I'm seeing hangs in Glibc's setxid_mark_thread() again. This is
probably because the use of an intermediate process to make clone()
safe from a multi-threaded program (see
524f89f139) is defeated by the use of
vfork(), since the intermediate process will have a copy of Glibc's
threading data structures due to the vfork(). So use a regular fork()
again.
If ‘build-use-chroot’ is set to ‘true’, fixed-output derivations are
now also chrooted. However, unlike normal derivations, they don't get
a private network namespace, so they can still access the
network. Also, the use of the ‘__noChroot’ derivation attribute is
no longer allowed.
Setting ‘build-use-chroot’ to ‘relaxed’ gives the old behaviour.
If ‘--option restrict-eval true’ is given, the evaluator will throw an
exception if an attempt is made to access any file outside of the Nix
search path. This is primarily intended for Hydra, where we don't want
people doing ‘builtins.readFile ~/.ssh/id_dsa’ or stuff like that.
chroot only changes the process root directory, not the mount namespace root
directory, and it is well-known that any process with chroot capability can
break out of a chroot "jail". By using pivot_root as well, and unmounting the
original mount namespace root directory, breaking out becomes impossible.
Non-root processes typically have no ability to use chroot() anyway, but they
can gain that capability through the use of clone() or unshare(). For security
reasons, these syscalls are limited in functionality when used inside a normal
chroot environment. Using pivot_root() this way does allow those syscalls to be
put to their full use.
Sodium's Ed25519 signatures are much shorter than OpenSSL's RSA
signatures. Public keys are also much shorter, so they're now
specified directly in the nix.conf option ‘binary-cache-public-keys’.
The new command ‘nix-store --generate-binary-cache-key’ generates and
prints a public and secret key.
The DT_UNKNOWN fallback code was getting the type of the wrong path,
causing readDir to report "directory" as the type of every file.
Reported by deepfire on IRC.
I.e., not readable to the nixbld group. This improves purity a bit for
non-chroot builds, because it prevents a builder from enumerating
store paths (i.e. it can only access paths it knows about).
Let's not just improve the error message itself, but also the behaviour
to actually work around the ntfs-3g symlink bug. If the readlink() call
returns a smaller size than the stat() call, this really isn't a problem
even if the symlink target really has changed between the calls.
So if stat() reports the size for the absolute path, it's most likely
that the relative path is smaller and thus it should also work for file
system bugs as mentioned in 93002d69fc58c2b71e2dfad202139230c630c53a.
Signed-off-by: aszlig <aszlig@redmoonstudios.org>
Tested-by: John Ericson <Ericson2314@Yahoo.com>
A message like "error: reading symbolic link `...' : Success" really is
quite confusing, so let's not indicate "success" but rather point out
the real issue.
We could also limit the check of this to just check for non-negative
values, but this would introduce a race condition between stat() and
readlink() if the link target changes between those two calls, thus
leading to a buffer overflow vulnerability.
Reported by @Ericson2314 on IRC. Happened due to a possible ntfs-3g bug
where a relative symlink returned the absolute path (st_)size in stat()
while readlink() returned the relative size.
Signed-off-by: aszlig <aszlig@redmoonstudios.org>
Tested-by: John Ericson <Ericson2314@Yahoo.com>
In low memory environments, "nix-env -qa" failed because the fork to
run the pager hit the kernel's overcommit limits. Using posix_spawn
gets around this. (Actually, you have to use posix_spawn with the
undocumented POSIX_SPAWN_USEVFORK flag, otherwise it just uses
fork/exec...)
Code that links to libnixexpr (e.g. plugins loaded with importNative, or
nix-exec) may want to provide custom value types and operations on
values of those types. For example, nix-exec is currently using sets
where a custom IO value type would be more appropriate. This commit
provides a generic hook for such types in the form of tExternal and the
ExternalBase virtual class, which contains all functions necessary for
libnixexpr's type-polymorphic functions (e.g. `showType`) to be
implemented.
The function ‘builtins.match’ takes a POSIX extended regular
expression and an arbitrary string. It returns ‘null’ if the string
does not match the regular expression. Otherwise, it returns a list
containing substring matches corresponding to parenthesis groups in
the regex. The regex must match the entire string (i.e. there is an
implied "^<pat>$" around the regex). For example:
match "foo" "foobar" => null
match "foo" "foo" => []
match "f(o+)(.*)" "foooobar" => ["oooo" "bar"]
match "(.*/)?([^/]*)" "/dir/file.nix" => ["/dir/" "file.nix"]
match "(.*/)?([^/]*)" "file.nix" => [null "file.nix"]
The following example finds all regular files with extension .nix or
.patch underneath the current directory:
let
findFiles = pat: dir: concatLists (mapAttrsToList (name: type:
if type == "directory" then
findFiles pat (dir + "/" + name)
else if type == "regular" && match pat name != null then
[(dir + "/" + name)]
else []) (readDir dir));
in findFiles ".*\\.(nix|patch)" (toString ./.)
Before this there was a bug where a `find` was being called on a
not-yet-sorted set. The code was just a mess before anyway, so I cleaned
it up while fixing it.
Especially in WAL mode on a highly loaded machine, this is not a good
idea because it results in a WAL file of approximately the same size
ad the database, which apparently cannot be deleted while anybody is
accessing it.
This was preventing destructors from running. In particular, it was
preventing the deletion of the temproot file for each worker
process. It may also have been responsible for the excessive WAL
growth on Hydra (due to the SQLite database not being closed
properly).
Apparently broken by accident in
8e9140cfde.
With this, attribute sets with a `__functor` attribute can be applied
just like normal functions. This can be used to attach arbitrary
metadata to a function without callers needing to treat it specially.