.nix
The new format is more standard and clickable.