lix/src/libexpr/primops.cc

2082 lines
70 KiB
C++
Raw Normal View History

#include "archive.hh"
#include "derivations.hh"
#include "download.hh"
#include "eval-inline.hh"
#include "eval.hh"
#include "globals.hh"
#include "json-to-value.hh"
#include "names.hh"
#include "store-api.hh"
#include "util.hh"
Add support for passing structured data to builders Previously, all derivation attributes had to be coerced into strings so that they could be passed via the environment. This is lossy (e.g. lists get flattened, necessitating configureFlags vs. configureFlagsArray, of which the latter cannot be specified as an attribute), doesn't support attribute sets at all, and has size limitations (necessitating hacks like passAsFile). This patch adds a new mode for passing attributes to builders, namely encoded as a JSON file ".attrs.json" in the current directory of the builder. This mode is activated via the special attribute __structuredAttrs = true; (The idea is that one day we can set this in stdenv.mkDerivation.) For example, stdenv.mkDerivation { __structuredAttrs = true; name = "foo"; buildInputs = [ pkgs.hello pkgs.cowsay ]; doCheck = true; hardening.format = false; } results in a ".attrs.json" file containing (sans the indentation): { "buildInputs": [], "builder": "/nix/store/ygl61ycpr2vjqrx775l1r2mw1g2rb754-bash-4.3-p48/bin/bash", "configureFlags": [ "--with-foo", "--with-bar=1 2" ], "doCheck": true, "hardening": { "format": false }, "name": "foo", "nativeBuildInputs": [ "/nix/store/10h6li26i7g6z3mdpvra09yyf10mmzdr-hello-2.10", "/nix/store/4jnvjin0r6wp6cv1hdm5jbkx3vinlcvk-cowsay-3.03" ], "propagatedBuildInputs": [], "propagatedNativeBuildInputs": [], "stdenv": "/nix/store/f3hw3p8armnzy6xhd4h8s7anfjrs15n2-stdenv", "system": "x86_64-linux" } "passAsFile" is ignored in this mode because it's not needed - large strings are included directly in the JSON representation. It is up to the builder to do something with the JSON representation. For example, in bash-based builders, lists/attrsets of string values could be mapped to bash (associative) arrays.
2017-01-25 15:42:07 +00:00
#include "json.hh"
2013-11-18 23:03:11 +00:00
#include "value-to-json.hh"
#include "value-to-xml.hh"
#include "primops.hh"
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <algorithm>
2010-03-30 09:22:33 +00:00
#include <cstring>
#include <regex>
#include <dlfcn.h>
namespace nix {
2007-01-29 15:11:32 +00:00
/*************************************************************
* Miscellaneous
*************************************************************/
/* Decode a context string !<name>!<path> into a pair <path,
name>. */
std::pair<string, string> decodeContext(const string & s)
{
if (s.at(0) == '!') {
size_t index = s.find("!", 1);
return std::pair<string, string>(string(s, index + 1), string(s, 1, index - 1));
} else
return std::pair<string, string>(s.at(0) == '/' ? s: string(s, 1), "");
}
InvalidPathError::InvalidPathError(const Path & path) :
EvalError(format("path %1% is not valid") % path), path(path) {}
void EvalState::realiseContext(const PathSet & context)
{
PathSet drvs;
for (auto & i : context) {
std::pair<string, string> decoded = decodeContext(i);
Path ctx = decoded.first;
assert(store->isStorePath(ctx));
if (!store->isValidPath(ctx))
throw InvalidPathError(ctx);
if (!decoded.second.empty() && nix::isDerivation(ctx))
drvs.insert(decoded.first + "!" + decoded.second);
}
if (!drvs.empty()) {
if (!settings.enableImportFromDerivation)
throw EvalError(format("attempted to realize %1% during evaluation but 'allow-import-from-derivation' is false") % *(drvs.begin()));
/* For performance, prefetch all substitute info. */
PathSet willBuild, willSubstitute, unknown;
unsigned long long downloadSize, narSize;
store->queryMissing(drvs, willBuild, willSubstitute, unknown, downloadSize, narSize);
store->buildPaths(drvs);
}
}
/* Load and evaluate an expression from path specified by the
argument. */
static void prim_scopedImport(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
PathSet context;
Path path = state.coerceToPath(pos, *args[1], context);
try {
state.realiseContext(context);
} catch (InvalidPathError & e) {
throw EvalError(format("cannot import %1%, since path %2% is not valid, at %3%")
% path % e.path % pos);
2006-11-03 16:17:39 +00:00
}
path = state.checkSourcePath(path);
if (state.store->isStorePath(path) && state.store->isValidPath(path) && isDerivation(path)) {
Derivation drv = readDerivation(path);
Value & w = *state.allocValue();
state.mkAttrs(w, 3 + drv.outputs.size());
Value * v2 = state.allocAttr(w, state.sDrvPath);
2016-05-04 14:04:52 +00:00
mkString(*v2, path, {"=" + path});
v2 = state.allocAttr(w, state.sName);
mkString(*v2, drv.env["name"]);
Value * outputsVal =
state.allocAttr(w, state.symbols.create("outputs"));
state.mkList(*outputsVal, drv.outputs.size());
unsigned int outputs_index = 0;
for (const auto & o : drv.outputs) {
v2 = state.allocAttr(w, state.symbols.create(o.first));
2016-05-04 14:04:52 +00:00
mkString(*v2, o.second.path, {"!" + o.first + "!" + path});
outputsVal->listElems()[outputs_index] = state.allocValue();
mkString(*(outputsVal->listElems()[outputs_index++]), o.first);
}
w.attrs->sort();
Value fun;
state.evalFile(settings.nixDataDir + "/nix/corepkgs/imported-drv-to-derivation.nix", fun);
2014-04-04 17:05:36 +00:00
state.forceFunction(fun, pos);
mkApp(v, fun, w);
2014-04-04 17:11:40 +00:00
state.forceAttrs(v, pos);
} else {
state.forceAttrs(*args[0]);
if (args[0]->attrs->empty())
state.evalFile(path, v);
else {
Env * env = &state.allocEnv(args[0]->attrs->size());
env->up = &state.baseEnv;
StaticEnv staticEnv(false, &state.staticBaseEnv);
unsigned int displ = 0;
for (auto & attr : *args[0]->attrs) {
staticEnv.vars[attr.name] = displ;
env->values[displ++] = attr.value;
}
Add primop ‘scopedImport’ ‘scopedImport’ works like ‘import’, except that it takes a set of attributes to be added to the lexical scope of the expression, essentially extending or overriding the builtin variables. For instance, the expression scopedImport { x = 1; } ./foo.nix where foo.nix contains ‘x’, will evaluate to 1. This has a few applications: * It allows getting rid of function argument specifications in package expressions. For instance, a package expression like: { stdenv, fetchurl, libfoo }: stdenv.mkDerivation { ... buildInputs = [ libfoo ]; } can now we written as just stdenv.mkDerivation { ... buildInputs = [ libfoo ]; } and imported in all-packages.nix as: bar = scopedImport pkgs ./bar.nix; So whereas we once had dependencies listed in three places (buildInputs, the function, and the call site), they now only need to appear in one place. * It allows overriding builtin functions. For instance, to trace all calls to ‘map’: let overrides = { map = f: xs: builtins.trace "map called!" (map f xs); # Ensure that our override gets propagated by calls to # import/scopedImport. import = fn: scopedImport overrides fn; scopedImport = attrs: fn: scopedImport (overrides // attrs) fn; # Also update ‘builtins’. builtins = builtins // overrides; }; in scopedImport overrides ./bla.nix * Similarly, it allows extending the set of builtin functions. For instance, during Nixpkgs/NixOS evaluation, the Nixpkgs library functions could be added to the default scope. There is a downside: calls to scopedImport are not memoized, unlike import. So importing a file multiple times leads to multiple parsings / evaluations. It would be possible to construct the AST only once, but that would require careful handling of variables/environments.
2014-05-26 11:46:11 +00:00
2017-05-16 14:09:57 +00:00
printTalkative("evaluating file %1%", path);
Expr * e = state.parseExprFromFile(resolveExprPath(path), staticEnv);
Add primop ‘scopedImport’ ‘scopedImport’ works like ‘import’, except that it takes a set of attributes to be added to the lexical scope of the expression, essentially extending or overriding the builtin variables. For instance, the expression scopedImport { x = 1; } ./foo.nix where foo.nix contains ‘x’, will evaluate to 1. This has a few applications: * It allows getting rid of function argument specifications in package expressions. For instance, a package expression like: { stdenv, fetchurl, libfoo }: stdenv.mkDerivation { ... buildInputs = [ libfoo ]; } can now we written as just stdenv.mkDerivation { ... buildInputs = [ libfoo ]; } and imported in all-packages.nix as: bar = scopedImport pkgs ./bar.nix; So whereas we once had dependencies listed in three places (buildInputs, the function, and the call site), they now only need to appear in one place. * It allows overriding builtin functions. For instance, to trace all calls to ‘map’: let overrides = { map = f: xs: builtins.trace "map called!" (map f xs); # Ensure that our override gets propagated by calls to # import/scopedImport. import = fn: scopedImport overrides fn; scopedImport = attrs: fn: scopedImport (overrides // attrs) fn; # Also update ‘builtins’. builtins = builtins // overrides; }; in scopedImport overrides ./bla.nix * Similarly, it allows extending the set of builtin functions. For instance, during Nixpkgs/NixOS evaluation, the Nixpkgs library functions could be added to the default scope. There is a downside: calls to scopedImport are not memoized, unlike import. So importing a file multiple times leads to multiple parsings / evaluations. It would be possible to construct the AST only once, but that would require careful handling of variables/environments.
2014-05-26 11:46:11 +00:00
e->eval(state, *env, v);
}
Add primop ‘scopedImport’ ‘scopedImport’ works like ‘import’, except that it takes a set of attributes to be added to the lexical scope of the expression, essentially extending or overriding the builtin variables. For instance, the expression scopedImport { x = 1; } ./foo.nix where foo.nix contains ‘x’, will evaluate to 1. This has a few applications: * It allows getting rid of function argument specifications in package expressions. For instance, a package expression like: { stdenv, fetchurl, libfoo }: stdenv.mkDerivation { ... buildInputs = [ libfoo ]; } can now we written as just stdenv.mkDerivation { ... buildInputs = [ libfoo ]; } and imported in all-packages.nix as: bar = scopedImport pkgs ./bar.nix; So whereas we once had dependencies listed in three places (buildInputs, the function, and the call site), they now only need to appear in one place. * It allows overriding builtin functions. For instance, to trace all calls to ‘map’: let overrides = { map = f: xs: builtins.trace "map called!" (map f xs); # Ensure that our override gets propagated by calls to # import/scopedImport. import = fn: scopedImport overrides fn; scopedImport = attrs: fn: scopedImport (overrides // attrs) fn; # Also update ‘builtins’. builtins = builtins // overrides; }; in scopedImport overrides ./bla.nix * Similarly, it allows extending the set of builtin functions. For instance, during Nixpkgs/NixOS evaluation, the Nixpkgs library functions could be added to the default scope. There is a downside: calls to scopedImport are not memoized, unlike import. So importing a file multiple times leads to multiple parsings / evaluations. It would be possible to construct the AST only once, but that would require careful handling of variables/environments.
2014-05-26 11:46:11 +00:00
}
}
/* Want reasonable symbol names, so extern C */
/* !!! Should we pass the Pos or the file name too? */
extern "C" typedef void (*ValueInitializer)(EvalState & state, Value & v);
/* Load a ValueInitializer from a DSO and return whatever it initializes */
static void prim_importNative(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
PathSet context;
Path path = state.coerceToPath(pos, *args[0], context);
try {
state.realiseContext(context);
} catch (InvalidPathError & e) {
throw EvalError(format("cannot import %1%, since path %2% is not valid, at %3%")
% path % e.path % pos);
}
path = state.checkSourcePath(path);
string sym = state.forceStringNoCtx(*args[1], pos);
void *handle = dlopen(path.c_str(), RTLD_LAZY | RTLD_LOCAL);
if (!handle)
throw EvalError(format("could not open %1%: %2%") % path % dlerror());
dlerror();
ValueInitializer func = (ValueInitializer) dlsym(handle, sym.c_str());
if(!func) {
char *message = dlerror();
if (message)
throw EvalError(format("could not load symbol %1% from %2%: %3%") % sym % path % message);
else
throw EvalError(format("symbol %1% from %2% resolved to NULL when a function pointer was expected")
% sym % path);
}
(func)(state, v);
/* We don't dlclose because v may be a primop referencing a function in the shared object file */
}
/* Execute a program and parse its output */
static void prim_exec(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
state.forceList(*args[0], pos);
auto elems = args[0]->listElems();
auto count = args[0]->listSize();
if (count == 0) {
throw EvalError(format("at least one argument to 'exec' required, at %1%") % pos);
}
PathSet context;
auto program = state.coerceToString(pos, *elems[0], context, false, false);
Strings commandArgs;
for (unsigned int i = 1; i < args[0]->listSize(); ++i) {
commandArgs.emplace_back(state.coerceToString(pos, *elems[i], context, false, false));
}
try {
state.realiseContext(context);
} catch (InvalidPathError & e) {
throw EvalError(format("cannot execute %1%, since path %2% is not valid, at %3%")
% program % e.path % pos);
}
auto output = runProgram(program, true, commandArgs);
Expr * parsed;
try {
parsed = state.parseExprFromString(output, pos.file);
} catch (Error & e) {
e.addPrefix(format("While parsing the output from %1%, at %2%\n") % program % pos);
throw;
}
try {
state.eval(parsed, v);
} catch (Error & e) {
e.addPrefix(format("While evaluating the output from %1%, at %2%\n") % program % pos);
throw;
}
}
/* Return a string representing the type of the expression. */
static void prim_typeOf(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
state.forceValue(*args[0]);
string t;
switch (args[0]->type) {
case tInt: t = "int"; break;
case tBool: t = "bool"; break;
case tString: t = "string"; break;
case tPath: t = "path"; break;
case tNull: t = "null"; break;
case tAttrs: t = "set"; break;
case tList1: case tList2: case tListN: t = "list"; break;
case tLambda:
case tPrimOp:
case tPrimOpApp:
t = "lambda";
break;
2015-02-05 16:21:30 +00:00
case tExternal:
t = args[0]->external->typeOf();
break;
case tFloat: t = "float"; break;
default: abort();
}
mkString(v, state.symbols.create(t));
}
2007-01-29 15:11:32 +00:00
/* Determine whether the argument is the null value. */
static void prim_isNull(EvalState & state, const Pos & pos, Value * * args, Value & v)
2007-01-29 15:11:32 +00:00
{
2010-03-30 22:39:48 +00:00
state.forceValue(*args[0]);
mkBool(v, args[0]->type == tNull);
2007-01-29 15:11:32 +00:00
}
/* Determine whether the argument is a function. */
static void prim_isFunction(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
2010-03-30 22:39:48 +00:00
state.forceValue(*args[0]);
mkBool(v, args[0]->type == tLambda);
}
2010-03-30 22:39:48 +00:00
/* Determine whether the argument is an integer. */
static void prim_isInt(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
2010-03-30 22:39:48 +00:00
state.forceValue(*args[0]);
mkBool(v, args[0]->type == tInt);
}
/* Determine whether the argument is a float. */
static void prim_isFloat(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
state.forceValue(*args[0]);
mkBool(v, args[0]->type == tFloat);
}
2010-03-30 22:39:48 +00:00
/* Determine whether the argument is a string. */
static void prim_isString(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
2010-03-30 22:39:48 +00:00
state.forceValue(*args[0]);
mkBool(v, args[0]->type == tString);
}
2010-03-30 22:39:48 +00:00
/* Determine whether the argument is a Boolean. */
static void prim_isBool(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
2010-03-30 22:39:48 +00:00
state.forceValue(*args[0]);
mkBool(v, args[0]->type == tBool);
}
2010-03-30 22:39:48 +00:00
2010-04-21 15:57:11 +00:00
struct CompareValues
{
bool operator () (const Value * v1, const Value * v2) const
2010-04-21 15:57:11 +00:00
{
if (v1->type == tFloat && v2->type == tInt)
return v1->fpoint < v2->integer;
if (v1->type == tInt && v2->type == tFloat)
return v1->integer < v2->fpoint;
if (v1->type != v2->type)
throw EvalError(format("cannot compare %1% with %2%") % showType(*v1) % showType(*v2));
switch (v1->type) {
2010-04-21 15:57:11 +00:00
case tInt:
return v1->integer < v2->integer;
case tFloat:
return v1->fpoint < v2->fpoint;
2010-04-21 15:57:11 +00:00
case tString:
return strcmp(v1->string.s, v2->string.s) < 0;
2010-04-21 15:57:11 +00:00
case tPath:
return strcmp(v1->path, v2->path) < 0;
2010-04-21 15:57:11 +00:00
default:
throw EvalError(format("cannot compare %1% with %2%") % showType(*v1) % showType(*v2));
2010-04-21 15:57:11 +00:00
}
}
};
#if HAVE_BOEHMGC
typedef list<Value *, gc_allocator<Value *> > ValueList;
#else
typedef list<Value *> ValueList;
#endif
static void prim_genericClosure(EvalState & state, const Pos & pos, Value * * args, Value & v)
2007-01-29 15:11:32 +00:00
{
2014-04-04 17:11:40 +00:00
state.forceAttrs(*args[0], pos);
2007-01-29 15:11:32 +00:00
/* Get the start set. */
Bindings::iterator startSet =
args[0]->attrs->find(state.symbols.create("startSet"));
if (startSet == args[0]->attrs->end())
throw EvalError(format("attribute startSet required, at %1%") % pos);
2014-04-04 17:05:36 +00:00
state.forceList(*startSet->value, pos);
2007-01-29 15:11:32 +00:00
ValueList workSet;
for (unsigned int n = 0; n < startSet->value->listSize(); ++n)
workSet.push_back(startSet->value->listElems()[n]);
2007-01-29 15:11:32 +00:00
/* Get the operator. */
Bindings::iterator op =
args[0]->attrs->find(state.symbols.create("operator"));
if (op == args[0]->attrs->end())
throw EvalError(format("attribute operator required, at %1%") % pos);
state.forceValue(*op->value);
2010-04-21 15:57:11 +00:00
/* Construct the closure by applying the operator to element of
`workSet', adding the result to `workSet', continuing until
no new elements are found. */
ValueList res;
// `doneKeys' doesn't need to be a GC root, because its values are
// reachable from res.
set<Value *, CompareValues> doneKeys;
2007-01-29 15:11:32 +00:00
while (!workSet.empty()) {
Value * e = *(workSet.begin());
workSet.pop_front();
2007-01-29 15:11:32 +00:00
2014-04-04 17:11:40 +00:00
state.forceAttrs(*e, pos);
2007-01-29 15:11:32 +00:00
2010-04-21 15:57:11 +00:00
Bindings::iterator key =
e->attrs->find(state.symbols.create("key"));
if (key == e->attrs->end())
throw EvalError(format("attribute key required, at %1%") % pos);
state.forceValue(*key->value);
2007-01-29 15:11:32 +00:00
if (doneKeys.find(key->value) != doneKeys.end()) continue;
doneKeys.insert(key->value);
res.push_back(e);
2013-09-02 14:29:15 +00:00
/* Call the `operator' function with `e' as argument. */
2010-04-21 15:57:11 +00:00
Value call;
mkApp(call, *op->value, *e);
2014-04-04 17:05:36 +00:00
state.forceList(call, pos);
2010-04-21 15:57:11 +00:00
/* Add the values returned by the operator to the work set. */
for (unsigned int n = 0; n < call.listSize(); ++n) {
state.forceValue(*call.listElems()[n]);
workSet.push_back(call.listElems()[n]);
2010-04-21 15:57:11 +00:00
}
2007-01-29 15:11:32 +00:00
}
2010-04-21 15:57:11 +00:00
/* Create the result list. */
state.mkList(v, res.size());
unsigned int n = 0;
2015-07-17 17:24:28 +00:00
for (auto & i : res)
v.listElems()[n++] = i;
2007-01-29 15:11:32 +00:00
}
static void prim_abort(EvalState & state, const Pos & pos, Value * * args, Value & v)
2007-01-29 15:11:32 +00:00
{
PathSet context;
string s = state.coerceToString(pos, *args[0], context);
throw Abort(format("evaluation aborted with the following error message: %1%") % s);
2007-01-29 15:11:32 +00:00
}
static void prim_throw(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
PathSet context;
string s = state.coerceToString(pos, *args[0], context);
throw ThrownError(s);
}
static void prim_addErrorContext(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
try {
2010-05-07 12:33:14 +00:00
state.forceValue(*args[1]);
v = *args[1];
} catch (Error & e) {
2010-05-07 12:33:14 +00:00
PathSet context;
e.addPrefix(format("%1%\n") % state.coerceToString(pos, *args[0], context));
throw;
}
}
2010-05-07 12:33:14 +00:00
2013-09-02 14:29:15 +00:00
/* Try evaluating the argument. Success => {success=true; value=something;},
* else => {success=false; value=false;} */
static void prim_tryEval(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
state.mkAttrs(v, 2);
try {
state.forceValue(*args[0]);
2013-10-28 06:34:44 +00:00
v.attrs->push_back(Attr(state.sValue, args[0]));
mkBool(*state.allocAttr(v, state.symbols.create("success")), true);
} catch (AssertionError & e) {
2013-10-28 06:34:44 +00:00
mkBool(*state.allocAttr(v, state.sValue), false);
mkBool(*state.allocAttr(v, state.symbols.create("success")), false);
}
v.attrs->sort();
}
2007-01-29 15:11:32 +00:00
/* Return an environment variable. Use with care. */
static void prim_getEnv(EvalState & state, const Pos & pos, Value * * args, Value & v)
2007-01-29 15:11:32 +00:00
{
2014-04-04 19:14:11 +00:00
string name = state.forceStringNoCtx(*args[0], pos);
mkString(v, state.restricted ? "" : getEnv(name));
2007-01-29 15:11:32 +00:00
}
2014-09-22 12:53:21 +00:00
/* Evaluate the first argument, then return the second argument. */
2014-09-23 13:08:27 +00:00
static void prim_seq(EvalState & state, const Pos & pos, Value * * args, Value & v)
2014-09-22 12:53:21 +00:00
{
state.forceValue(*args[0]);
state.forceValue(*args[1]);
v = *args[1];
}
/* Evaluate the first argument deeply (i.e. recursing into lists and
attrsets), then return the second argument. */
2014-09-23 13:08:27 +00:00
static void prim_deepSeq(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
state.forceValueDeep(*args[0]);
state.forceValue(*args[1]);
v = *args[1];
}
/* Evaluate the first expression and print it on standard error. Then
return the second expression. Useful for debugging. */
static void prim_trace(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
state.forceValue(*args[0]);
if (args[0]->type == tString)
printError(format("trace: %1%") % args[0]->string.s);
else
printError(format("trace: %1%") % *args[0]);
state.forceValue(*args[1]);
v = *args[1];
}
2007-01-29 15:11:32 +00:00
void prim_valueSize(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
/* We're not forcing the argument on purpose. */
mkInt(v, valueSize(*args[0]));
}
2007-01-29 15:11:32 +00:00
/*************************************************************
* Derivations
*************************************************************/
/* Construct (as a unobservable side effect) a Nix derivation
expression that performs the derivation described by the argument
set. Returns the original set extended with the following
attributes: `outPath' containing the primary output path of the
derivation; `drvPath' containing the path of the Nix expression;
and `type' set to `derivation' to indicate that this is a
derivation. */
static void prim_derivationStrict(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
2014-04-04 17:11:40 +00:00
state.forceAttrs(*args[0], pos);
2010-03-31 15:38:03 +00:00
/* Figure out the name first (for stack backtraces). */
Bindings::iterator attr = args[0]->attrs->find(state.sName);
2010-03-31 15:38:03 +00:00
if (attr == args[0]->attrs->end())
throw EvalError(format("required attribute name missing, at %1%") % pos);
2006-10-23 16:45:19 +00:00
string drvName;
Pos & posDrvName(*attr->pos);
try {
2014-04-04 19:14:11 +00:00
drvName = state.forceStringNoCtx(*attr->value, pos);
2006-10-23 16:45:19 +00:00
} catch (Error & e) {
e.addPrefix(format("while evaluating the derivation attribute name at %1%:\n") % posDrvName);
2006-10-23 16:45:19 +00:00
throw;
}
Add support for passing structured data to builders Previously, all derivation attributes had to be coerced into strings so that they could be passed via the environment. This is lossy (e.g. lists get flattened, necessitating configureFlags vs. configureFlagsArray, of which the latter cannot be specified as an attribute), doesn't support attribute sets at all, and has size limitations (necessitating hacks like passAsFile). This patch adds a new mode for passing attributes to builders, namely encoded as a JSON file ".attrs.json" in the current directory of the builder. This mode is activated via the special attribute __structuredAttrs = true; (The idea is that one day we can set this in stdenv.mkDerivation.) For example, stdenv.mkDerivation { __structuredAttrs = true; name = "foo"; buildInputs = [ pkgs.hello pkgs.cowsay ]; doCheck = true; hardening.format = false; } results in a ".attrs.json" file containing (sans the indentation): { "buildInputs": [], "builder": "/nix/store/ygl61ycpr2vjqrx775l1r2mw1g2rb754-bash-4.3-p48/bin/bash", "configureFlags": [ "--with-foo", "--with-bar=1 2" ], "doCheck": true, "hardening": { "format": false }, "name": "foo", "nativeBuildInputs": [ "/nix/store/10h6li26i7g6z3mdpvra09yyf10mmzdr-hello-2.10", "/nix/store/4jnvjin0r6wp6cv1hdm5jbkx3vinlcvk-cowsay-3.03" ], "propagatedBuildInputs": [], "propagatedNativeBuildInputs": [], "stdenv": "/nix/store/f3hw3p8armnzy6xhd4h8s7anfjrs15n2-stdenv", "system": "x86_64-linux" } "passAsFile" is ignored in this mode because it's not needed - large strings are included directly in the JSON representation. It is up to the builder to do something with the JSON representation. For example, in bash-based builders, lists/attrsets of string values could be mapped to bash (associative) arrays.
2017-01-25 15:42:07 +00:00
/* Check whether attributes should be passed as a JSON file. */
std::ostringstream jsonBuf;
std::unique_ptr<JSONObject> jsonObject;
attr = args[0]->attrs->find(state.sStructuredAttrs);
if (attr != args[0]->attrs->end() && state.forceBool(*attr->value, pos))
jsonObject = std::make_unique<JSONObject>(jsonBuf);
/* Check whether null attributes should be ignored. */
bool ignoreNulls = false;
attr = args[0]->attrs->find(state.sIgnoreNulls);
if (attr != args[0]->attrs->end())
2016-08-29 15:56:35 +00:00
ignoreNulls = state.forceBool(*attr->value, pos);
/* Build the derivation expression by processing the attributes. */
Derivation drv;
PathSet context;
std::experimental::optional<std::string> outputHash;
std::string outputHashAlgo;
bool outputHashRecursive = false;
* Support multiple outputs. A derivation can declare multiple outputs by setting the ‘outputs’ attribute. For example: stdenv.mkDerivation { name = "aterm-2.5"; src = ...; outputs = [ "out" "tools" "dev" ]; configureFlags = "--bindir=$(tools)/bin --includedir=$(dev)/include"; } This derivation creates three outputs, named like this: /nix/store/gcnqgllbh01p3d448q8q6pzn2nc2gpyl-aterm-2.5 /nix/store/gjf1sgirwfnrlr0bdxyrwzpw2r304j02-aterm-2.5-tools /nix/store/hp6108bqfgxvza25nnxfs7kj88xi2vdx-aterm-2.5-dev That is, the symbolic name of the output is suffixed to the store path (except for the ‘out’ output). Each path is passed to the builder through the corresponding environment variable, e.g., ${tools}. The main reason for multiple outputs is to allow parts of a package to be distributed and garbage-collected separately. For instance, most packages depend on Glibc for its libraries, but don't need its header files. If these are separated into different store paths, then a package that depends on the Glibc libraries only causes the libraries and not the headers to be downloaded. The main problem with multiple outputs is that if one output exists while the others have been garbage-collected (or never downloaded in the first place), and we want to rebuild the other outputs, then this isn't possible because we can't clobber a valid output (it might be in active use). This currently gives an error message like: error: derivation `/nix/store/1s9zw4c8qydpjyrayxamx2z7zzp5pcgh-aterm-2.5.drv' is blocked by its output paths There are two solutions: 1) Do the build in a chroot. Then we don't need to overwrite the existing path. 2) Use hash rewriting (see the ASE-2005 paper). Scary but it should work. This is not finished yet. There is not yet an easy way to refer to non-default outputs in Nix expressions. Also, mutually recursive outputs aren't detected yet and cause the garbage collector to crash.
2011-07-18 23:31:03 +00:00
StringSet outputs;
outputs.insert("out");
Add support for passing structured data to builders Previously, all derivation attributes had to be coerced into strings so that they could be passed via the environment. This is lossy (e.g. lists get flattened, necessitating configureFlags vs. configureFlagsArray, of which the latter cannot be specified as an attribute), doesn't support attribute sets at all, and has size limitations (necessitating hacks like passAsFile). This patch adds a new mode for passing attributes to builders, namely encoded as a JSON file ".attrs.json" in the current directory of the builder. This mode is activated via the special attribute __structuredAttrs = true; (The idea is that one day we can set this in stdenv.mkDerivation.) For example, stdenv.mkDerivation { __structuredAttrs = true; name = "foo"; buildInputs = [ pkgs.hello pkgs.cowsay ]; doCheck = true; hardening.format = false; } results in a ".attrs.json" file containing (sans the indentation): { "buildInputs": [], "builder": "/nix/store/ygl61ycpr2vjqrx775l1r2mw1g2rb754-bash-4.3-p48/bin/bash", "configureFlags": [ "--with-foo", "--with-bar=1 2" ], "doCheck": true, "hardening": { "format": false }, "name": "foo", "nativeBuildInputs": [ "/nix/store/10h6li26i7g6z3mdpvra09yyf10mmzdr-hello-2.10", "/nix/store/4jnvjin0r6wp6cv1hdm5jbkx3vinlcvk-cowsay-3.03" ], "propagatedBuildInputs": [], "propagatedNativeBuildInputs": [], "stdenv": "/nix/store/f3hw3p8armnzy6xhd4h8s7anfjrs15n2-stdenv", "system": "x86_64-linux" } "passAsFile" is ignored in this mode because it's not needed - large strings are included directly in the JSON representation. It is up to the builder to do something with the JSON representation. For example, in bash-based builders, lists/attrsets of string values could be mapped to bash (associative) arrays.
2017-01-25 15:42:07 +00:00
for (auto & i : args[0]->attrs->lexicographicOrder()) {
if (i->name == state.sIgnoreNulls) continue;
string key = i->name;
2017-05-16 14:09:57 +00:00
vomit("processing attribute %1%", key);
Add support for passing structured data to builders Previously, all derivation attributes had to be coerced into strings so that they could be passed via the environment. This is lossy (e.g. lists get flattened, necessitating configureFlags vs. configureFlagsArray, of which the latter cannot be specified as an attribute), doesn't support attribute sets at all, and has size limitations (necessitating hacks like passAsFile). This patch adds a new mode for passing attributes to builders, namely encoded as a JSON file ".attrs.json" in the current directory of the builder. This mode is activated via the special attribute __structuredAttrs = true; (The idea is that one day we can set this in stdenv.mkDerivation.) For example, stdenv.mkDerivation { __structuredAttrs = true; name = "foo"; buildInputs = [ pkgs.hello pkgs.cowsay ]; doCheck = true; hardening.format = false; } results in a ".attrs.json" file containing (sans the indentation): { "buildInputs": [], "builder": "/nix/store/ygl61ycpr2vjqrx775l1r2mw1g2rb754-bash-4.3-p48/bin/bash", "configureFlags": [ "--with-foo", "--with-bar=1 2" ], "doCheck": true, "hardening": { "format": false }, "name": "foo", "nativeBuildInputs": [ "/nix/store/10h6li26i7g6z3mdpvra09yyf10mmzdr-hello-2.10", "/nix/store/4jnvjin0r6wp6cv1hdm5jbkx3vinlcvk-cowsay-3.03" ], "propagatedBuildInputs": [], "propagatedNativeBuildInputs": [], "stdenv": "/nix/store/f3hw3p8armnzy6xhd4h8s7anfjrs15n2-stdenv", "system": "x86_64-linux" } "passAsFile" is ignored in this mode because it's not needed - large strings are included directly in the JSON representation. It is up to the builder to do something with the JSON representation. For example, in bash-based builders, lists/attrsets of string values could be mapped to bash (associative) arrays.
2017-01-25 15:42:07 +00:00
auto handleHashMode = [&](const std::string & s) {
if (s == "recursive") outputHashRecursive = true;
else if (s == "flat") outputHashRecursive = false;
else throw EvalError("invalid value %s for outputHashMode attribute, at %s", s, posDrvName);
};
auto handleOutputs = [&](const Strings & ss) {
outputs.clear();
for (auto & j : ss) {
if (outputs.find(j) != outputs.end())
throw EvalError(format("duplicate derivation output %1%, at %2%") % j % posDrvName);
/* !!! Check whether j is a valid attribute
name. */
/* Derivations cannot be named drv, because
then we'd have an attribute drvPath in
the resulting set. */
if (j == "drv")
throw EvalError(format("invalid derivation output name drv, at %1%") % posDrvName);
outputs.insert(j);
}
if (outputs.empty())
throw EvalError(format("derivation cannot have an empty set of outputs, at %1%") % posDrvName);
};
try {
if (ignoreNulls) {
Add support for passing structured data to builders Previously, all derivation attributes had to be coerced into strings so that they could be passed via the environment. This is lossy (e.g. lists get flattened, necessitating configureFlags vs. configureFlagsArray, of which the latter cannot be specified as an attribute), doesn't support attribute sets at all, and has size limitations (necessitating hacks like passAsFile). This patch adds a new mode for passing attributes to builders, namely encoded as a JSON file ".attrs.json" in the current directory of the builder. This mode is activated via the special attribute __structuredAttrs = true; (The idea is that one day we can set this in stdenv.mkDerivation.) For example, stdenv.mkDerivation { __structuredAttrs = true; name = "foo"; buildInputs = [ pkgs.hello pkgs.cowsay ]; doCheck = true; hardening.format = false; } results in a ".attrs.json" file containing (sans the indentation): { "buildInputs": [], "builder": "/nix/store/ygl61ycpr2vjqrx775l1r2mw1g2rb754-bash-4.3-p48/bin/bash", "configureFlags": [ "--with-foo", "--with-bar=1 2" ], "doCheck": true, "hardening": { "format": false }, "name": "foo", "nativeBuildInputs": [ "/nix/store/10h6li26i7g6z3mdpvra09yyf10mmzdr-hello-2.10", "/nix/store/4jnvjin0r6wp6cv1hdm5jbkx3vinlcvk-cowsay-3.03" ], "propagatedBuildInputs": [], "propagatedNativeBuildInputs": [], "stdenv": "/nix/store/f3hw3p8armnzy6xhd4h8s7anfjrs15n2-stdenv", "system": "x86_64-linux" } "passAsFile" is ignored in this mode because it's not needed - large strings are included directly in the JSON representation. It is up to the builder to do something with the JSON representation. For example, in bash-based builders, lists/attrsets of string values could be mapped to bash (associative) arrays.
2017-01-25 15:42:07 +00:00
state.forceValue(*i->value);
if (i->value->type == tNull) continue;
}
/* The `args' attribute is special: it supplies the
command-line arguments to the builder. */
if (key == "args") {
Add support for passing structured data to builders Previously, all derivation attributes had to be coerced into strings so that they could be passed via the environment. This is lossy (e.g. lists get flattened, necessitating configureFlags vs. configureFlagsArray, of which the latter cannot be specified as an attribute), doesn't support attribute sets at all, and has size limitations (necessitating hacks like passAsFile). This patch adds a new mode for passing attributes to builders, namely encoded as a JSON file ".attrs.json" in the current directory of the builder. This mode is activated via the special attribute __structuredAttrs = true; (The idea is that one day we can set this in stdenv.mkDerivation.) For example, stdenv.mkDerivation { __structuredAttrs = true; name = "foo"; buildInputs = [ pkgs.hello pkgs.cowsay ]; doCheck = true; hardening.format = false; } results in a ".attrs.json" file containing (sans the indentation): { "buildInputs": [], "builder": "/nix/store/ygl61ycpr2vjqrx775l1r2mw1g2rb754-bash-4.3-p48/bin/bash", "configureFlags": [ "--with-foo", "--with-bar=1 2" ], "doCheck": true, "hardening": { "format": false }, "name": "foo", "nativeBuildInputs": [ "/nix/store/10h6li26i7g6z3mdpvra09yyf10mmzdr-hello-2.10", "/nix/store/4jnvjin0r6wp6cv1hdm5jbkx3vinlcvk-cowsay-3.03" ], "propagatedBuildInputs": [], "propagatedNativeBuildInputs": [], "stdenv": "/nix/store/f3hw3p8armnzy6xhd4h8s7anfjrs15n2-stdenv", "system": "x86_64-linux" } "passAsFile" is ignored in this mode because it's not needed - large strings are included directly in the JSON representation. It is up to the builder to do something with the JSON representation. For example, in bash-based builders, lists/attrsets of string values could be mapped to bash (associative) arrays.
2017-01-25 15:42:07 +00:00
state.forceList(*i->value, pos);
for (unsigned int n = 0; n < i->value->listSize(); ++n) {
string s = state.coerceToString(posDrvName, *i->value->listElems()[n], context, true);
drv.args.push_back(s);
}
}
/* All other attributes are passed to the builder through
the environment. */
else {
Add support for passing structured data to builders Previously, all derivation attributes had to be coerced into strings so that they could be passed via the environment. This is lossy (e.g. lists get flattened, necessitating configureFlags vs. configureFlagsArray, of which the latter cannot be specified as an attribute), doesn't support attribute sets at all, and has size limitations (necessitating hacks like passAsFile). This patch adds a new mode for passing attributes to builders, namely encoded as a JSON file ".attrs.json" in the current directory of the builder. This mode is activated via the special attribute __structuredAttrs = true; (The idea is that one day we can set this in stdenv.mkDerivation.) For example, stdenv.mkDerivation { __structuredAttrs = true; name = "foo"; buildInputs = [ pkgs.hello pkgs.cowsay ]; doCheck = true; hardening.format = false; } results in a ".attrs.json" file containing (sans the indentation): { "buildInputs": [], "builder": "/nix/store/ygl61ycpr2vjqrx775l1r2mw1g2rb754-bash-4.3-p48/bin/bash", "configureFlags": [ "--with-foo", "--with-bar=1 2" ], "doCheck": true, "hardening": { "format": false }, "name": "foo", "nativeBuildInputs": [ "/nix/store/10h6li26i7g6z3mdpvra09yyf10mmzdr-hello-2.10", "/nix/store/4jnvjin0r6wp6cv1hdm5jbkx3vinlcvk-cowsay-3.03" ], "propagatedBuildInputs": [], "propagatedNativeBuildInputs": [], "stdenv": "/nix/store/f3hw3p8armnzy6xhd4h8s7anfjrs15n2-stdenv", "system": "x86_64-linux" } "passAsFile" is ignored in this mode because it's not needed - large strings are included directly in the JSON representation. It is up to the builder to do something with the JSON representation. For example, in bash-based builders, lists/attrsets of string values could be mapped to bash (associative) arrays.
2017-01-25 15:42:07 +00:00
if (jsonObject) {
if (i->name == state.sStructuredAttrs) continue;
auto placeholder(jsonObject->placeholder(key));
printValueAsJSON(state, true, *i->value, placeholder, context);
if (i->name == state.sBuilder)
drv.builder = state.forceString(*i->value, context, posDrvName);
else if (i->name == state.sSystem)
drv.platform = state.forceStringNoCtx(*i->value, posDrvName);
else if (i->name == state.sName)
drvName = state.forceStringNoCtx(*i->value, posDrvName);
else if (key == "outputHash")
outputHash = state.forceStringNoCtx(*i->value, posDrvName);
else if (key == "outputHashAlgo")
outputHashAlgo = state.forceStringNoCtx(*i->value, posDrvName);
else if (key == "outputHashMode")
handleHashMode(state.forceStringNoCtx(*i->value, posDrvName));
else if (key == "outputs") {
/* Require outputs to be a list of strings. */
state.forceList(*i->value, posDrvName);
Strings ss;
for (unsigned int n = 0; n < i->value->listSize(); ++n)
ss.emplace_back(state.forceStringNoCtx(*i->value->listElems()[n], posDrvName));
handleOutputs(ss);
* Support multiple outputs. A derivation can declare multiple outputs by setting the ‘outputs’ attribute. For example: stdenv.mkDerivation { name = "aterm-2.5"; src = ...; outputs = [ "out" "tools" "dev" ]; configureFlags = "--bindir=$(tools)/bin --includedir=$(dev)/include"; } This derivation creates three outputs, named like this: /nix/store/gcnqgllbh01p3d448q8q6pzn2nc2gpyl-aterm-2.5 /nix/store/gjf1sgirwfnrlr0bdxyrwzpw2r304j02-aterm-2.5-tools /nix/store/hp6108bqfgxvza25nnxfs7kj88xi2vdx-aterm-2.5-dev That is, the symbolic name of the output is suffixed to the store path (except for the ‘out’ output). Each path is passed to the builder through the corresponding environment variable, e.g., ${tools}. The main reason for multiple outputs is to allow parts of a package to be distributed and garbage-collected separately. For instance, most packages depend on Glibc for its libraries, but don't need its header files. If these are separated into different store paths, then a package that depends on the Glibc libraries only causes the libraries and not the headers to be downloaded. The main problem with multiple outputs is that if one output exists while the others have been garbage-collected (or never downloaded in the first place), and we want to rebuild the other outputs, then this isn't possible because we can't clobber a valid output (it might be in active use). This currently gives an error message like: error: derivation `/nix/store/1s9zw4c8qydpjyrayxamx2z7zzp5pcgh-aterm-2.5.drv' is blocked by its output paths There are two solutions: 1) Do the build in a chroot. Then we don't need to overwrite the existing path. 2) Use hash rewriting (see the ASE-2005 paper). Scary but it should work. This is not finished yet. There is not yet an easy way to refer to non-default outputs in Nix expressions. Also, mutually recursive outputs aren't detected yet and cause the garbage collector to crash.
2011-07-18 23:31:03 +00:00
}
Add support for passing structured data to builders Previously, all derivation attributes had to be coerced into strings so that they could be passed via the environment. This is lossy (e.g. lists get flattened, necessitating configureFlags vs. configureFlagsArray, of which the latter cannot be specified as an attribute), doesn't support attribute sets at all, and has size limitations (necessitating hacks like passAsFile). This patch adds a new mode for passing attributes to builders, namely encoded as a JSON file ".attrs.json" in the current directory of the builder. This mode is activated via the special attribute __structuredAttrs = true; (The idea is that one day we can set this in stdenv.mkDerivation.) For example, stdenv.mkDerivation { __structuredAttrs = true; name = "foo"; buildInputs = [ pkgs.hello pkgs.cowsay ]; doCheck = true; hardening.format = false; } results in a ".attrs.json" file containing (sans the indentation): { "buildInputs": [], "builder": "/nix/store/ygl61ycpr2vjqrx775l1r2mw1g2rb754-bash-4.3-p48/bin/bash", "configureFlags": [ "--with-foo", "--with-bar=1 2" ], "doCheck": true, "hardening": { "format": false }, "name": "foo", "nativeBuildInputs": [ "/nix/store/10h6li26i7g6z3mdpvra09yyf10mmzdr-hello-2.10", "/nix/store/4jnvjin0r6wp6cv1hdm5jbkx3vinlcvk-cowsay-3.03" ], "propagatedBuildInputs": [], "propagatedNativeBuildInputs": [], "stdenv": "/nix/store/f3hw3p8armnzy6xhd4h8s7anfjrs15n2-stdenv", "system": "x86_64-linux" } "passAsFile" is ignored in this mode because it's not needed - large strings are included directly in the JSON representation. It is up to the builder to do something with the JSON representation. For example, in bash-based builders, lists/attrsets of string values could be mapped to bash (associative) arrays.
2017-01-25 15:42:07 +00:00
} else {
auto s = state.coerceToString(posDrvName, *i->value, context, true);
drv.env.emplace(key, s);
if (i->name == state.sBuilder) drv.builder = s;
else if (i->name == state.sSystem) drv.platform = s;
else if (i->name == state.sName) {
drvName = s;
printMsg(lvlVomit, format("derivation name is %1%") % drvName);
}
else if (key == "outputHash") outputHash = s;
else if (key == "outputHashAlgo") outputHashAlgo = s;
else if (key == "outputHashMode") handleHashMode(s);
else if (key == "outputs")
handleOutputs(tokenizeString<Strings>(s));
* Support multiple outputs. A derivation can declare multiple outputs by setting the ‘outputs’ attribute. For example: stdenv.mkDerivation { name = "aterm-2.5"; src = ...; outputs = [ "out" "tools" "dev" ]; configureFlags = "--bindir=$(tools)/bin --includedir=$(dev)/include"; } This derivation creates three outputs, named like this: /nix/store/gcnqgllbh01p3d448q8q6pzn2nc2gpyl-aterm-2.5 /nix/store/gjf1sgirwfnrlr0bdxyrwzpw2r304j02-aterm-2.5-tools /nix/store/hp6108bqfgxvza25nnxfs7kj88xi2vdx-aterm-2.5-dev That is, the symbolic name of the output is suffixed to the store path (except for the ‘out’ output). Each path is passed to the builder through the corresponding environment variable, e.g., ${tools}. The main reason for multiple outputs is to allow parts of a package to be distributed and garbage-collected separately. For instance, most packages depend on Glibc for its libraries, but don't need its header files. If these are separated into different store paths, then a package that depends on the Glibc libraries only causes the libraries and not the headers to be downloaded. The main problem with multiple outputs is that if one output exists while the others have been garbage-collected (or never downloaded in the first place), and we want to rebuild the other outputs, then this isn't possible because we can't clobber a valid output (it might be in active use). This currently gives an error message like: error: derivation `/nix/store/1s9zw4c8qydpjyrayxamx2z7zzp5pcgh-aterm-2.5.drv' is blocked by its output paths There are two solutions: 1) Do the build in a chroot. Then we don't need to overwrite the existing path. 2) Use hash rewriting (see the ASE-2005 paper). Scary but it should work. This is not finished yet. There is not yet an easy way to refer to non-default outputs in Nix expressions. Also, mutually recursive outputs aren't detected yet and cause the garbage collector to crash.
2011-07-18 23:31:03 +00:00
}
Add support for passing structured data to builders Previously, all derivation attributes had to be coerced into strings so that they could be passed via the environment. This is lossy (e.g. lists get flattened, necessitating configureFlags vs. configureFlagsArray, of which the latter cannot be specified as an attribute), doesn't support attribute sets at all, and has size limitations (necessitating hacks like passAsFile). This patch adds a new mode for passing attributes to builders, namely encoded as a JSON file ".attrs.json" in the current directory of the builder. This mode is activated via the special attribute __structuredAttrs = true; (The idea is that one day we can set this in stdenv.mkDerivation.) For example, stdenv.mkDerivation { __structuredAttrs = true; name = "foo"; buildInputs = [ pkgs.hello pkgs.cowsay ]; doCheck = true; hardening.format = false; } results in a ".attrs.json" file containing (sans the indentation): { "buildInputs": [], "builder": "/nix/store/ygl61ycpr2vjqrx775l1r2mw1g2rb754-bash-4.3-p48/bin/bash", "configureFlags": [ "--with-foo", "--with-bar=1 2" ], "doCheck": true, "hardening": { "format": false }, "name": "foo", "nativeBuildInputs": [ "/nix/store/10h6li26i7g6z3mdpvra09yyf10mmzdr-hello-2.10", "/nix/store/4jnvjin0r6wp6cv1hdm5jbkx3vinlcvk-cowsay-3.03" ], "propagatedBuildInputs": [], "propagatedNativeBuildInputs": [], "stdenv": "/nix/store/f3hw3p8armnzy6xhd4h8s7anfjrs15n2-stdenv", "system": "x86_64-linux" } "passAsFile" is ignored in this mode because it's not needed - large strings are included directly in the JSON representation. It is up to the builder to do something with the JSON representation. For example, in bash-based builders, lists/attrsets of string values could be mapped to bash (associative) arrays.
2017-01-25 15:42:07 +00:00
}
} catch (Error & e) {
e.addPrefix(format("while evaluating the attribute %1% of the derivation %2% at %3%:\n")
% key % drvName % posDrvName);
throw;
}
}
Add support for passing structured data to builders Previously, all derivation attributes had to be coerced into strings so that they could be passed via the environment. This is lossy (e.g. lists get flattened, necessitating configureFlags vs. configureFlagsArray, of which the latter cannot be specified as an attribute), doesn't support attribute sets at all, and has size limitations (necessitating hacks like passAsFile). This patch adds a new mode for passing attributes to builders, namely encoded as a JSON file ".attrs.json" in the current directory of the builder. This mode is activated via the special attribute __structuredAttrs = true; (The idea is that one day we can set this in stdenv.mkDerivation.) For example, stdenv.mkDerivation { __structuredAttrs = true; name = "foo"; buildInputs = [ pkgs.hello pkgs.cowsay ]; doCheck = true; hardening.format = false; } results in a ".attrs.json" file containing (sans the indentation): { "buildInputs": [], "builder": "/nix/store/ygl61ycpr2vjqrx775l1r2mw1g2rb754-bash-4.3-p48/bin/bash", "configureFlags": [ "--with-foo", "--with-bar=1 2" ], "doCheck": true, "hardening": { "format": false }, "name": "foo", "nativeBuildInputs": [ "/nix/store/10h6li26i7g6z3mdpvra09yyf10mmzdr-hello-2.10", "/nix/store/4jnvjin0r6wp6cv1hdm5jbkx3vinlcvk-cowsay-3.03" ], "propagatedBuildInputs": [], "propagatedNativeBuildInputs": [], "stdenv": "/nix/store/f3hw3p8armnzy6xhd4h8s7anfjrs15n2-stdenv", "system": "x86_64-linux" } "passAsFile" is ignored in this mode because it's not needed - large strings are included directly in the JSON representation. It is up to the builder to do something with the JSON representation. For example, in bash-based builders, lists/attrsets of string values could be mapped to bash (associative) arrays.
2017-01-25 15:42:07 +00:00
if (jsonObject) {
jsonObject.reset();
drv.env.emplace("__json", jsonBuf.str());
}
/* Everything in the context of the strings in the derivation
attributes should be added as dependencies of the resulting
derivation. */
2015-07-17 17:24:28 +00:00
for (auto & path : context) {
/* Paths marked with `=' denote that the path of a derivation
is explicitly passed to the builder. Since that allows the
builder to gain access to every path in the dependency
graph of the derivation (including all outputs), all paths
in the graph must be added to this derivation's list of
inputs to ensure that they are available when the builder
runs. */
if (path.at(0) == '=') {
/* !!! This doesn't work if readOnlyMode is set. */
PathSet refs;
state.store->computeFSClosure(string(path, 1), refs);
2015-07-17 17:24:28 +00:00
for (auto & j : refs) {
drv.inputSrcs.insert(j);
if (isDerivation(j))
drv.inputDrvs[j] = state.store->queryDerivationOutputNames(j);
}
}
/* See prim_unsafeDiscardOutputDependency. */
2011-12-21 15:33:30 +00:00
else if (path.at(0) == '~')
drv.inputSrcs.insert(string(path, 1));
/* Handle derivation outputs of the form !<name>!<path>. */
2011-12-21 15:33:30 +00:00
else if (path.at(0) == '!') {
std::pair<string, string> ctx = decodeContext(path);
drv.inputDrvs[ctx.first].insert(ctx.second);
}
2011-12-21 15:33:30 +00:00
/* Handle derivation contexts returned by
builtins.storePath. */
2011-12-21 15:33:30 +00:00
else if (isDerivation(path))
drv.inputDrvs[path] = state.store->queryDerivationOutputNames(path);
2011-12-21 15:33:30 +00:00
/* Otherwise it's a source file. */
else
drv.inputSrcs.insert(path);
}
/* Do we have all required attributes? */
if (drv.builder == "")
throw EvalError(format("required attribute builder missing, at %1%") % posDrvName);
if (drv.platform == "")
throw EvalError(format("required attribute system missing, at %1%") % posDrvName);
2006-09-21 18:52:05 +00:00
/* Check whether the derivation name is valid. */
checkStoreName(drvName);
if (isDerivation(drvName))
throw EvalError(format("derivation names are not allowed to end in %1%, at %2%")
% drvExtension % posDrvName);
if (outputHash) {
/* Handle fixed-output derivations. */
if (outputs.size() != 1 || *(outputs.begin()) != "out")
throw Error(format("multiple outputs are not supported in fixed-output derivations, at %1%") % posDrvName);
HashType ht = parseHashType(outputHashAlgo);
if (ht == htUnknown)
throw EvalError(format("unknown hash algorithm %1%, at %2%") % outputHashAlgo % posDrvName);
Hash h(*outputHash, ht);
outputHash = h.to_string(Base16, false);
if (outputHashRecursive) outputHashAlgo = "r:" + outputHashAlgo;
Path outPath = state.store->makeFixedOutputPath(outputHashRecursive, h, drvName);
drv.env["out"] = outPath;
drv.outputs["out"] = DerivationOutput(outPath, outputHashAlgo, *outputHash);
}
else {
/* Construct the "masked" store derivation, which is the final
one except that in the list of outputs, the output paths
are empty, and the corresponding environment variables have
an empty value. This ensures that changes in the set of
output names do get reflected in the hash. */
2015-07-17 17:24:28 +00:00
for (auto & i : outputs) {
drv.env[i] = "";
drv.outputs[i] = DerivationOutput("", "", "");
* Support multiple outputs. A derivation can declare multiple outputs by setting the ‘outputs’ attribute. For example: stdenv.mkDerivation { name = "aterm-2.5"; src = ...; outputs = [ "out" "tools" "dev" ]; configureFlags = "--bindir=$(tools)/bin --includedir=$(dev)/include"; } This derivation creates three outputs, named like this: /nix/store/gcnqgllbh01p3d448q8q6pzn2nc2gpyl-aterm-2.5 /nix/store/gjf1sgirwfnrlr0bdxyrwzpw2r304j02-aterm-2.5-tools /nix/store/hp6108bqfgxvza25nnxfs7kj88xi2vdx-aterm-2.5-dev That is, the symbolic name of the output is suffixed to the store path (except for the ‘out’ output). Each path is passed to the builder through the corresponding environment variable, e.g., ${tools}. The main reason for multiple outputs is to allow parts of a package to be distributed and garbage-collected separately. For instance, most packages depend on Glibc for its libraries, but don't need its header files. If these are separated into different store paths, then a package that depends on the Glibc libraries only causes the libraries and not the headers to be downloaded. The main problem with multiple outputs is that if one output exists while the others have been garbage-collected (or never downloaded in the first place), and we want to rebuild the other outputs, then this isn't possible because we can't clobber a valid output (it might be in active use). This currently gives an error message like: error: derivation `/nix/store/1s9zw4c8qydpjyrayxamx2z7zzp5pcgh-aterm-2.5.drv' is blocked by its output paths There are two solutions: 1) Do the build in a chroot. Then we don't need to overwrite the existing path. 2) Use hash rewriting (see the ASE-2005 paper). Scary but it should work. This is not finished yet. There is not yet an easy way to refer to non-default outputs in Nix expressions. Also, mutually recursive outputs aren't detected yet and cause the garbage collector to crash.
2011-07-18 23:31:03 +00:00
}
/* Use the masked derivation expression to compute the output
path. */
Hash h = hashDerivationModulo(*state.store, drv);
2015-07-17 17:24:28 +00:00
for (auto & i : drv.outputs)
if (i.second.path == "") {
Path outPath = state.store->makeOutputPath(i.first, h, drvName);
2015-07-17 17:24:28 +00:00
drv.env[i.first] = outPath;
i.second.path = outPath;
* Support multiple outputs. A derivation can declare multiple outputs by setting the ‘outputs’ attribute. For example: stdenv.mkDerivation { name = "aterm-2.5"; src = ...; outputs = [ "out" "tools" "dev" ]; configureFlags = "--bindir=$(tools)/bin --includedir=$(dev)/include"; } This derivation creates three outputs, named like this: /nix/store/gcnqgllbh01p3d448q8q6pzn2nc2gpyl-aterm-2.5 /nix/store/gjf1sgirwfnrlr0bdxyrwzpw2r304j02-aterm-2.5-tools /nix/store/hp6108bqfgxvza25nnxfs7kj88xi2vdx-aterm-2.5-dev That is, the symbolic name of the output is suffixed to the store path (except for the ‘out’ output). Each path is passed to the builder through the corresponding environment variable, e.g., ${tools}. The main reason for multiple outputs is to allow parts of a package to be distributed and garbage-collected separately. For instance, most packages depend on Glibc for its libraries, but don't need its header files. If these are separated into different store paths, then a package that depends on the Glibc libraries only causes the libraries and not the headers to be downloaded. The main problem with multiple outputs is that if one output exists while the others have been garbage-collected (or never downloaded in the first place), and we want to rebuild the other outputs, then this isn't possible because we can't clobber a valid output (it might be in active use). This currently gives an error message like: error: derivation `/nix/store/1s9zw4c8qydpjyrayxamx2z7zzp5pcgh-aterm-2.5.drv' is blocked by its output paths There are two solutions: 1) Do the build in a chroot. Then we don't need to overwrite the existing path. 2) Use hash rewriting (see the ASE-2005 paper). Scary but it should work. This is not finished yet. There is not yet an easy way to refer to non-default outputs in Nix expressions. Also, mutually recursive outputs aren't detected yet and cause the garbage collector to crash.
2011-07-18 23:31:03 +00:00
}
}
/* Write the resulting term into the Nix store directory. */
Path drvPath = writeDerivation(state.store, drv, drvName, state.repair);
printMsg(lvlChatty, format("instantiated %1% -> %2%")
% drvName % drvPath);
2005-01-18 11:15:50 +00:00
/* Optimisation, but required in read-only mode! because in that
* Support multiple outputs. A derivation can declare multiple outputs by setting the ‘outputs’ attribute. For example: stdenv.mkDerivation { name = "aterm-2.5"; src = ...; outputs = [ "out" "tools" "dev" ]; configureFlags = "--bindir=$(tools)/bin --includedir=$(dev)/include"; } This derivation creates three outputs, named like this: /nix/store/gcnqgllbh01p3d448q8q6pzn2nc2gpyl-aterm-2.5 /nix/store/gjf1sgirwfnrlr0bdxyrwzpw2r304j02-aterm-2.5-tools /nix/store/hp6108bqfgxvza25nnxfs7kj88xi2vdx-aterm-2.5-dev That is, the symbolic name of the output is suffixed to the store path (except for the ‘out’ output). Each path is passed to the builder through the corresponding environment variable, e.g., ${tools}. The main reason for multiple outputs is to allow parts of a package to be distributed and garbage-collected separately. For instance, most packages depend on Glibc for its libraries, but don't need its header files. If these are separated into different store paths, then a package that depends on the Glibc libraries only causes the libraries and not the headers to be downloaded. The main problem with multiple outputs is that if one output exists while the others have been garbage-collected (or never downloaded in the first place), and we want to rebuild the other outputs, then this isn't possible because we can't clobber a valid output (it might be in active use). This currently gives an error message like: error: derivation `/nix/store/1s9zw4c8qydpjyrayxamx2z7zzp5pcgh-aterm-2.5.drv' is blocked by its output paths There are two solutions: 1) Do the build in a chroot. Then we don't need to overwrite the existing path. 2) Use hash rewriting (see the ASE-2005 paper). Scary but it should work. This is not finished yet. There is not yet an easy way to refer to non-default outputs in Nix expressions. Also, mutually recursive outputs aren't detected yet and cause the garbage collector to crash.
2011-07-18 23:31:03 +00:00
case we don't actually write store derivations, so we can't
2005-01-18 11:15:50 +00:00
read them later. */
drvHashes[drvPath] = hashDerivationModulo(*state.store, drv);
2005-01-18 11:15:50 +00:00
* Support multiple outputs. A derivation can declare multiple outputs by setting the ‘outputs’ attribute. For example: stdenv.mkDerivation { name = "aterm-2.5"; src = ...; outputs = [ "out" "tools" "dev" ]; configureFlags = "--bindir=$(tools)/bin --includedir=$(dev)/include"; } This derivation creates three outputs, named like this: /nix/store/gcnqgllbh01p3d448q8q6pzn2nc2gpyl-aterm-2.5 /nix/store/gjf1sgirwfnrlr0bdxyrwzpw2r304j02-aterm-2.5-tools /nix/store/hp6108bqfgxvza25nnxfs7kj88xi2vdx-aterm-2.5-dev That is, the symbolic name of the output is suffixed to the store path (except for the ‘out’ output). Each path is passed to the builder through the corresponding environment variable, e.g., ${tools}. The main reason for multiple outputs is to allow parts of a package to be distributed and garbage-collected separately. For instance, most packages depend on Glibc for its libraries, but don't need its header files. If these are separated into different store paths, then a package that depends on the Glibc libraries only causes the libraries and not the headers to be downloaded. The main problem with multiple outputs is that if one output exists while the others have been garbage-collected (or never downloaded in the first place), and we want to rebuild the other outputs, then this isn't possible because we can't clobber a valid output (it might be in active use). This currently gives an error message like: error: derivation `/nix/store/1s9zw4c8qydpjyrayxamx2z7zzp5pcgh-aterm-2.5.drv' is blocked by its output paths There are two solutions: 1) Do the build in a chroot. Then we don't need to overwrite the existing path. 2) Use hash rewriting (see the ASE-2005 paper). Scary but it should work. This is not finished yet. There is not yet an easy way to refer to non-default outputs in Nix expressions. Also, mutually recursive outputs aren't detected yet and cause the garbage collector to crash.
2011-07-18 23:31:03 +00:00
state.mkAttrs(v, 1 + drv.outputs.size());
2016-05-04 14:04:52 +00:00
mkString(*state.allocAttr(v, state.sDrvPath), drvPath, {"=" + drvPath});
2015-07-17 17:24:28 +00:00
for (auto & i : drv.outputs) {
mkString(*state.allocAttr(v, state.symbols.create(i.first)),
2016-05-04 14:04:52 +00:00
i.second.path, {"!" + i.first + "!" + drvPath});
* Support multiple outputs. A derivation can declare multiple outputs by setting the ‘outputs’ attribute. For example: stdenv.mkDerivation { name = "aterm-2.5"; src = ...; outputs = [ "out" "tools" "dev" ]; configureFlags = "--bindir=$(tools)/bin --includedir=$(dev)/include"; } This derivation creates three outputs, named like this: /nix/store/gcnqgllbh01p3d448q8q6pzn2nc2gpyl-aterm-2.5 /nix/store/gjf1sgirwfnrlr0bdxyrwzpw2r304j02-aterm-2.5-tools /nix/store/hp6108bqfgxvza25nnxfs7kj88xi2vdx-aterm-2.5-dev That is, the symbolic name of the output is suffixed to the store path (except for the ‘out’ output). Each path is passed to the builder through the corresponding environment variable, e.g., ${tools}. The main reason for multiple outputs is to allow parts of a package to be distributed and garbage-collected separately. For instance, most packages depend on Glibc for its libraries, but don't need its header files. If these are separated into different store paths, then a package that depends on the Glibc libraries only causes the libraries and not the headers to be downloaded. The main problem with multiple outputs is that if one output exists while the others have been garbage-collected (or never downloaded in the first place), and we want to rebuild the other outputs, then this isn't possible because we can't clobber a valid output (it might be in active use). This currently gives an error message like: error: derivation `/nix/store/1s9zw4c8qydpjyrayxamx2z7zzp5pcgh-aterm-2.5.drv' is blocked by its output paths There are two solutions: 1) Do the build in a chroot. Then we don't need to overwrite the existing path. 2) Use hash rewriting (see the ASE-2005 paper). Scary but it should work. This is not finished yet. There is not yet an easy way to refer to non-default outputs in Nix expressions. Also, mutually recursive outputs aren't detected yet and cause the garbage collector to crash.
2011-07-18 23:31:03 +00:00
}
v.attrs->sort();
2010-03-31 15:38:03 +00:00
}
2003-11-02 16:31:35 +00:00
/* Return a placeholder string for the specified output that will be
substituted by the corresponding output path at build time. For
example, placeholder "out" returns the string
/1rz4g4znpzjwh1xymhjpm42vipw92pr73vdgl6xs1hycac8kf2n9. At build
time, any occurence of this string in an derivation attribute will
be replaced with the concrete path in the Nix store of the output
out. */
static void prim_placeholder(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
mkString(v, hashPlaceholder(state.forceStringNoCtx(*args[0], pos)));
}
2007-01-29 15:11:32 +00:00
/*************************************************************
* Paths
*************************************************************/
/* Convert the argument to a path. !!! obsolete? */
static void prim_toPath(EvalState & state, const Pos & pos, Value * * args, Value & v)
2003-11-02 16:31:35 +00:00
{
PathSet context;
Path path = state.coerceToPath(pos, *args[0], context);
mkString(v, canonPath(path), context);
2003-11-02 16:31:35 +00:00
}
/* Allow a valid store path to be used in an expression. This is
useful in some generated expressions such as in nix-push, which
generates a call to a function with an already existing store path
as argument. You don't want to use `toPath' here because it copies
the path to the Nix store, which yields a copy like
/nix/store/newhash-oldhash-oldname. In the past, `toPath' had
special case behaviour for store paths, but that created weird
corner cases. */
static void prim_storePath(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
PathSet context;
Path path = state.checkSourcePath(state.coerceToPath(pos, *args[0], context));
/* Resolve symlinks in path, unless path itself is a symlink
directly in the store. The latter condition is necessary so
e.g. nix-push does the right thing. */
if (!state.store->isStorePath(path)) path = canonPath(path, true);
if (!state.store->isInStore(path))
throw EvalError(format("path %1% is not in the Nix store, at %2%") % path % pos);
Path path2 = state.store->toStorePath(path);
if (!settings.readOnlyMode)
state.store->ensurePath(path2);
context.insert(path2);
2010-04-16 15:13:47 +00:00
mkString(v, path, context);
}
static void prim_pathExists(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
PathSet context;
Path path = state.coerceToPath(pos, *args[0], context);
2007-01-29 15:11:32 +00:00
if (!context.empty())
throw EvalError(format("string %1% cannot refer to other paths, at %2%") % path % pos);
try {
mkBool(v, pathExists(state.checkSourcePath(path)));
} catch (SysError & e) {
/* Don't give away info from errors while canonicalising
path in restricted mode. */
mkBool(v, false);
} catch (RestrictedPathError & e) {
mkBool(v, false);
}
}
2007-01-29 15:11:32 +00:00
/* Return the base name of the given string, i.e., everything
following the last slash. */
static void prim_baseNameOf(EvalState & state, const Pos & pos, Value * * args, Value & v)
2003-11-02 16:31:35 +00:00
{
PathSet context;
mkString(v, baseNameOf(state.coerceToString(pos, *args[0], context, false, false)), context);
2003-11-02 16:31:35 +00:00
}
2007-01-29 15:11:32 +00:00
/* Return the directory of the given path, i.e., everything before the
last slash. Return either a path or a string depending on the type
of the argument. */
static void prim_dirOf(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
PathSet context;
Path dir = dirOf(state.coerceToPath(pos, *args[0], context));
2010-03-30 22:39:48 +00:00
if (args[0]->type == tPath) mkPath(v, dir.c_str()); else mkString(v, dir, context);
}
/* Return the contents of a file as a string. */
static void prim_readFile(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
PathSet context;
Path path = state.coerceToPath(pos, *args[0], context);
try {
state.realiseContext(context);
} catch (InvalidPathError & e) {
throw EvalError(format("cannot read %1%, since path %2% is not valid, at %3%")
% path % e.path % pos);
}
2015-06-01 13:07:42 +00:00
string s = readFile(state.checkSourcePath(path));
if (s.find((char) 0) != string::npos)
throw Error(format("the contents of the file %1% cannot be represented as a Nix string") % path);
mkString(v, s.c_str());
}
/* Find a file in the Nix search path. Used to implement <x> paths,
which are desugared to findFile __nixPath "x". */
static void prim_findFile(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
state.forceList(*args[0], pos);
SearchPath searchPath;
for (unsigned int n = 0; n < args[0]->listSize(); ++n) {
Value & v2(*args[0]->listElems()[n]);
state.forceAttrs(v2, pos);
string prefix;
Bindings::iterator i = v2.attrs->find(state.symbols.create("prefix"));
if (i != v2.attrs->end())
prefix = state.forceStringNoCtx(*i->value, pos);
i = v2.attrs->find(state.symbols.create("path"));
if (i == v2.attrs->end())
throw EvalError(format("attribute path missing, at %1%") % pos);
PathSet context;
string path = state.coerceToString(pos, *i->value, context, false, false);
try {
state.realiseContext(context);
} catch (InvalidPathError & e) {
throw EvalError(format("cannot find %1%, since path %2% is not valid, at %3%")
% path % e.path % pos);
}
searchPath.emplace_back(prefix, path);
}
string path = state.forceStringNoCtx(*args[1], pos);
mkPath(v, state.checkSourcePath(state.findFile(searchPath, path, pos)).c_str());
}
2014-10-01 14:17:50 +00:00
/* Read a directory (without . or ..) */
static void prim_readDir(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
PathSet ctx;
Path path = state.coerceToPath(pos, *args[0], ctx);
try {
state.realiseContext(ctx);
2014-10-01 14:17:50 +00:00
} catch (InvalidPathError & e) {
throw EvalError(format("cannot read %1%, since path %2% is not valid, at %3%")
2014-10-01 14:17:50 +00:00
% path % e.path % pos);
}
DirEntries entries = readDirectory(state.checkSourcePath(path));
2014-10-01 14:17:50 +00:00
state.mkAttrs(v, entries.size());
2014-10-03 20:37:51 +00:00
for (auto & ent : entries) {
2014-10-01 14:17:50 +00:00
Value * ent_val = state.allocAttr(v, state.symbols.create(ent.name));
2014-10-03 20:37:51 +00:00
if (ent.type == DT_UNKNOWN)
ent.type = getFileType(path + "/" + ent.name);
2014-10-04 09:27:23 +00:00
mkStringNoCopy(*ent_val,
2014-10-03 20:37:51 +00:00
ent.type == DT_REG ? "regular" :
ent.type == DT_DIR ? "directory" :
ent.type == DT_LNK ? "symlink" :
"unknown");
2014-10-01 14:17:50 +00:00
}
v.attrs->sort();
}
2007-01-29 15:11:32 +00:00
/*************************************************************
* Creating files
*************************************************************/
/* Convert the argument (which can be any Nix expression) to an XML
representation returned in a string. Not all Nix expressions can
be sensibly or completely represented (e.g., functions). */
static void prim_toXML(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
std::ostringstream out;
PathSet context;
2010-05-07 14:46:47 +00:00
printValueAsXML(state, true, false, *args[0], out, context);
mkString(v, out.str(), context);
}
2013-11-18 23:03:11 +00:00
/* Convert the argument (which can be any Nix expression) to a JSON
string. Not all Nix expressions can be sensibly or completely
represented (e.g., functions). */
static void prim_toJSON(EvalState & state, const Pos & pos, Value * * args, Value & v)
2013-11-18 23:03:11 +00:00
{
std::ostringstream out;
PathSet context;
printValueAsJSON(state, true, *args[0], out, context);
mkString(v, out.str(), context);
}
/* Parse a JSON string to a value. */
static void prim_fromJSON(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
string s = state.forceStringNoCtx(*args[0], pos);
parseJSON(state, s, v);
}
/* Store a string in the Nix store as a source file that can be used
as an input by derivations. */
static void prim_toFile(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
PathSet context;
2014-04-04 19:14:11 +00:00
string name = state.forceStringNoCtx(*args[0], pos);
2014-11-25 09:23:36 +00:00
string contents = state.forceString(*args[1], context, pos);
PathSet refs;
2015-07-17 17:24:28 +00:00
for (auto path : context) {
2008-12-04 10:45:47 +00:00
if (path.at(0) == '=') path = string(path, 1);
if (isDerivation(path)) {
/* See prim_unsafeDiscardOutputDependency. */
if (path.at(0) != '~')
throw EvalError(format("in toFile: the file %1% cannot refer to derivation outputs, at %2%") % name % pos);
path = string(path, 1);
}
2008-12-04 10:45:47 +00:00
refs.insert(path);
}
2013-09-02 14:29:15 +00:00
Path storePath = settings.readOnlyMode
? state.store->computeStorePathForText(name, contents, refs)
: state.store->addTextToStore(name, contents, refs, state.repair);
/* Note: we don't need to add `context' to the context of the
result, since `storePath' itself has references to the paths
used in args[1]. */
2010-03-31 15:38:03 +00:00
2016-05-04 14:04:52 +00:00
mkString(v, storePath, {storePath});
}
2007-01-29 15:11:32 +00:00
struct FilterFromExpr : PathFilter
{
2007-01-29 15:11:32 +00:00
EvalState & state;
Value & filter;
2016-08-29 15:56:35 +00:00
Pos pos;
2013-09-02 14:29:15 +00:00
2016-08-29 15:56:35 +00:00
FilterFromExpr(EvalState & state, Value & filter, const Pos & pos)
: state(state), filter(filter), pos(pos)
2007-01-29 15:11:32 +00:00
{
}
2007-01-29 15:11:32 +00:00
bool operator () (const Path & path)
{
struct stat st;
if (lstat(path.c_str(), &st))
throw SysError(format("getting attributes of path %1%") % path);
/* Call the filter function. The first argument is the path,
the second is a string indicating the type of the file. */
Value arg1;
mkString(arg1, path);
Value fun2;
state.callFunction(filter, arg1, fun2, noPos);
Value arg2;
2013-09-02 14:29:15 +00:00
mkString(arg2,
S_ISREG(st.st_mode) ? "regular" :
S_ISDIR(st.st_mode) ? "directory" :
S_ISLNK(st.st_mode) ? "symlink" :
"unknown" /* not supported, will fail! */);
2013-09-02 14:29:15 +00:00
Value res;
state.callFunction(fun2, arg2, res, noPos);
2016-08-29 15:56:35 +00:00
return state.forceBool(res, pos);
2007-01-29 15:11:32 +00:00
}
};
static void prim_filterSource(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
2007-01-29 15:11:32 +00:00
PathSet context;
Path path = state.coerceToPath(pos, *args[1], context);
2007-01-29 15:11:32 +00:00
if (!context.empty())
throw EvalError(format("string %1% cannot refer to other paths, at %2%") % path % pos);
state.forceValue(*args[0]);
if (args[0]->type != tLambda)
throw TypeError(format("first argument in call to filterSource is not a function but %1%, at %2%") % showType(*args[0]) % pos);
2016-08-29 15:56:35 +00:00
FilterFromExpr filter(state, *args[0], pos);
path = state.checkSourcePath(path);
Path dstPath = settings.readOnlyMode
? state.store->computeStorePathForPath(path, true, htSHA256, filter).first
: state.store->addToStore(baseNameOf(path), path, true, htSHA256, filter, state.repair);
2016-05-04 14:04:52 +00:00
mkString(v, dstPath, {dstPath});
}
2007-01-29 15:11:32 +00:00
/*************************************************************
* Sets
2007-01-29 15:11:32 +00:00
*************************************************************/
* A primitive operation `dependencyClosure' to do automatic dependency determination (e.g., finding the header files dependencies of a C file) in Nix low-level builds automatically. For instance, in the function `compileC' in make/lib/default.nix, we find the header file dependencies of C file `main' as follows: localIncludes = dependencyClosure { scanner = file: import (findIncludes { inherit file; }); startSet = [main]; }; The function works by "growing" the set of dependencies, starting with the set `startSet', and calling the function `scanner' for each file to get its dependencies (which should yield a list of strings representing relative paths). For instance, when `scanner' is called on a file `foo.c' that includes the line #include "../bar/fnord.h" then `scanner' should yield ["../bar/fnord.h"]. This list of dependencies is absolutised relative to the including file and added to the set of dependencies. The process continues until no more dependencies are found (hence its a closure). `dependencyClosure' yields a list that contains in alternation a dependency, and its relative path to the directory of the start file, e.g., [ /bla/bla/foo.c "foo.c" /bla/bar/fnord.h "../bar/fnord.h" ] These relative paths are necessary for the builder that compiles foo.c to reconstruct the relative directory structure expected by foo.c. The advantage of `dependencyClosure' over the old approach (using the impure `__currentTime') is that it's completely pure, and more efficient because it only rescans for dependencies (i.e., by building the derivations yielded by `scanner') if sources have actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
/* Return the names of the attributes in a set as a sorted list of
strings. */
static void prim_attrNames(EvalState & state, const Pos & pos, Value * * args, Value & v)
* A primitive operation `dependencyClosure' to do automatic dependency determination (e.g., finding the header files dependencies of a C file) in Nix low-level builds automatically. For instance, in the function `compileC' in make/lib/default.nix, we find the header file dependencies of C file `main' as follows: localIncludes = dependencyClosure { scanner = file: import (findIncludes { inherit file; }); startSet = [main]; }; The function works by "growing" the set of dependencies, starting with the set `startSet', and calling the function `scanner' for each file to get its dependencies (which should yield a list of strings representing relative paths). For instance, when `scanner' is called on a file `foo.c' that includes the line #include "../bar/fnord.h" then `scanner' should yield ["../bar/fnord.h"]. This list of dependencies is absolutised relative to the including file and added to the set of dependencies. The process continues until no more dependencies are found (hence its a closure). `dependencyClosure' yields a list that contains in alternation a dependency, and its relative path to the directory of the start file, e.g., [ /bla/bla/foo.c "foo.c" /bla/bar/fnord.h "../bar/fnord.h" ] These relative paths are necessary for the builder that compiles foo.c to reconstruct the relative directory structure expected by foo.c. The advantage of `dependencyClosure' over the old approach (using the impure `__currentTime') is that it's completely pure, and more efficient because it only rescans for dependencies (i.e., by building the derivations yielded by `scanner') if sources have actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
{
2014-04-04 17:11:40 +00:00
state.forceAttrs(*args[0], pos);
* A primitive operation `dependencyClosure' to do automatic dependency determination (e.g., finding the header files dependencies of a C file) in Nix low-level builds automatically. For instance, in the function `compileC' in make/lib/default.nix, we find the header file dependencies of C file `main' as follows: localIncludes = dependencyClosure { scanner = file: import (findIncludes { inherit file; }); startSet = [main]; }; The function works by "growing" the set of dependencies, starting with the set `startSet', and calling the function `scanner' for each file to get its dependencies (which should yield a list of strings representing relative paths). For instance, when `scanner' is called on a file `foo.c' that includes the line #include "../bar/fnord.h" then `scanner' should yield ["../bar/fnord.h"]. This list of dependencies is absolutised relative to the including file and added to the set of dependencies. The process continues until no more dependencies are found (hence its a closure). `dependencyClosure' yields a list that contains in alternation a dependency, and its relative path to the directory of the start file, e.g., [ /bla/bla/foo.c "foo.c" /bla/bar/fnord.h "../bar/fnord.h" ] These relative paths are necessary for the builder that compiles foo.c to reconstruct the relative directory structure expected by foo.c. The advantage of `dependencyClosure' over the old approach (using the impure `__currentTime') is that it's completely pure, and more efficient because it only rescans for dependencies (i.e., by building the derivations yielded by `scanner') if sources have actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
2010-03-30 22:39:48 +00:00
state.mkList(v, args[0]->attrs->size());
* A primitive operation `dependencyClosure' to do automatic dependency determination (e.g., finding the header files dependencies of a C file) in Nix low-level builds automatically. For instance, in the function `compileC' in make/lib/default.nix, we find the header file dependencies of C file `main' as follows: localIncludes = dependencyClosure { scanner = file: import (findIncludes { inherit file; }); startSet = [main]; }; The function works by "growing" the set of dependencies, starting with the set `startSet', and calling the function `scanner' for each file to get its dependencies (which should yield a list of strings representing relative paths). For instance, when `scanner' is called on a file `foo.c' that includes the line #include "../bar/fnord.h" then `scanner' should yield ["../bar/fnord.h"]. This list of dependencies is absolutised relative to the including file and added to the set of dependencies. The process continues until no more dependencies are found (hence its a closure). `dependencyClosure' yields a list that contains in alternation a dependency, and its relative path to the directory of the start file, e.g., [ /bla/bla/foo.c "foo.c" /bla/bar/fnord.h "../bar/fnord.h" ] These relative paths are necessary for the builder that compiles foo.c to reconstruct the relative directory structure expected by foo.c. The advantage of `dependencyClosure' over the old approach (using the impure `__currentTime') is that it's completely pure, and more efficient because it only rescans for dependencies (i.e., by building the derivations yielded by `scanner') if sources have actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
size_t n = 0;
for (auto & i : args[0]->attrs->lexicographicOrder())
mkString(*(v.listElems()[n++] = state.allocValue()), i->name);
2014-10-04 14:41:24 +00:00
}
/* Return the values of the attributes in a set as a list, in the same
order as attrNames. */
static void prim_attrValues(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
state.forceAttrs(*args[0], pos);
state.mkList(v, args[0]->attrs->size());
unsigned int n = 0;
for (auto & i : *args[0]->attrs)
v.listElems()[n++] = (Value *) &i;
2014-10-04 14:41:24 +00:00
std::sort(v.listElems(), v.listElems() + n,
2014-10-04 14:41:24 +00:00
[](Value * v1, Value * v2) { return (string) ((Attr *) v1)->name < (string) ((Attr *) v2)->name; });
for (unsigned int i = 0; i < n; ++i)
v.listElems()[i] = ((Attr *) v.listElems()[i])->value;
* A primitive operation `dependencyClosure' to do automatic dependency determination (e.g., finding the header files dependencies of a C file) in Nix low-level builds automatically. For instance, in the function `compileC' in make/lib/default.nix, we find the header file dependencies of C file `main' as follows: localIncludes = dependencyClosure { scanner = file: import (findIncludes { inherit file; }); startSet = [main]; }; The function works by "growing" the set of dependencies, starting with the set `startSet', and calling the function `scanner' for each file to get its dependencies (which should yield a list of strings representing relative paths). For instance, when `scanner' is called on a file `foo.c' that includes the line #include "../bar/fnord.h" then `scanner' should yield ["../bar/fnord.h"]. This list of dependencies is absolutised relative to the including file and added to the set of dependencies. The process continues until no more dependencies are found (hence its a closure). `dependencyClosure' yields a list that contains in alternation a dependency, and its relative path to the directory of the start file, e.g., [ /bla/bla/foo.c "foo.c" /bla/bar/fnord.h "../bar/fnord.h" ] These relative paths are necessary for the builder that compiles foo.c to reconstruct the relative directory structure expected by foo.c. The advantage of `dependencyClosure' over the old approach (using the impure `__currentTime') is that it's completely pure, and more efficient because it only rescans for dependencies (i.e., by building the derivations yielded by `scanner') if sources have actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
}
2007-01-29 15:11:32 +00:00
/* Dynamic version of the `.' operator. */
void prim_getAttr(EvalState & state, const Pos & pos, Value * * args, Value & v)
* A primitive operation `dependencyClosure' to do automatic dependency determination (e.g., finding the header files dependencies of a C file) in Nix low-level builds automatically. For instance, in the function `compileC' in make/lib/default.nix, we find the header file dependencies of C file `main' as follows: localIncludes = dependencyClosure { scanner = file: import (findIncludes { inherit file; }); startSet = [main]; }; The function works by "growing" the set of dependencies, starting with the set `startSet', and calling the function `scanner' for each file to get its dependencies (which should yield a list of strings representing relative paths). For instance, when `scanner' is called on a file `foo.c' that includes the line #include "../bar/fnord.h" then `scanner' should yield ["../bar/fnord.h"]. This list of dependencies is absolutised relative to the including file and added to the set of dependencies. The process continues until no more dependencies are found (hence its a closure). `dependencyClosure' yields a list that contains in alternation a dependency, and its relative path to the directory of the start file, e.g., [ /bla/bla/foo.c "foo.c" /bla/bar/fnord.h "../bar/fnord.h" ] These relative paths are necessary for the builder that compiles foo.c to reconstruct the relative directory structure expected by foo.c. The advantage of `dependencyClosure' over the old approach (using the impure `__currentTime') is that it's completely pure, and more efficient because it only rescans for dependencies (i.e., by building the derivations yielded by `scanner') if sources have actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
{
2014-04-04 19:14:11 +00:00
string attr = state.forceStringNoCtx(*args[0], pos);
2014-04-04 17:11:40 +00:00
state.forceAttrs(*args[1], pos);
// !!! Should we create a symbol here or just do a lookup?
Bindings::iterator i = args[1]->attrs->find(state.symbols.create(attr));
2010-03-30 18:05:54 +00:00
if (i == args[1]->attrs->end())
throw EvalError(format("attribute %1% missing, at %2%") % attr % pos);
// !!! add to stack trace?
if (state.countCalls && i->pos) state.attrSelects[*i->pos]++;
state.forceValue(*i->value);
v = *i->value;
2007-01-29 15:11:32 +00:00
}
* A primitive operation `dependencyClosure' to do automatic dependency determination (e.g., finding the header files dependencies of a C file) in Nix low-level builds automatically. For instance, in the function `compileC' in make/lib/default.nix, we find the header file dependencies of C file `main' as follows: localIncludes = dependencyClosure { scanner = file: import (findIncludes { inherit file; }); startSet = [main]; }; The function works by "growing" the set of dependencies, starting with the set `startSet', and calling the function `scanner' for each file to get its dependencies (which should yield a list of strings representing relative paths). For instance, when `scanner' is called on a file `foo.c' that includes the line #include "../bar/fnord.h" then `scanner' should yield ["../bar/fnord.h"]. This list of dependencies is absolutised relative to the including file and added to the set of dependencies. The process continues until no more dependencies are found (hence its a closure). `dependencyClosure' yields a list that contains in alternation a dependency, and its relative path to the directory of the start file, e.g., [ /bla/bla/foo.c "foo.c" /bla/bar/fnord.h "../bar/fnord.h" ] These relative paths are necessary for the builder that compiles foo.c to reconstruct the relative directory structure expected by foo.c. The advantage of `dependencyClosure' over the old approach (using the impure `__currentTime') is that it's completely pure, and more efficient because it only rescans for dependencies (i.e., by building the derivations yielded by `scanner') if sources have actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
/* Return position information of the specified attribute. */
void prim_unsafeGetAttrPos(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
2014-04-04 19:14:11 +00:00
string attr = state.forceStringNoCtx(*args[0], pos);
2014-04-04 17:11:40 +00:00
state.forceAttrs(*args[1], pos);
Bindings::iterator i = args[1]->attrs->find(state.symbols.create(attr));
if (i == args[1]->attrs->end())
mkNull(v);
else
state.mkPos(v, i->pos);
}
2007-01-29 15:11:32 +00:00
/* Dynamic version of the `?' operator. */
static void prim_hasAttr(EvalState & state, const Pos & pos, Value * * args, Value & v)
2007-01-29 15:11:32 +00:00
{
2014-04-04 19:14:11 +00:00
string attr = state.forceStringNoCtx(*args[0], pos);
2014-04-04 17:11:40 +00:00
state.forceAttrs(*args[1], pos);
mkBool(v, args[1]->attrs->find(state.symbols.create(attr)) != args[1]->attrs->end());
2007-01-29 15:11:32 +00:00
}
* A primitive operation `dependencyClosure' to do automatic dependency determination (e.g., finding the header files dependencies of a C file) in Nix low-level builds automatically. For instance, in the function `compileC' in make/lib/default.nix, we find the header file dependencies of C file `main' as follows: localIncludes = dependencyClosure { scanner = file: import (findIncludes { inherit file; }); startSet = [main]; }; The function works by "growing" the set of dependencies, starting with the set `startSet', and calling the function `scanner' for each file to get its dependencies (which should yield a list of strings representing relative paths). For instance, when `scanner' is called on a file `foo.c' that includes the line #include "../bar/fnord.h" then `scanner' should yield ["../bar/fnord.h"]. This list of dependencies is absolutised relative to the including file and added to the set of dependencies. The process continues until no more dependencies are found (hence its a closure). `dependencyClosure' yields a list that contains in alternation a dependency, and its relative path to the directory of the start file, e.g., [ /bla/bla/foo.c "foo.c" /bla/bar/fnord.h "../bar/fnord.h" ] These relative paths are necessary for the builder that compiles foo.c to reconstruct the relative directory structure expected by foo.c. The advantage of `dependencyClosure' over the old approach (using the impure `__currentTime') is that it's completely pure, and more efficient because it only rescans for dependencies (i.e., by building the derivations yielded by `scanner') if sources have actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
/* Determine whether the argument is a set. */
static void prim_isAttrs(EvalState & state, const Pos & pos, Value * * args, Value & v)
2010-03-30 22:39:48 +00:00
{
state.forceValue(*args[0]);
mkBool(v, args[0]->type == tAttrs);
}
static void prim_removeAttrs(EvalState & state, const Pos & pos, Value * * args, Value & v)
2010-03-30 22:39:48 +00:00
{
2014-04-04 17:11:40 +00:00
state.forceAttrs(*args[0], pos);
2014-04-04 17:05:36 +00:00
state.forceList(*args[1], pos);
2010-03-30 22:39:48 +00:00
/* Get the attribute names to be removed. */
std::set<Symbol> names;
for (unsigned int i = 0; i < args[1]->listSize(); ++i) {
state.forceStringNoCtx(*args[1]->listElems()[i], pos);
names.insert(state.symbols.create(args[1]->listElems()[i]->string.s));
}
/* Copy all attributes not in that set. Note that we don't need
to sort v.attrs because it's a subset of an already sorted
vector. */
state.mkAttrs(v, args[0]->attrs->size());
2015-07-17 17:24:28 +00:00
for (auto & i : *args[0]->attrs) {
if (names.find(i.name) == names.end())
v.attrs->push_back(i);
2010-03-30 22:39:48 +00:00
}
}
/* Builds a set from a list specifying (name, value) pairs. To be
precise, a list [{name = "name1"; value = value1;} ... {name =
"nameN"; value = valueN;}] is transformed to {name1 = value1;
2013-10-28 06:34:44 +00:00
... nameN = valueN;}. In case of duplicate occurences of the same
name, the first takes precedence. */
static void prim_listToAttrs(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
2014-04-04 17:05:36 +00:00
state.forceList(*args[0], pos);
2010-03-31 15:38:03 +00:00
state.mkAttrs(v, args[0]->listSize());
2010-03-31 15:38:03 +00:00
std::set<Symbol> seen;
for (unsigned int i = 0; i < args[0]->listSize(); ++i) {
Value & v2(*args[0]->listElems()[i]);
2014-04-04 17:11:40 +00:00
state.forceAttrs(v2, pos);
2013-09-02 14:29:15 +00:00
Bindings::iterator j = v2.attrs->find(state.sName);
2010-03-31 15:38:03 +00:00
if (j == v2.attrs->end())
throw TypeError(format("name attribute missing in a call to listToAttrs, at %1%") % pos);
2014-04-04 19:14:11 +00:00
string name = state.forceStringNoCtx(*j->value, pos);
2013-09-02 14:29:15 +00:00
Symbol sym = state.symbols.create(name);
if (seen.find(sym) == seen.end()) {
2013-10-28 06:34:44 +00:00
Bindings::iterator j2 = v2.attrs->find(state.symbols.create(state.sValue));
if (j2 == v2.attrs->end())
throw TypeError(format("value attribute missing in a call to listToAttrs, at %1%") % pos);
2013-10-28 06:34:44 +00:00
v.attrs->push_back(Attr(sym, j2->value, j2->pos));
seen.insert(sym);
}
}
v.attrs->sort();
}
2007-10-31 18:01:56 +00:00
/* Return the right-biased intersection of two sets as1 and as2,
i.e. a set that contains every attribute from as2 that is also a
member of as1. */
static void prim_intersectAttrs(EvalState & state, const Pos & pos, Value * * args, Value & v)
* Two primops: builtins.intersectAttrs and builtins.functionArgs. intersectAttrs returns the (right-biased) intersection between two attribute sets, e.g. every attribute from the second set that also exists in the first. functionArgs returns the set of attributes expected by a function. The main goal of these is to allow the elimination of most of all-packages.nix. Most package instantiations in all-packages.nix have this form: foo = import ./foo.nix { inherit a b c; }; With intersectAttrs and functionArgs, this can be written as: foo = callPackage (import ./foo.nix) { }; where callPackage = f: args: f ((builtins.intersectAttrs (builtins.functionArgs f) pkgs) // args); I.e., foo.nix is called with all attributes from "pkgs" that it actually needs (e.g., pkgs.a, pkgs.b and pkgs.c). (callPackage can do any other generic package-level stuff we might want, such as applying makeOverridable.) Of course, the automatically supplied arguments can be overriden if needed, e.g. foo = callPackage (import ./foo.nix) { c = c_version_2; }; but for the vast majority of packages, this won't be needed. The advantages are to reduce the amount of typing needed to add a dependency (from three sites to two), and to reduce the number of trivial commits to all-packages.nix. For the former, there have been two previous attempts: - Use "args: with args;" in the package's function definition. This however obscures the actual expected arguments of a function, which is very bad. - Use "{ arg1, arg2, ... }:" in the package's function definition (i.e. use the ellipis "..." to allow arbitrary additional arguments), and then call the function with all of "pkgs" as an argument. But this inhibits error detection if you call it with an misspelled (or obsolete) argument.
2009-09-15 13:01:46 +00:00
{
2014-04-04 17:11:40 +00:00
state.forceAttrs(*args[0], pos);
state.forceAttrs(*args[1], pos);
2013-09-02 14:29:15 +00:00
state.mkAttrs(v, std::min(args[0]->attrs->size(), args[1]->attrs->size()));
2015-07-17 17:24:28 +00:00
for (auto & i : *args[0]->attrs) {
Bindings::iterator j = args[1]->attrs->find(i.name);
if (j != args[1]->attrs->end())
v.attrs->push_back(*j);
* Two primops: builtins.intersectAttrs and builtins.functionArgs. intersectAttrs returns the (right-biased) intersection between two attribute sets, e.g. every attribute from the second set that also exists in the first. functionArgs returns the set of attributes expected by a function. The main goal of these is to allow the elimination of most of all-packages.nix. Most package instantiations in all-packages.nix have this form: foo = import ./foo.nix { inherit a b c; }; With intersectAttrs and functionArgs, this can be written as: foo = callPackage (import ./foo.nix) { }; where callPackage = f: args: f ((builtins.intersectAttrs (builtins.functionArgs f) pkgs) // args); I.e., foo.nix is called with all attributes from "pkgs" that it actually needs (e.g., pkgs.a, pkgs.b and pkgs.c). (callPackage can do any other generic package-level stuff we might want, such as applying makeOverridable.) Of course, the automatically supplied arguments can be overriden if needed, e.g. foo = callPackage (import ./foo.nix) { c = c_version_2; }; but for the vast majority of packages, this won't be needed. The advantages are to reduce the amount of typing needed to add a dependency (from three sites to two), and to reduce the number of trivial commits to all-packages.nix. For the former, there have been two previous attempts: - Use "args: with args;" in the package's function definition. This however obscures the actual expected arguments of a function, which is very bad. - Use "{ arg1, arg2, ... }:" in the package's function definition (i.e. use the ellipis "..." to allow arbitrary additional arguments), and then call the function with all of "pkgs" as an argument. But this inhibits error detection if you call it with an misspelled (or obsolete) argument.
2009-09-15 13:01:46 +00:00
}
}
2014-10-04 16:15:03 +00:00
/* Collect each attribute named `attr' from a list of attribute sets.
Sets that don't contain the named attribute are ignored.
Example:
catAttrs "a" [{a = 1;} {b = 0;} {a = 2;}]
=> [1 2]
*/
static void prim_catAttrs(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
Symbol attrName = state.symbols.create(state.forceStringNoCtx(*args[0], pos));
state.forceList(*args[1], pos);
Value * res[args[1]->listSize()];
2014-10-04 16:15:03 +00:00
unsigned int found = 0;
for (unsigned int n = 0; n < args[1]->listSize(); ++n) {
Value & v2(*args[1]->listElems()[n]);
2014-10-04 16:15:03 +00:00
state.forceAttrs(v2, pos);
Bindings::iterator i = v2.attrs->find(attrName);
if (i != v2.attrs->end())
res[found++] = i->value;
}
state.mkList(v, found);
for (unsigned int n = 0; n < found; ++n)
v.listElems()[n] = res[n];
2014-10-04 16:15:03 +00:00
}
* Two primops: builtins.intersectAttrs and builtins.functionArgs. intersectAttrs returns the (right-biased) intersection between two attribute sets, e.g. every attribute from the second set that also exists in the first. functionArgs returns the set of attributes expected by a function. The main goal of these is to allow the elimination of most of all-packages.nix. Most package instantiations in all-packages.nix have this form: foo = import ./foo.nix { inherit a b c; }; With intersectAttrs and functionArgs, this can be written as: foo = callPackage (import ./foo.nix) { }; where callPackage = f: args: f ((builtins.intersectAttrs (builtins.functionArgs f) pkgs) // args); I.e., foo.nix is called with all attributes from "pkgs" that it actually needs (e.g., pkgs.a, pkgs.b and pkgs.c). (callPackage can do any other generic package-level stuff we might want, such as applying makeOverridable.) Of course, the automatically supplied arguments can be overriden if needed, e.g. foo = callPackage (import ./foo.nix) { c = c_version_2; }; but for the vast majority of packages, this won't be needed. The advantages are to reduce the amount of typing needed to add a dependency (from three sites to two), and to reduce the number of trivial commits to all-packages.nix. For the former, there have been two previous attempts: - Use "args: with args;" in the package's function definition. This however obscures the actual expected arguments of a function, which is very bad. - Use "{ arg1, arg2, ... }:" in the package's function definition (i.e. use the ellipis "..." to allow arbitrary additional arguments), and then call the function with all of "pkgs" as an argument. But this inhibits error detection if you call it with an misspelled (or obsolete) argument.
2009-09-15 13:01:46 +00:00
/* Return a set containing the names of the formal arguments expected
by the function `f'. The value of each attribute is a Boolean
denoting whether the corresponding argument has a default value. For instance,
* Two primops: builtins.intersectAttrs and builtins.functionArgs. intersectAttrs returns the (right-biased) intersection between two attribute sets, e.g. every attribute from the second set that also exists in the first. functionArgs returns the set of attributes expected by a function. The main goal of these is to allow the elimination of most of all-packages.nix. Most package instantiations in all-packages.nix have this form: foo = import ./foo.nix { inherit a b c; }; With intersectAttrs and functionArgs, this can be written as: foo = callPackage (import ./foo.nix) { }; where callPackage = f: args: f ((builtins.intersectAttrs (builtins.functionArgs f) pkgs) // args); I.e., foo.nix is called with all attributes from "pkgs" that it actually needs (e.g., pkgs.a, pkgs.b and pkgs.c). (callPackage can do any other generic package-level stuff we might want, such as applying makeOverridable.) Of course, the automatically supplied arguments can be overriden if needed, e.g. foo = callPackage (import ./foo.nix) { c = c_version_2; }; but for the vast majority of packages, this won't be needed. The advantages are to reduce the amount of typing needed to add a dependency (from three sites to two), and to reduce the number of trivial commits to all-packages.nix. For the former, there have been two previous attempts: - Use "args: with args;" in the package's function definition. This however obscures the actual expected arguments of a function, which is very bad. - Use "{ arg1, arg2, ... }:" in the package's function definition (i.e. use the ellipis "..." to allow arbitrary additional arguments), and then call the function with all of "pkgs" as an argument. But this inhibits error detection if you call it with an misspelled (or obsolete) argument.
2009-09-15 13:01:46 +00:00
functionArgs ({ x, y ? 123}: ...)
=> { x = false; y = true; }
"Formal argument" here refers to the attributes pattern-matched by
the function. Plain lambdas are not included, e.g.
functionArgs (x: ...)
=> { }
*/
static void prim_functionArgs(EvalState & state, const Pos & pos, Value * * args, Value & v)
* Two primops: builtins.intersectAttrs and builtins.functionArgs. intersectAttrs returns the (right-biased) intersection between two attribute sets, e.g. every attribute from the second set that also exists in the first. functionArgs returns the set of attributes expected by a function. The main goal of these is to allow the elimination of most of all-packages.nix. Most package instantiations in all-packages.nix have this form: foo = import ./foo.nix { inherit a b c; }; With intersectAttrs and functionArgs, this can be written as: foo = callPackage (import ./foo.nix) { }; where callPackage = f: args: f ((builtins.intersectAttrs (builtins.functionArgs f) pkgs) // args); I.e., foo.nix is called with all attributes from "pkgs" that it actually needs (e.g., pkgs.a, pkgs.b and pkgs.c). (callPackage can do any other generic package-level stuff we might want, such as applying makeOverridable.) Of course, the automatically supplied arguments can be overriden if needed, e.g. foo = callPackage (import ./foo.nix) { c = c_version_2; }; but for the vast majority of packages, this won't be needed. The advantages are to reduce the amount of typing needed to add a dependency (from three sites to two), and to reduce the number of trivial commits to all-packages.nix. For the former, there have been two previous attempts: - Use "args: with args;" in the package's function definition. This however obscures the actual expected arguments of a function, which is very bad. - Use "{ arg1, arg2, ... }:" in the package's function definition (i.e. use the ellipis "..." to allow arbitrary additional arguments), and then call the function with all of "pkgs" as an argument. But this inhibits error detection if you call it with an misspelled (or obsolete) argument.
2009-09-15 13:01:46 +00:00
{
2010-04-16 15:13:47 +00:00
state.forceValue(*args[0]);
if (args[0]->type != tLambda)
throw TypeError(format("functionArgs requires a function, at %1%") % pos);
* Two primops: builtins.intersectAttrs and builtins.functionArgs. intersectAttrs returns the (right-biased) intersection between two attribute sets, e.g. every attribute from the second set that also exists in the first. functionArgs returns the set of attributes expected by a function. The main goal of these is to allow the elimination of most of all-packages.nix. Most package instantiations in all-packages.nix have this form: foo = import ./foo.nix { inherit a b c; }; With intersectAttrs and functionArgs, this can be written as: foo = callPackage (import ./foo.nix) { }; where callPackage = f: args: f ((builtins.intersectAttrs (builtins.functionArgs f) pkgs) // args); I.e., foo.nix is called with all attributes from "pkgs" that it actually needs (e.g., pkgs.a, pkgs.b and pkgs.c). (callPackage can do any other generic package-level stuff we might want, such as applying makeOverridable.) Of course, the automatically supplied arguments can be overriden if needed, e.g. foo = callPackage (import ./foo.nix) { c = c_version_2; }; but for the vast majority of packages, this won't be needed. The advantages are to reduce the amount of typing needed to add a dependency (from three sites to two), and to reduce the number of trivial commits to all-packages.nix. For the former, there have been two previous attempts: - Use "args: with args;" in the package's function definition. This however obscures the actual expected arguments of a function, which is very bad. - Use "{ arg1, arg2, ... }:" in the package's function definition (i.e. use the ellipis "..." to allow arbitrary additional arguments), and then call the function with all of "pkgs" as an argument. But this inhibits error detection if you call it with an misspelled (or obsolete) argument.
2009-09-15 13:01:46 +00:00
if (!args[0]->lambda.fun->matchAttrs) {
state.mkAttrs(v, 0);
return;
}
2010-04-16 15:13:47 +00:00
state.mkAttrs(v, args[0]->lambda.fun->formals->formals.size());
2015-07-17 17:24:28 +00:00
for (auto & i : args[0]->lambda.fun->formals->formals)
// !!! should optimise booleans (allocate only once)
2015-07-17 17:24:28 +00:00
mkBool(*state.allocAttr(v, i.name), i.def);
v.attrs->sort();
* Two primops: builtins.intersectAttrs and builtins.functionArgs. intersectAttrs returns the (right-biased) intersection between two attribute sets, e.g. every attribute from the second set that also exists in the first. functionArgs returns the set of attributes expected by a function. The main goal of these is to allow the elimination of most of all-packages.nix. Most package instantiations in all-packages.nix have this form: foo = import ./foo.nix { inherit a b c; }; With intersectAttrs and functionArgs, this can be written as: foo = callPackage (import ./foo.nix) { }; where callPackage = f: args: f ((builtins.intersectAttrs (builtins.functionArgs f) pkgs) // args); I.e., foo.nix is called with all attributes from "pkgs" that it actually needs (e.g., pkgs.a, pkgs.b and pkgs.c). (callPackage can do any other generic package-level stuff we might want, such as applying makeOverridable.) Of course, the automatically supplied arguments can be overriden if needed, e.g. foo = callPackage (import ./foo.nix) { c = c_version_2; }; but for the vast majority of packages, this won't be needed. The advantages are to reduce the amount of typing needed to add a dependency (from three sites to two), and to reduce the number of trivial commits to all-packages.nix. For the former, there have been two previous attempts: - Use "args: with args;" in the package's function definition. This however obscures the actual expected arguments of a function, which is very bad. - Use "{ arg1, arg2, ... }:" in the package's function definition (i.e. use the ellipis "..." to allow arbitrary additional arguments), and then call the function with all of "pkgs" as an argument. But this inhibits error detection if you call it with an misspelled (or obsolete) argument.
2009-09-15 13:01:46 +00:00
}
2007-01-29 15:11:32 +00:00
/*************************************************************
* Lists
*************************************************************/
* A primitive operation `dependencyClosure' to do automatic dependency determination (e.g., finding the header files dependencies of a C file) in Nix low-level builds automatically. For instance, in the function `compileC' in make/lib/default.nix, we find the header file dependencies of C file `main' as follows: localIncludes = dependencyClosure { scanner = file: import (findIncludes { inherit file; }); startSet = [main]; }; The function works by "growing" the set of dependencies, starting with the set `startSet', and calling the function `scanner' for each file to get its dependencies (which should yield a list of strings representing relative paths). For instance, when `scanner' is called on a file `foo.c' that includes the line #include "../bar/fnord.h" then `scanner' should yield ["../bar/fnord.h"]. This list of dependencies is absolutised relative to the including file and added to the set of dependencies. The process continues until no more dependencies are found (hence its a closure). `dependencyClosure' yields a list that contains in alternation a dependency, and its relative path to the directory of the start file, e.g., [ /bla/bla/foo.c "foo.c" /bla/bar/fnord.h "../bar/fnord.h" ] These relative paths are necessary for the builder that compiles foo.c to reconstruct the relative directory structure expected by foo.c. The advantage of `dependencyClosure' over the old approach (using the impure `__currentTime') is that it's completely pure, and more efficient because it only rescans for dependencies (i.e., by building the derivations yielded by `scanner') if sources have actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
2007-01-29 15:11:32 +00:00
/* Determine whether the argument is a list. */
static void prim_isList(EvalState & state, const Pos & pos, Value * * args, Value & v)
2006-08-23 15:46:00 +00:00
{
2010-03-30 22:39:48 +00:00
state.forceValue(*args[0]);
mkBool(v, args[0]->isList());
2006-08-23 15:46:00 +00:00
}
static void elemAt(EvalState & state, const Pos & pos, Value & list, int n, Value & v)
{
2014-04-04 17:05:36 +00:00
state.forceList(list, pos);
if (n < 0 || (unsigned int) n >= list.listSize())
throw Error(format("list index %1% is out of bounds, at %2%") % n % pos);
state.forceValue(*list.listElems()[n]);
v = *list.listElems()[n];
}
/* Return the n-1'th element of a list. */
static void prim_elemAt(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
2014-04-04 16:58:15 +00:00
elemAt(state, pos, *args[0], state.forceInt(*args[1], pos), v);
}
/* Return the first element of a list. */
static void prim_head(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
elemAt(state, pos, *args[0], 0, v);
}
2015-03-06 15:39:48 +00:00
/* Return a list consisting of everything but the first element of
a list. Warning: this function takes O(n) time, so you probably
don't want to use it! */
static void prim_tail(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
2014-04-04 17:05:36 +00:00
state.forceList(*args[0], pos);
if (args[0]->listSize() == 0)
throw Error(format("tail called on an empty list, at %1%") % pos);
state.mkList(v, args[0]->listSize() - 1);
for (unsigned int n = 0; n < v.listSize(); ++n)
v.listElems()[n] = args[0]->listElems()[n + 1];
}
/* Apply a function to every element of a list. */
static void prim_map(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
2014-04-04 17:05:36 +00:00
state.forceFunction(*args[0], pos);
state.forceList(*args[1], pos);
state.mkList(v, args[1]->listSize());
for (unsigned int n = 0; n < v.listSize(); ++n)
mkApp(*(v.listElems()[n] = state.allocValue()),
*args[0], *args[1]->listElems()[n]);
}
/* Filter a list using a predicate; that is, return a list containing
every element from the list for which the predicate function
returns true. */
static void prim_filter(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
2014-04-04 17:05:36 +00:00
state.forceFunction(*args[0], pos);
state.forceList(*args[1], pos);
// FIXME: putting this on the stack is risky.
Value * vs[args[1]->listSize()];
unsigned int k = 0;
2012-12-04 16:22:20 +00:00
bool same = true;
for (unsigned int n = 0; n < args[1]->listSize(); ++n) {
Value res;
state.callFunction(*args[0], *args[1]->listElems()[n], res, noPos);
2016-08-29 15:56:35 +00:00
if (state.forceBool(res, pos))
vs[k++] = args[1]->listElems()[n];
2012-12-04 16:22:20 +00:00
else
same = false;
}
2012-12-04 16:22:20 +00:00
if (same)
v = *args[1];
else {
state.mkList(v, k);
for (unsigned int n = 0; n < k; ++n) v.listElems()[n] = vs[n];
2012-12-04 16:22:20 +00:00
}
}
/* Return true if a list contains a given element. */
static void prim_elem(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
bool res = false;
2014-04-04 17:05:36 +00:00
state.forceList(*args[1], pos);
for (unsigned int n = 0; n < args[1]->listSize(); ++n)
if (state.eqValues(*args[0], *args[1]->listElems()[n])) {
res = true;
break;
}
mkBool(v, res);
}
/* Concatenate a list of lists. */
static void prim_concatLists(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
2014-04-04 17:05:36 +00:00
state.forceList(*args[0], pos);
state.concatLists(v, args[0]->listSize(), args[0]->listElems(), pos);
}
/* Return the length of a list. This is an O(1) time operation. */
static void prim_length(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
2014-04-04 17:05:36 +00:00
state.forceList(*args[0], pos);
mkInt(v, args[0]->listSize());
}
2015-07-23 15:03:02 +00:00
/* Reduce a list by applying a binary operator, from left to
right. The operator is applied strictly. */
static void prim_foldlStrict(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
state.forceFunction(*args[0], pos);
state.forceList(*args[2], pos);
Value * vCur = args[1];
if (args[2]->listSize())
for (unsigned int n = 0; n < args[2]->listSize(); ++n) {
2015-07-23 15:03:02 +00:00
Value vTmp;
state.callFunction(*args[0], *vCur, vTmp, pos);
vCur = n == args[2]->listSize() - 1 ? &v : state.allocValue();
state.callFunction(vTmp, *args[2]->listElems()[n], *vCur, pos);
2015-07-23 15:03:02 +00:00
}
else
v = *vCur;
state.forceValue(v);
}
static void anyOrAll(bool any, EvalState & state, const Pos & pos, Value * * args, Value & v)
{
state.forceFunction(*args[0], pos);
state.forceList(*args[1], pos);
Value vTmp;
for (unsigned int n = 0; n < args[1]->listSize(); ++n) {
state.callFunction(*args[0], *args[1]->listElems()[n], vTmp, pos);
2016-08-29 15:56:35 +00:00
bool res = state.forceBool(vTmp, pos);
if (res == any) {
mkBool(v, any);
return;
}
}
mkBool(v, !any);
}
static void prim_any(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
anyOrAll(true, state, pos, args, v);
}
static void prim_all(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
anyOrAll(false, state, pos, args, v);
}
static void prim_genList(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
state.forceFunction(*args[0], pos);
auto len = state.forceInt(*args[1], pos);
if (len < 0)
throw EvalError(format("cannot create list of size %1%, at %2%") % len % pos);
state.mkList(v, len);
2016-01-07 13:37:39 +00:00
for (unsigned int n = 0; n < (unsigned int) len; ++n) {
Value * arg = state.allocValue();
mkInt(*arg, n);
mkApp(*(v.listElems()[n] = state.allocValue()), *args[0], *arg);
}
}
2015-07-28 16:39:00 +00:00
static void prim_lessThan(EvalState & state, const Pos & pos, Value * * args, Value & v);
static void prim_sort(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
state.forceFunction(*args[0], pos);
state.forceList(*args[1], pos);
auto len = args[1]->listSize();
state.mkList(v, len);
for (unsigned int n = 0; n < len; ++n) {
state.forceValue(*args[1]->listElems()[n]);
v.listElems()[n] = args[1]->listElems()[n];
}
auto comparator = [&](Value * a, Value * b) {
/* Optimization: if the comparator is lessThan, bypass
callFunction. */
if (args[0]->type == tPrimOp && args[0]->primOp->fun == prim_lessThan)
return CompareValues()(a, b);
Value vTmp1, vTmp2;
state.callFunction(*args[0], *a, vTmp1, pos);
state.callFunction(vTmp1, *b, vTmp2, pos);
2016-08-29 15:56:35 +00:00
return state.forceBool(vTmp2, pos);
2015-07-28 16:39:00 +00:00
};
/* FIXME: std::sort can segfault if the comparator is not a strict
weak ordering. What to do? std::stable_sort() seems more
resilient, but no guarantees... */
std::stable_sort(v.listElems(), v.listElems() + len, comparator);
}
static void prim_partition(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
state.forceFunction(*args[0], pos);
state.forceList(*args[1], pos);
auto len = args[1]->listSize();
ValueVector right, wrong;
for (unsigned int n = 0; n < len; ++n) {
auto vElem = args[1]->listElems()[n];
state.forceValue(*vElem);
Value res;
state.callFunction(*args[0], *vElem, res, pos);
2016-08-29 15:56:35 +00:00
if (state.forceBool(res, pos))
right.push_back(vElem);
else
wrong.push_back(vElem);
}
state.mkAttrs(v, 2);
Value * vRight = state.allocAttr(v, state.sRight);
state.mkList(*vRight, right.size());
memcpy(vRight->listElems(), right.data(), sizeof(Value *) * right.size());
Value * vWrong = state.allocAttr(v, state.sWrong);
state.mkList(*vWrong, wrong.size());
memcpy(vWrong->listElems(), wrong.data(), sizeof(Value *) * wrong.size());
v.attrs->sort();
}
2007-01-29 15:11:32 +00:00
/*************************************************************
* Integer arithmetic
*************************************************************/
static void prim_add(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
if (args[0]->type == tFloat || args[1]->type == tFloat)
mkFloat(v, state.forceFloat(*args[0], pos) + state.forceFloat(*args[1], pos));
else
mkInt(v, state.forceInt(*args[0], pos) + state.forceInt(*args[1], pos));
}
static void prim_sub(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
if (args[0]->type == tFloat || args[1]->type == tFloat)
mkFloat(v, state.forceFloat(*args[0], pos) - state.forceFloat(*args[1], pos));
else
mkInt(v, state.forceInt(*args[0], pos) - state.forceInt(*args[1], pos));
}
static void prim_mul(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
if (args[0]->type == tFloat || args[1]->type == tFloat)
mkFloat(v, state.forceFloat(*args[0], pos) * state.forceFloat(*args[1], pos));
else
mkInt(v, state.forceInt(*args[0], pos) * state.forceInt(*args[1], pos));
}
static void prim_div(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
NixFloat f2 = state.forceFloat(*args[1], pos);
if (f2 == 0) throw EvalError(format("division by zero, at %1%") % pos);
if (args[0]->type == tFloat || args[1]->type == tFloat) {
mkFloat(v, state.forceFloat(*args[0], pos) / state.forceFloat(*args[1], pos));
} else {
NixInt i1 = state.forceInt(*args[0], pos);
NixInt i2 = state.forceInt(*args[1], pos);
/* Avoid division overflow as it might raise SIGFPE. */
if (i1 == std::numeric_limits<NixInt>::min() && i2 == -1)
throw EvalError(format("overflow in integer division, at %1%") % pos);
mkInt(v, i1 / i2);
}
}
static void prim_lessThan(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
state.forceValue(*args[0]);
state.forceValue(*args[1]);
CompareValues comp;
mkBool(v, comp(args[0], args[1]));
}
/*************************************************************
* String manipulation
*************************************************************/
/* Convert the argument to a string. Paths are *not* copied to the
store, so `toString /foo/bar' yields `"/foo/bar"', not
`"/nix/store/whatever..."'. */
static void prim_toString(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
PathSet context;
string s = state.coerceToString(pos, *args[0], context, true, false);
mkString(v, s, context);
}
2007-12-31 00:08:09 +00:00
/* `substring start len str' returns the substring of `str' starting
at character position `min(start, stringLength str)' inclusive and
ending at `min(start + len, stringLength str)'. `start' must be
non-negative. */
static void prim_substring(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
2014-04-04 16:58:15 +00:00
int start = state.forceInt(*args[0], pos);
int len = state.forceInt(*args[1], pos);
PathSet context;
string s = state.coerceToString(pos, *args[2], context);
if (start < 0) throw EvalError(format("negative start position in substring, at %1%") % pos);
2014-05-26 10:34:15 +00:00
mkString(v, (unsigned int) start >= s.size() ? "" : string(s, start, len), context);
}
static void prim_stringLength(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
PathSet context;
string s = state.coerceToString(pos, *args[0], context);
2010-03-30 18:05:54 +00:00
mkInt(v, s.size());
}
static void prim_unsafeDiscardStringContext(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
PathSet context;
string s = state.coerceToString(pos, *args[0], context);
mkString(v, s, PathSet());
}
2008-01-20 20:44:03 +00:00
/* Sometimes we want to pass a derivation path (i.e. pkg.drvPath) to a
builder without causing the derivation to be built (for instance,
in the derivation that builds NARs in nix-push, when doing
source-only deployment). This primop marks the string context so
that builtins.derivation adds the path to drv.inputSrcs rather than
drv.inputDrvs. */
static void prim_unsafeDiscardOutputDependency(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
PathSet context;
string s = state.coerceToString(pos, *args[0], context);
PathSet context2;
2015-07-17 17:24:28 +00:00
for (auto & p : context)
context2.insert(p.at(0) == '=' ? "~" + string(p, 1) : p);
2013-09-02 14:29:15 +00:00
2010-04-16 15:13:47 +00:00
mkString(v, s, context2);
}
/* Return the cryptographic hash of a string in base-16. */
static void prim_hashString(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
2014-04-04 19:14:11 +00:00
string type = state.forceStringNoCtx(*args[0], pos);
HashType ht = parseHashType(type);
if (ht == htUnknown)
throw Error(format("unknown hash type %1%, at %2%") % type % pos);
PathSet context; // discarded
2014-11-25 09:23:36 +00:00
string s = state.forceString(*args[1], context, pos);
mkString(v, hashString(ht, s).to_string(Base16, false), context);
}
/* Match a regular expression against a string and return either
null or a list containing substring matches. */
static void prim_match(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
auto re = state.forceStringNoCtx(*args[0], pos);
try {
std::regex regex(re, std::regex::extended);
PathSet context;
const std::string str = state.forceString(*args[1], context, pos);
std::smatch match;
if (!std::regex_match(str, match, regex)) {
mkNull(v);
return;
}
// the first match is the whole string
const size_t len = match.size() - 1;
state.mkList(v, len);
for (size_t i = 0; i < len; ++i) {
if (!match[i+1].matched)
mkNull(*(v.listElems()[i] = state.allocValue()));
else
mkString(*(v.listElems()[i] = state.allocValue()), match[i + 1].str().c_str());
}
} catch (std::regex_error &) {
throw EvalError("invalid regular expression %s, at %s", re, pos);
}
}
static void prim_concatStringSep(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
PathSet context;
auto sep = state.forceString(*args[0], context, pos);
state.forceList(*args[1], pos);
string res;
res.reserve((args[1]->listSize() + 32) * sep.size());
bool first = true;
for (unsigned int n = 0; n < args[1]->listSize(); ++n) {
if (first) first = false; else res += sep;
res += state.coerceToString(pos, *args[1]->listElems()[n], context);
}
mkString(v, res, context);
}
static void prim_replaceStrings(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
state.forceList(*args[0], pos);
state.forceList(*args[1], pos);
if (args[0]->listSize() != args[1]->listSize())
throw EvalError(format("from and to arguments to replaceStrings have different lengths, at %1%") % pos);
vector<string> from;
from.reserve(args[0]->listSize());
for (unsigned int n = 0; n < args[0]->listSize(); ++n)
from.push_back(state.forceString(*args[0]->listElems()[n], pos));
vector<std::pair<string, PathSet>> to;
to.reserve(args[1]->listSize());
for (unsigned int n = 0; n < args[1]->listSize(); ++n) {
PathSet ctx;
auto s = state.forceString(*args[1]->listElems()[n], ctx, pos);
to.push_back(std::make_pair(std::move(s), std::move(ctx)));
}
PathSet context;
auto s = state.forceString(*args[2], context, pos);
string res;
for (size_t p = 0; p < s.size(); ) {
bool found = false;
auto i = from.begin();
auto j = to.begin();
for (; i != from.end(); ++i, ++j)
if (s.compare(p, i->size(), *i) == 0) {
found = true;
p += i->size();
res += j->first;
for (auto& path : j->second)
context.insert(path);
j->second.clear();
break;
}
if (!found) res += s[p++];
}
mkString(v, res, context);
}
/*************************************************************
* Versions
*************************************************************/
static void prim_parseDrvName(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
2014-04-04 19:14:11 +00:00
string name = state.forceStringNoCtx(*args[0], pos);
DrvName parsed(name);
state.mkAttrs(v, 2);
mkString(*state.allocAttr(v, state.sName), parsed.name);
mkString(*state.allocAttr(v, state.symbols.create("version")), parsed.version);
v.attrs->sort();
}
static void prim_compareVersions(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
2014-04-04 19:14:11 +00:00
string version1 = state.forceStringNoCtx(*args[0], pos);
string version2 = state.forceStringNoCtx(*args[1], pos);
2010-03-30 22:39:48 +00:00
mkInt(v, compareVersions(version1, version2));
}
/*************************************************************
* Networking
*************************************************************/
void fetch(EvalState & state, const Pos & pos, Value * * args, Value & v,
const string & who, bool unpack)
{
string url;
Hash expectedHash;
string name;
state.forceValue(*args[0]);
if (args[0]->type == tAttrs) {
state.forceAttrs(*args[0], pos);
for (auto & attr : *args[0]->attrs) {
string n(attr.name);
if (n == "url")
url = state.forceStringNoCtx(*attr.value, *attr.pos);
else if (n == "sha256")
expectedHash = Hash(state.forceStringNoCtx(*attr.value, *attr.pos), htSHA256);
else if (n == "name")
name = state.forceStringNoCtx(*attr.value, *attr.pos);
else
throw EvalError(format("unsupported argument %1% to %2%, at %3%") % attr.name % who % attr.pos);
}
if (url.empty())
throw EvalError(format("url argument required, at %1%") % pos);
} else
url = state.forceStringNoCtx(*args[0], pos);
if (state.restricted && !expectedHash)
throw Error(format("%1% is not allowed in restricted mode") % who);
Path res = getDownloader()->downloadCached(state.store, url, unpack, name, expectedHash);
2015-06-01 13:08:09 +00:00
mkString(v, res, PathSet({res}));
}
static void prim_fetchurl(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
fetch(state, pos, args, v, "fetchurl", false);
}
static void prim_fetchTarball(EvalState & state, const Pos & pos, Value * * args, Value & v)
{
fetch(state, pos, args, v, "fetchTarball", true);
}
/*************************************************************
* Primop registration
*************************************************************/
RegisterPrimOp::PrimOps * RegisterPrimOp::primOps;
RegisterPrimOp::RegisterPrimOp(std::string name, size_t arity, PrimOpFun fun)
{
if (!primOps) primOps = new PrimOps;
primOps->emplace_back(name, arity, fun);
}
void EvalState::createBaseEnv()
{
baseEnv.up = 0;
/* Add global constants such as `true' to the base environment. */
2010-03-30 14:39:27 +00:00
Value v;
2010-04-14 22:59:39 +00:00
/* `builtins' must be first! */
mkAttrs(v, 128);
2010-04-14 22:59:39 +00:00
addConstant("builtins", v);
2010-03-30 14:39:27 +00:00
mkBool(v, true);
addConstant("true", v);
2013-09-02 14:29:15 +00:00
2010-03-30 14:39:27 +00:00
mkBool(v, false);
addConstant("false", v);
2013-09-02 14:29:15 +00:00
mkNull(v);
2010-03-30 14:39:27 +00:00
addConstant("null", v);
mkInt(v, time(0));
addConstant("__currentTime", v);
mkString(v, settings.thisSystem);
2010-03-30 14:39:27 +00:00
addConstant("__currentSystem", v);
mkString(v, nixVersion);
addConstant("__nixVersion", v);
mkString(v, store->storeDir);
addConstant("__storeDir", v);
/* Language version. This should be increased every time a new
language feature gets added. It's not necessary to increase it
when primops get added, because you can just use `builtins ?
primOp' to check. */
mkInt(v, 4);
addConstant("__langVersion", v);
2007-01-29 15:11:32 +00:00
// Miscellaneous
Add primop ‘scopedImport’ ‘scopedImport’ works like ‘import’, except that it takes a set of attributes to be added to the lexical scope of the expression, essentially extending or overriding the builtin variables. For instance, the expression scopedImport { x = 1; } ./foo.nix where foo.nix contains ‘x’, will evaluate to 1. This has a few applications: * It allows getting rid of function argument specifications in package expressions. For instance, a package expression like: { stdenv, fetchurl, libfoo }: stdenv.mkDerivation { ... buildInputs = [ libfoo ]; } can now we written as just stdenv.mkDerivation { ... buildInputs = [ libfoo ]; } and imported in all-packages.nix as: bar = scopedImport pkgs ./bar.nix; So whereas we once had dependencies listed in three places (buildInputs, the function, and the call site), they now only need to appear in one place. * It allows overriding builtin functions. For instance, to trace all calls to ‘map’: let overrides = { map = f: xs: builtins.trace "map called!" (map f xs); # Ensure that our override gets propagated by calls to # import/scopedImport. import = fn: scopedImport overrides fn; scopedImport = attrs: fn: scopedImport (overrides // attrs) fn; # Also update ‘builtins’. builtins = builtins // overrides; }; in scopedImport overrides ./bla.nix * Similarly, it allows extending the set of builtin functions. For instance, during Nixpkgs/NixOS evaluation, the Nixpkgs library functions could be added to the default scope. There is a downside: calls to scopedImport are not memoized, unlike import. So importing a file multiple times leads to multiple parsings / evaluations. It would be possible to construct the AST only once, but that would require careful handling of variables/environments.
2014-05-26 11:46:11 +00:00
addPrimOp("scopedImport", 2, prim_scopedImport);
Value * v2 = allocValue();
mkAttrs(*v2, 0);
mkApp(v, *baseEnv.values[baseEnvDispl - 1], *v2);
forceValue(v);
addConstant("import", v);
if (settings.enableNativeCode) {
addPrimOp("__importNative", 2, prim_importNative);
addPrimOp("__exec", 1, prim_exec);
}
addPrimOp("__typeOf", 1, prim_typeOf);
addPrimOp("isNull", 1, prim_isNull);
addPrimOp("__isFunction", 1, prim_isFunction);
addPrimOp("__isString", 1, prim_isString);
addPrimOp("__isInt", 1, prim_isInt);
addPrimOp("__isFloat", 1, prim_isFloat);
addPrimOp("__isBool", 1, prim_isBool);
addPrimOp("__genericClosure", 1, prim_genericClosure);
addPrimOp("abort", 1, prim_abort);
addPrimOp("throw", 1, prim_throw);
addPrimOp("__addErrorContext", 2, prim_addErrorContext);
addPrimOp("__tryEval", 1, prim_tryEval);
addPrimOp("__getEnv", 1, prim_getEnv);
2014-09-22 12:53:21 +00:00
// Strictness
addPrimOp("__seq", 2, prim_seq);
addPrimOp("__deepSeq", 2, prim_deepSeq);
2014-09-22 12:53:21 +00:00
// Debugging
addPrimOp("__trace", 2, prim_trace);
addPrimOp("__valueSize", 1, prim_valueSize);
2007-01-29 15:11:32 +00:00
// Paths
addPrimOp("__toPath", 1, prim_toPath);
addPrimOp("__storePath", 1, prim_storePath);
addPrimOp("__pathExists", 1, prim_pathExists);
addPrimOp("baseNameOf", 1, prim_baseNameOf);
addPrimOp("dirOf", 1, prim_dirOf);
addPrimOp("__readFile", 1, prim_readFile);
2014-10-01 14:17:50 +00:00
addPrimOp("__readDir", 1, prim_readDir);
addPrimOp("__findFile", 2, prim_findFile);
2007-01-29 15:11:32 +00:00
// Creating files
addPrimOp("__toXML", 1, prim_toXML);
2013-11-18 23:03:11 +00:00
addPrimOp("__toJSON", 1, prim_toJSON);
addPrimOp("__fromJSON", 1, prim_fromJSON);
addPrimOp("__toFile", 2, prim_toFile);
addPrimOp("__filterSource", 2, prim_filterSource);
2007-01-29 15:11:32 +00:00
// Sets
addPrimOp("__attrNames", 1, prim_attrNames);
2014-10-04 14:41:24 +00:00
addPrimOp("__attrValues", 1, prim_attrValues);
addPrimOp("__getAttr", 2, prim_getAttr);
addPrimOp("__unsafeGetAttrPos", 2, prim_unsafeGetAttrPos);
addPrimOp("__hasAttr", 2, prim_hasAttr);
addPrimOp("__isAttrs", 1, prim_isAttrs);
addPrimOp("removeAttrs", 2, prim_removeAttrs);
addPrimOp("__listToAttrs", 1, prim_listToAttrs);
* Two primops: builtins.intersectAttrs and builtins.functionArgs. intersectAttrs returns the (right-biased) intersection between two attribute sets, e.g. every attribute from the second set that also exists in the first. functionArgs returns the set of attributes expected by a function. The main goal of these is to allow the elimination of most of all-packages.nix. Most package instantiations in all-packages.nix have this form: foo = import ./foo.nix { inherit a b c; }; With intersectAttrs and functionArgs, this can be written as: foo = callPackage (import ./foo.nix) { }; where callPackage = f: args: f ((builtins.intersectAttrs (builtins.functionArgs f) pkgs) // args); I.e., foo.nix is called with all attributes from "pkgs" that it actually needs (e.g., pkgs.a, pkgs.b and pkgs.c). (callPackage can do any other generic package-level stuff we might want, such as applying makeOverridable.) Of course, the automatically supplied arguments can be overriden if needed, e.g. foo = callPackage (import ./foo.nix) { c = c_version_2; }; but for the vast majority of packages, this won't be needed. The advantages are to reduce the amount of typing needed to add a dependency (from three sites to two), and to reduce the number of trivial commits to all-packages.nix. For the former, there have been two previous attempts: - Use "args: with args;" in the package's function definition. This however obscures the actual expected arguments of a function, which is very bad. - Use "{ arg1, arg2, ... }:" in the package's function definition (i.e. use the ellipis "..." to allow arbitrary additional arguments), and then call the function with all of "pkgs" as an argument. But this inhibits error detection if you call it with an misspelled (or obsolete) argument.
2009-09-15 13:01:46 +00:00
addPrimOp("__intersectAttrs", 2, prim_intersectAttrs);
2014-10-04 16:15:03 +00:00
addPrimOp("__catAttrs", 2, prim_catAttrs);
* Two primops: builtins.intersectAttrs and builtins.functionArgs. intersectAttrs returns the (right-biased) intersection between two attribute sets, e.g. every attribute from the second set that also exists in the first. functionArgs returns the set of attributes expected by a function. The main goal of these is to allow the elimination of most of all-packages.nix. Most package instantiations in all-packages.nix have this form: foo = import ./foo.nix { inherit a b c; }; With intersectAttrs and functionArgs, this can be written as: foo = callPackage (import ./foo.nix) { }; where callPackage = f: args: f ((builtins.intersectAttrs (builtins.functionArgs f) pkgs) // args); I.e., foo.nix is called with all attributes from "pkgs" that it actually needs (e.g., pkgs.a, pkgs.b and pkgs.c). (callPackage can do any other generic package-level stuff we might want, such as applying makeOverridable.) Of course, the automatically supplied arguments can be overriden if needed, e.g. foo = callPackage (import ./foo.nix) { c = c_version_2; }; but for the vast majority of packages, this won't be needed. The advantages are to reduce the amount of typing needed to add a dependency (from three sites to two), and to reduce the number of trivial commits to all-packages.nix. For the former, there have been two previous attempts: - Use "args: with args;" in the package's function definition. This however obscures the actual expected arguments of a function, which is very bad. - Use "{ arg1, arg2, ... }:" in the package's function definition (i.e. use the ellipis "..." to allow arbitrary additional arguments), and then call the function with all of "pkgs" as an argument. But this inhibits error detection if you call it with an misspelled (or obsolete) argument.
2009-09-15 13:01:46 +00:00
addPrimOp("__functionArgs", 1, prim_functionArgs);
2007-01-29 15:11:32 +00:00
// Lists
addPrimOp("__isList", 1, prim_isList);
addPrimOp("__elemAt", 2, prim_elemAt);
addPrimOp("__head", 1, prim_head);
addPrimOp("__tail", 1, prim_tail);
addPrimOp("map", 2, prim_map);
addPrimOp("__filter", 2, prim_filter);
addPrimOp("__elem", 2, prim_elem);
addPrimOp("__concatLists", 1, prim_concatLists);
addPrimOp("__length", 1, prim_length);
2015-07-23 15:03:02 +00:00
addPrimOp("__foldl'", 3, prim_foldlStrict);
addPrimOp("__any", 2, prim_any);
addPrimOp("__all", 2, prim_all);
addPrimOp("__genList", 2, prim_genList);
2015-07-28 16:39:00 +00:00
addPrimOp("__sort", 2, prim_sort);
addPrimOp("__partition", 2, prim_partition);
2007-01-29 15:11:32 +00:00
// Integer arithmetic
addPrimOp("__add", 2, prim_add);
addPrimOp("__sub", 2, prim_sub);
addPrimOp("__mul", 2, prim_mul);
addPrimOp("__div", 2, prim_div);
addPrimOp("__lessThan", 2, prim_lessThan);
2007-01-29 15:11:32 +00:00
// String manipulation
addPrimOp("toString", 1, prim_toString);
addPrimOp("__substring", 3, prim_substring);
addPrimOp("__stringLength", 1, prim_stringLength);
addPrimOp("__unsafeDiscardStringContext", 1, prim_unsafeDiscardStringContext);
addPrimOp("__unsafeDiscardOutputDependency", 1, prim_unsafeDiscardOutputDependency);
addPrimOp("__hashString", 2, prim_hashString);
addPrimOp("__match", 2, prim_match);
addPrimOp("__concatStringsSep", 2, prim_concatStringSep);
addPrimOp("__replaceStrings", 3, prim_replaceStrings);
// Versions
addPrimOp("__parseDrvName", 1, prim_parseDrvName);
addPrimOp("__compareVersions", 2, prim_compareVersions);
// Derivations
addPrimOp("derivationStrict", 1, prim_derivationStrict);
addPrimOp("placeholder", 1, prim_placeholder);
// Networking
addPrimOp("__fetchurl", 1, prim_fetchurl);
addPrimOp("fetchTarball", 1, prim_fetchTarball);
/* Add a wrapper around the derivation primop that computes the
`drvPath' and `outPath' attributes lazily. */
string path = settings.nixDataDir + "/nix/corepkgs/derivation.nix";
sDerivationNix = symbols.create(path);
evalFile(path, v);
addConstant("derivation", v);
/* Add a value containing the current Nix expression search path. */
mkList(v, searchPath.size());
int n = 0;
for (auto & i : searchPath) {
v2 = v.listElems()[n++] = allocValue();
mkAttrs(*v2, 2);
mkString(*allocAttr(*v2, symbols.create("path")), i.second);
mkString(*allocAttr(*v2, symbols.create("prefix")), i.first);
2014-05-29 17:02:14 +00:00
v2->attrs->sort();
}
addConstant("__nixPath", v);
if (RegisterPrimOp::primOps)
for (auto & primOp : *RegisterPrimOp::primOps)
addPrimOp(std::get<0>(primOp), std::get<1>(primOp), std::get<2>(primOp));
/* Now that we've added all primops, sort the `builtins' set,
because attribute lookups expect it to be sorted. */
baseEnv.values[0]->attrs->sort();
}
}