lix/src/libstore/build/derivation-goal.cc

3775 lines
142 KiB
C++
Raw Normal View History

#include "derivation-goal.hh"
#include "hook-instance.hh"
#include "worker.hh"
#include "builtins.hh"
#include "builtins/buildenv.hh"
2020-10-11 16:19:10 +00:00
#include "references.hh"
#include "finally.hh"
2020-10-11 16:19:10 +00:00
#include "util.hh"
#include "archive.hh"
#include "json.hh"
2020-10-11 16:19:10 +00:00
#include "compression.hh"
Recursive Nix support This allows Nix builders to call Nix to build derivations, with some limitations. Example: let nixpkgs = fetchTarball channel:nixos-18.03; in with import <nixpkgs> {}; runCommand "foo" { buildInputs = [ nix jq ]; NIX_PATH = "nixpkgs=${nixpkgs}"; } '' hello=$(nix-build -E '(import <nixpkgs> {}).hello.overrideDerivation (args: { name = "hello-3.5"; })') $hello/bin/hello mkdir -p $out/bin ln -s $hello/bin/hello $out/bin/hello nix path-info -r --json $hello | jq . '' This derivation makes a recursive Nix call to build GNU Hello and symlinks it from its $out, i.e. # ll ./result/bin/ lrwxrwxrwx 1 root root 63 Jan 1 1970 hello -> /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5/bin/hello # nix-store -qR ./result /nix/store/hwwqshlmazzjzj7yhrkyjydxamvvkfd3-glibc-2.26-131 /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5 /nix/store/sgmvvyw8vhfqdqb619bxkcpfn9lvd8ss-foo This is implemented as follows: * Before running the outer builder, Nix creates a Unix domain socket '.nix-socket' in the builder's temporary directory and sets $NIX_REMOTE to point to it. It starts a thread to process connections to this socket. (Thus you don't need to have nix-daemon running.) * The daemon thread uses a wrapper store (RestrictedStore) to keep track of paths added through recursive Nix calls, to implement some restrictions (see below), and to do some censorship (e.g. for purity, queryPathInfo() won't return impure information such as signatures and timestamps). * After the build finishes, the output paths are scanned for references to the paths added through recursive Nix calls (in addition to the inputs closure). Thus, in the example above, $out has a reference to $hello. The main restriction on recursive Nix calls is that they cannot do arbitrary substitutions. For example, doing nix-store -r /nix/store/kmwd1hq55akdb9sc7l3finr175dajlby-hello-2.10 is forbidden unless /nix/store/kmwd... is in the inputs closure or previously built by a recursive Nix call. This is to prevent irreproducible derivations that have hidden dependencies on substituters or the current store contents. Building a derivation is fine, however, and Nix will use substitutes if available. In other words, the builder has to present proof that it knows how to build a desired store path from scratch by constructing a derivation graph for that path. Probably we should also disallow instantiating/building fixed-output derivations (specifically, those that access the network, but currently we have no way to mark fixed-output derivations that don't access the network). Otherwise sandboxed derivations can bypass sandbox restrictions and access the network. When sandboxing is enabled, we make paths appear in the sandbox of the builder by entering the mount namespace of the builder and bind-mounting each path. This is tricky because we do a pivot_root() in the builder to change the root directory of its mount namespace, and thus the host /nix/store is not visible in the mount namespace of the builder. To get around this, just before doing pivot_root(), we branch a second mount namespace that shares its /nix/store mountpoint with the parent. Recursive Nix currently doesn't work on macOS in sandboxed mode (because we can't change the sandbox policy of a running build) and in non-root mode (because setns() barfs).
2018-10-02 14:01:26 +00:00
#include "daemon.hh"
#include "worker-protocol.hh"
2020-08-07 19:09:26 +00:00
#include "topo-sort.hh"
#include "callback.hh"
#include <regex>
#include <queue>
#include <sys/types.h>
#include <sys/socket.h>
Recursive Nix support This allows Nix builders to call Nix to build derivations, with some limitations. Example: let nixpkgs = fetchTarball channel:nixos-18.03; in with import <nixpkgs> {}; runCommand "foo" { buildInputs = [ nix jq ]; NIX_PATH = "nixpkgs=${nixpkgs}"; } '' hello=$(nix-build -E '(import <nixpkgs> {}).hello.overrideDerivation (args: { name = "hello-3.5"; })') $hello/bin/hello mkdir -p $out/bin ln -s $hello/bin/hello $out/bin/hello nix path-info -r --json $hello | jq . '' This derivation makes a recursive Nix call to build GNU Hello and symlinks it from its $out, i.e. # ll ./result/bin/ lrwxrwxrwx 1 root root 63 Jan 1 1970 hello -> /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5/bin/hello # nix-store -qR ./result /nix/store/hwwqshlmazzjzj7yhrkyjydxamvvkfd3-glibc-2.26-131 /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5 /nix/store/sgmvvyw8vhfqdqb619bxkcpfn9lvd8ss-foo This is implemented as follows: * Before running the outer builder, Nix creates a Unix domain socket '.nix-socket' in the builder's temporary directory and sets $NIX_REMOTE to point to it. It starts a thread to process connections to this socket. (Thus you don't need to have nix-daemon running.) * The daemon thread uses a wrapper store (RestrictedStore) to keep track of paths added through recursive Nix calls, to implement some restrictions (see below), and to do some censorship (e.g. for purity, queryPathInfo() won't return impure information such as signatures and timestamps). * After the build finishes, the output paths are scanned for references to the paths added through recursive Nix calls (in addition to the inputs closure). Thus, in the example above, $out has a reference to $hello. The main restriction on recursive Nix calls is that they cannot do arbitrary substitutions. For example, doing nix-store -r /nix/store/kmwd1hq55akdb9sc7l3finr175dajlby-hello-2.10 is forbidden unless /nix/store/kmwd... is in the inputs closure or previously built by a recursive Nix call. This is to prevent irreproducible derivations that have hidden dependencies on substituters or the current store contents. Building a derivation is fine, however, and Nix will use substitutes if available. In other words, the builder has to present proof that it knows how to build a desired store path from scratch by constructing a derivation graph for that path. Probably we should also disallow instantiating/building fixed-output derivations (specifically, those that access the network, but currently we have no way to mark fixed-output derivations that don't access the network). Otherwise sandboxed derivations can bypass sandbox restrictions and access the network. When sandboxing is enabled, we make paths appear in the sandbox of the builder by entering the mount namespace of the builder and bind-mounting each path. This is tricky because we do a pivot_root() in the builder to change the root directory of its mount namespace, and thus the host /nix/store is not visible in the mount namespace of the builder. To get around this, just before doing pivot_root(), we branch a second mount namespace that shares its /nix/store mountpoint with the parent. Recursive Nix currently doesn't work on macOS in sandboxed mode (because we can't change the sandbox policy of a running build) and in non-root mode (because setns() barfs).
2018-10-02 14:01:26 +00:00
#include <sys/un.h>
#include <netdb.h>
2020-10-11 16:19:10 +00:00
#include <fcntl.h>
#include <termios.h>
2020-10-11 16:19:10 +00:00
#include <unistd.h>
#include <sys/mman.h>
#include <sys/utsname.h>
#include <sys/resource.h>
2020-10-11 16:19:10 +00:00
#if HAVE_STATVFS
#include <sys/statvfs.h>
#endif
/* Includes required for chroot support. */
#if __linux__
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <netinet/ip.h>
#include <sys/personality.h>
#include <sys/mman.h>
#include <sched.h>
#include <sys/param.h>
#include <sys/mount.h>
#include <sys/syscall.h>
#if HAVE_SECCOMP
#include <seccomp.h>
#endif
#define pivot_root(new_root, put_old) (syscall(SYS_pivot_root, new_root, put_old))
#endif
2020-10-11 16:19:10 +00:00
#include <pwd.h>
#include <grp.h>
#include <nlohmann/json.hpp>
namespace nix {
2020-10-11 16:19:10 +00:00
void handleDiffHook(
uid_t uid, uid_t gid,
const Path & tryA, const Path & tryB,
const Path & drvPath, const Path & tmpDir)
{
auto diffHook = settings.diffHook;
if (diffHook != "" && settings.runDiffHook) {
try {
RunOptions diffHookOptions(diffHook,{tryA, tryB, drvPath, tmpDir});
diffHookOptions.searchPath = true;
diffHookOptions.uid = uid;
diffHookOptions.gid = gid;
diffHookOptions.chdir = "/";
2003-07-20 19:29:38 +00:00
2020-10-11 16:19:10 +00:00
auto diffRes = runProgram(diffHookOptions);
if (!statusOk(diffRes.first))
throw ExecError(diffRes.first,
"diff-hook program '%1%' %2%",
diffHook,
statusToString(diffRes.first));
2020-10-11 16:19:10 +00:00
if (diffRes.second != "")
printError(chomp(diffRes.second));
} catch (Error & error) {
ErrorInfo ei = error.info();
ei.hint = hintfmt("diff hook execution failed: %s",
(error.info().hint.has_value() ? error.info().hint->str() : ""));
logError(ei);
}
}
}
2020-10-11 16:19:10 +00:00
const Path DerivationGoal::homeDir = "/homeless-shelter";
2020-10-11 16:19:10 +00:00
DerivationGoal::DerivationGoal(const StorePath & drvPath,
const StringSet & wantedOutputs, Worker & worker, BuildMode buildMode)
: Goal(worker)
, useDerivation(true)
, drvPath(drvPath)
, wantedOutputs(wantedOutputs)
, buildMode(buildMode)
{
state = &DerivationGoal::getDerivation;
name = fmt(
"building of '%s' from .drv file",
StorePathWithOutputs { drvPath, wantedOutputs }.to_string(worker.store));
trace("created");
2020-10-11 16:19:10 +00:00
mcExpectedBuilds = std::make_unique<MaintainCount<uint64_t>>(worker.expectedBuilds);
worker.updateProgress();
}
2020-10-11 16:19:10 +00:00
DerivationGoal::DerivationGoal(const StorePath & drvPath, const BasicDerivation & drv,
const StringSet & wantedOutputs, Worker & worker, BuildMode buildMode)
: Goal(worker)
, useDerivation(false)
, drvPath(drvPath)
, wantedOutputs(wantedOutputs)
, buildMode(buildMode)
{
this->drv = std::make_unique<BasicDerivation>(BasicDerivation(drv));
state = &DerivationGoal::haveDerivation;
name = fmt(
"building of '%s' from in-memory derivation",
StorePathWithOutputs { drvPath, drv.outputNames() }.to_string(worker.store));
trace("created");
2020-10-11 16:19:10 +00:00
mcExpectedBuilds = std::make_unique<MaintainCount<uint64_t>>(worker.expectedBuilds);
worker.updateProgress();
2020-10-11 16:19:10 +00:00
/* Prevent the .chroot directory from being
garbage-collected. (See isActiveTempFile() in gc.cc.) */
worker.store.addTempRoot(this->drvPath);
}
2020-10-11 16:19:10 +00:00
DerivationGoal::~DerivationGoal()
{
2020-10-11 16:19:10 +00:00
/* Careful: we should never ever throw an exception from a
destructor. */
try { killChild(); } catch (...) { ignoreException(); }
try { stopDaemon(); } catch (...) { ignoreException(); }
try { deleteTmpDir(false); } catch (...) { ignoreException(); }
try { closeLogFile(); } catch (...) { ignoreException(); }
}
string DerivationGoal::key()
{
/* Ensure that derivations get built in order of their name,
i.e. a derivation named "aardvark" always comes before
"baboon". And substitution goals always happen before
derivation goals (due to "b$"). */
return "b$" + std::string(drvPath.name()) + "$" + worker.store.printStorePath(drvPath);
}
2020-10-11 16:19:10 +00:00
inline bool DerivationGoal::needsHashRewrite()
{
#if __linux__
return !useChroot;
#else
/* Darwin requires hash rewriting even when sandboxing is enabled. */
return true;
#endif
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::killChild()
{
if (pid != -1) {
worker.childTerminated(this);
2020-10-11 16:19:10 +00:00
if (buildUser) {
/* If we're using a build user, then there is a tricky
race condition: if we kill the build user before the
child has done its setuid() to the build user uid, then
it won't be killed, and we'll potentially lock up in
pid.wait(). So also send a conventional kill to the
child. */
::kill(-pid, SIGKILL); /* ignore the result */
buildUser->kill();
pid.wait();
} else
pid.kill();
2020-10-11 16:19:10 +00:00
assert(pid == -1);
}
2020-10-11 16:19:10 +00:00
hook.reset();
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::timedOut(Error && ex)
{
killChild();
done(BuildResult::TimedOut, ex);
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::work()
{
(this->*state)();
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::addWantedOutputs(const StringSet & outputs)
{
/* If we already want all outputs, there is nothing to do. */
if (wantedOutputs.empty()) return;
2020-10-11 16:19:10 +00:00
if (outputs.empty()) {
wantedOutputs.clear();
needRestart = true;
} else
for (auto & i : outputs)
if (wantedOutputs.insert(i).second)
needRestart = true;
}
2004-06-29 09:41:50 +00:00
2020-10-11 16:19:10 +00:00
void DerivationGoal::getDerivation()
{
trace("init");
2020-10-11 16:19:10 +00:00
/* The first thing to do is to make sure that the derivation
exists. If it doesn't, it may be created through a
substitute. */
if (buildMode == bmNormal && worker.store.isValidPath(drvPath)) {
loadDerivation();
return;
}
2012-07-27 13:59:18 +00:00
addWaitee(upcast_goal(worker.makeSubstitutionGoal(drvPath)));
2020-10-11 16:19:10 +00:00
state = &DerivationGoal::loadDerivation;
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::loadDerivation()
{
trace("loading derivation");
2020-10-11 16:19:10 +00:00
if (nrFailed != 0) {
done(BuildResult::MiscFailure, Error("cannot build missing derivation '%s'", worker.store.printStorePath(drvPath)));
return;
}
2020-10-11 16:19:10 +00:00
/* `drvPath' should already be a root, but let's be on the safe
side: if the user forgot to make it a root, we wouldn't want
things being garbage collected while we're busy. */
worker.store.addTempRoot(drvPath);
2020-10-11 16:19:10 +00:00
assert(worker.store.isValidPath(drvPath));
2020-10-11 16:19:10 +00:00
/* Get the derivation. */
drv = std::unique_ptr<BasicDerivation>(new Derivation(worker.store.derivationFromPath(drvPath)));
2020-10-11 16:19:10 +00:00
haveDerivation();
}
2004-06-19 21:45:04 +00:00
2020-10-11 16:19:10 +00:00
void DerivationGoal::haveDerivation()
{
2020-10-11 16:19:10 +00:00
trace("have derivation");
2020-10-11 16:19:10 +00:00
if (drv->type() == DerivationType::CAFloating)
settings.requireExperimentalFeature("ca-derivations");
2020-10-11 16:19:10 +00:00
retrySubstitution = false;
2020-10-11 16:19:10 +00:00
for (auto & i : drv->outputsAndOptPaths(worker.store))
if (i.second.second)
worker.store.addTempRoot(*i.second.second);
2020-10-11 16:19:10 +00:00
/* Check what outputs paths are not already valid. */
checkPathValidity();
bool allValid = true;
for (auto & [_, status] : initialOutputs) {
if (!status.wanted) continue;
if (!status.known || !status.known->isValid()) {
allValid = false;
break;
}
}
2020-10-11 16:19:10 +00:00
/* If they are all valid, then we're done. */
if (allValid && buildMode == bmNormal) {
done(BuildResult::AlreadyValid);
return;
}
2020-10-11 16:19:10 +00:00
parsedDrv = std::make_unique<ParsedDerivation>(drvPath, *drv);
2004-06-19 21:45:04 +00:00
2020-10-11 16:19:10 +00:00
/* We are first going to try to create the invalid output paths
through substitutes. If that doesn't work, we'll build
them. */
if (settings.useSubstitutes && parsedDrv->substitutesAllowed())
for (auto & [_, status] : initialOutputs) {
if (!status.wanted) continue;
if (!status.known) {
warn("do not know how to query for unknown floating content-addressed derivation output yet");
/* Nothing to wait for; tail call */
return DerivationGoal::gaveUpOnSubstitution();
}
addWaitee(upcast_goal(worker.makeSubstitutionGoal(
2020-10-11 16:19:10 +00:00
status.known->path,
buildMode == bmRepair ? Repair : NoRepair,
getDerivationCA(*drv))));
2020-10-11 16:19:10 +00:00
}
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
if (waitees.empty()) /* to prevent hang (no wake-up event) */
outputsSubstitutionTried();
else
state = &DerivationGoal::outputsSubstitutionTried;
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::outputsSubstitutionTried()
{
trace("all outputs substituted (maybe)");
2020-10-11 16:19:10 +00:00
if (nrFailed > 0 && nrFailed > nrNoSubstituters + nrIncompleteClosure && !settings.tryFallback) {
done(BuildResult::TransientFailure,
fmt("some substitutes for the outputs of derivation '%s' failed (usually happens due to networking issues); try '--fallback' to build derivation from source ",
worker.store.printStorePath(drvPath)));
return;
}
2020-10-11 16:19:10 +00:00
/* If the substitutes form an incomplete closure, then we should
build the dependencies of this derivation, but after that, we
can still use the substitutes for this derivation itself.
If the nrIncompleteClosure != nrFailed, we have another issue as well.
In particular, it may be the case that the hole in the closure is
an output of the current derivation, which causes a loop if retried.
*/
if (nrIncompleteClosure > 0 && nrIncompleteClosure == nrFailed) retrySubstitution = true;
2020-10-11 16:19:10 +00:00
nrFailed = nrNoSubstituters = nrIncompleteClosure = 0;
2020-10-11 16:19:10 +00:00
if (needRestart) {
needRestart = false;
haveDerivation();
return;
}
2020-10-11 16:19:10 +00:00
checkPathValidity();
size_t nrInvalid = 0;
for (auto & [_, status] : initialOutputs) {
if (!status.wanted) continue;
if (!status.known || !status.known->isValid())
nrInvalid++;
}
2020-10-11 16:19:10 +00:00
if (buildMode == bmNormal && nrInvalid == 0) {
done(BuildResult::Substituted);
return;
}
if (buildMode == bmRepair && nrInvalid == 0) {
repairClosure();
return;
}
if (buildMode == bmCheck && nrInvalid > 0)
throw Error("some outputs of '%s' are not valid, so checking is not possible",
worker.store.printStorePath(drvPath));
2020-10-11 16:19:10 +00:00
/* Nothing to wait for; tail call */
gaveUpOnSubstitution();
2014-03-29 23:49:23 +00:00
}
2020-10-11 16:19:10 +00:00
/* At least one of the output paths could not be
produced using a substitute. So we have to build instead. */
void DerivationGoal::gaveUpOnSubstitution()
{
2020-10-11 16:19:10 +00:00
/* Make sure checkPathValidity() from now on checks all
outputs. */
wantedOutputs.clear();
2020-10-11 16:19:10 +00:00
/* The inputs must be built before we can build this goal. */
if (useDerivation)
for (auto & i : dynamic_cast<Derivation *>(drv.get())->inputDrvs)
addWaitee(worker.makeDerivationGoal(i.first, i.second, buildMode == bmRepair ? bmRepair : bmNormal));
2020-10-11 16:19:10 +00:00
for (auto & i : drv->inputSrcs) {
if (worker.store.isValidPath(i)) continue;
if (!settings.useSubstitutes)
throw Error("dependency '%s' of '%s' does not exist, and substitution is disabled",
worker.store.printStorePath(i), worker.store.printStorePath(drvPath));
addWaitee(upcast_goal(worker.makeSubstitutionGoal(i)));
2020-10-11 16:19:10 +00:00
}
2020-10-11 16:19:10 +00:00
if (waitees.empty()) /* to prevent hang (no wake-up event) */
inputsRealised();
else
state = &DerivationGoal::inputsRealised;
}
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
void DerivationGoal::repairClosure()
{
/* If we're repairing, we now know that our own outputs are valid.
Now check whether the other paths in the outputs closure are
good. If not, then start derivation goals for the derivations
that produced those outputs. */
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
/* Get the output closure. */
auto outputs = queryDerivationOutputMap();
StorePathSet outputClosure;
for (auto & i : outputs) {
if (!wantOutput(i.first, wantedOutputs)) continue;
worker.store.computeFSClosure(i.second, outputClosure);
}
2020-10-11 16:19:10 +00:00
/* Filter out our own outputs (which we have already checked). */
for (auto & i : outputs)
outputClosure.erase(i.second);
2020-10-11 16:19:10 +00:00
/* Get all dependencies of this derivation so that we know which
derivation is responsible for which path in the output
closure. */
StorePathSet inputClosure;
if (useDerivation) worker.store.computeFSClosure(drvPath, inputClosure);
std::map<StorePath, StorePath> outputsToDrv;
for (auto & i : inputClosure)
if (i.isDerivation()) {
auto depOutputs = worker.store.queryPartialDerivationOutputMap(i);
for (auto & j : depOutputs)
if (j.second)
outputsToDrv.insert_or_assign(*j.second, i);
}
2020-10-11 16:19:10 +00:00
/* Check each path (slow!). */
for (auto & i : outputClosure) {
if (worker.pathContentsGood(i)) continue;
logError({
.name = "Corrupt path in closure",
.hint = hintfmt(
"found corrupted or missing path '%s' in the output closure of '%s'",
worker.store.printStorePath(i), worker.store.printStorePath(drvPath))
});
auto drvPath2 = outputsToDrv.find(i);
if (drvPath2 == outputsToDrv.end())
addWaitee(upcast_goal(worker.makeSubstitutionGoal(i, Repair)));
else
2020-10-11 16:19:10 +00:00
addWaitee(worker.makeDerivationGoal(drvPath2->second, StringSet(), bmRepair));
}
2020-10-11 16:19:10 +00:00
if (waitees.empty()) {
done(BuildResult::AlreadyValid);
return;
}
2020-10-11 16:19:10 +00:00
state = &DerivationGoal::closureRepaired;
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::closureRepaired()
{
2020-10-11 16:19:10 +00:00
trace("closure repaired");
if (nrFailed > 0)
throw Error("some paths in the output closure of derivation '%s' could not be repaired",
worker.store.printStorePath(drvPath));
done(BuildResult::AlreadyValid);
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::inputsRealised()
{
2020-10-11 16:19:10 +00:00
trace("all inputs realised");
2019-05-11 20:35:53 +00:00
2020-10-11 16:19:10 +00:00
if (nrFailed != 0) {
if (!useDerivation)
throw Error("some dependencies of '%s' are missing", worker.store.printStorePath(drvPath));
done(BuildResult::DependencyFailed, Error(
"%s dependencies of derivation '%s' failed to build",
nrFailed, worker.store.printStorePath(drvPath)));
return;
}
2020-10-11 16:19:10 +00:00
if (retrySubstitution) {
haveDerivation();
return;
}
2020-10-11 16:19:10 +00:00
/* Gather information necessary for computing the closure and/or
running the build hook. */
2020-10-11 16:19:10 +00:00
/* Determine the full set of input paths. */
2020-10-11 16:19:10 +00:00
/* First, the input derivations. */
if (useDerivation) {
auto & fullDrv = *dynamic_cast<Derivation *>(drv.get());
if ((!fullDrv.inputDrvs.empty() && derivationIsCA(fullDrv.type()))
|| fullDrv.type() == DerivationType::DeferredInputAddressed) {
2020-10-11 16:19:10 +00:00
/* We are be able to resolve this derivation based on the
now-known results of dependencies. If so, we become a stub goal
aliasing that resolved derivation goal */
std::optional attempt = fullDrv.tryResolve(worker.store);
assert(attempt);
Derivation drvResolved { *std::move(attempt) };
2020-10-11 16:19:10 +00:00
auto pathResolved = writeDerivation(worker.store, drvResolved);
/* Add to memotable to speed up downstream goal's queries with the
original derivation. */
drvPathResolutions.lock()->insert_or_assign(drvPath, pathResolved);
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
auto msg = fmt("Resolved derivation: '%s' -> '%s'",
worker.store.printStorePath(drvPath),
worker.store.printStorePath(pathResolved));
act = std::make_unique<Activity>(*logger, lvlInfo, actBuildWaiting, msg,
Logger::Fields {
worker.store.printStorePath(drvPath),
worker.store.printStorePath(pathResolved),
});
2020-10-11 16:19:10 +00:00
auto resolvedGoal = worker.makeDerivationGoal(
pathResolved, wantedOutputs, buildMode);
addWaitee(resolvedGoal);
2020-10-11 16:19:10 +00:00
state = &DerivationGoal::resolvedFinished;
return;
}
2020-10-11 16:19:10 +00:00
for (auto & [depDrvPath, wantedDepOutputs] : fullDrv.inputDrvs) {
/* Add the relevant output closures of the input derivation
`i' as input paths. Only add the closures of output paths
that are specified as inputs. */
assert(worker.store.isValidPath(drvPath));
auto outputs = worker.store.queryPartialDerivationOutputMap(depDrvPath);
for (auto & j : wantedDepOutputs) {
if (outputs.count(j) > 0) {
auto optRealizedInput = outputs.at(j);
if (!optRealizedInput)
throw Error(
"derivation '%s' requires output '%s' from input derivation '%s', which is supposedly realized already, yet we still don't know what path corresponds to that output",
worker.store.printStorePath(drvPath), j, worker.store.printStorePath(drvPath));
worker.store.computeFSClosure(*optRealizedInput, inputPaths);
} else
throw Error(
"derivation '%s' requires non-existent output '%s' from input derivation '%s'",
worker.store.printStorePath(drvPath), j, worker.store.printStorePath(drvPath));
}
}
}
2020-10-11 16:19:10 +00:00
/* Second, the input sources. */
worker.store.computeFSClosure(drv->inputSrcs, inputPaths);
2020-10-11 16:19:10 +00:00
debug("added input paths %s", worker.store.showPaths(inputPaths));
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
/* What type of derivation are we building? */
derivationType = drv->type();
2020-10-11 16:19:10 +00:00
/* Don't repeat fixed-output derivations since they're already
verified by their output hash.*/
nrRounds = derivationIsFixed(derivationType) ? 1 : settings.buildRepeat + 1;
2020-10-11 16:19:10 +00:00
/* Okay, try to build. Note that here we don't wait for a build
slot to become available, since we don't need one if there is a
build hook. */
state = &DerivationGoal::tryToBuild;
worker.wakeUp(shared_from_this());
2006-12-07 00:19:27 +00:00
2020-10-11 16:19:10 +00:00
result = BuildResult();
}
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
void DerivationGoal::started() {
auto msg = fmt(
buildMode == bmRepair ? "repairing outputs of '%s'" :
buildMode == bmCheck ? "checking outputs of '%s'" :
nrRounds > 1 ? "building '%s' (round %d/%d)" :
"building '%s'", worker.store.printStorePath(drvPath), curRound, nrRounds);
fmt("building '%s'", worker.store.printStorePath(drvPath));
if (hook) msg += fmt(" on '%s'", machineName);
act = std::make_unique<Activity>(*logger, lvlInfo, actBuild, msg,
Logger::Fields{worker.store.printStorePath(drvPath), hook ? machineName : "", curRound, nrRounds});
mcRunningBuilds = std::make_unique<MaintainCount<uint64_t>>(worker.runningBuilds);
worker.updateProgress();
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::tryToBuild()
{
2020-10-11 16:19:10 +00:00
trace("trying to build");
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
/* Obtain locks on all output paths, if the paths are known a priori.
2020-10-11 16:19:10 +00:00
The locks are automatically released when we exit this function or Nix
crashes. If we can't acquire the lock, then continue; hopefully some
other goal can start a build, and if not, the main loop will sleep a few
seconds and then retry this goal. */
PathSet lockFiles;
/* FIXME: Should lock something like the drv itself so we don't build same
CA drv concurrently */
for (auto & i : drv->outputsAndOptPaths(worker.store))
if (i.second.second)
lockFiles.insert(worker.store.Store::toRealPath(*i.second.second));
2020-10-11 16:19:10 +00:00
if (!outputLocks.lockPaths(lockFiles, "", false)) {
if (!actLock)
actLock = std::make_unique<Activity>(*logger, lvlWarn, actBuildWaiting,
fmt("waiting for lock on %s", yellowtxt(showPaths(lockFiles))));
worker.waitForAWhile(shared_from_this());
return;
}
2020-10-11 16:19:10 +00:00
actLock.reset();
2020-10-11 16:19:10 +00:00
/* Now check again whether the outputs are valid. This is because
another process may have started building in parallel. After
it has finished and released the locks, we can (and should)
reuse its results. (Strictly speaking the first check can be
omitted, but that would be less efficient.) Note that since we
now hold the locks on the output paths, no other process can
build this derivation, so no further checks are necessary. */
checkPathValidity();
bool allValid = true;
for (auto & [_, status] : initialOutputs) {
if (!status.wanted) continue;
if (!status.known || !status.known->isValid()) {
allValid = false;
break;
}
}
if (buildMode != bmCheck && allValid) {
debug("skipping build of derivation '%s', someone beat us to it", worker.store.printStorePath(drvPath));
outputLocks.setDeletion(true);
done(BuildResult::AlreadyValid);
return;
}
2020-10-11 16:19:10 +00:00
/* If any of the outputs already exist but are not valid, delete
them. */
for (auto & [_, status] : initialOutputs) {
if (!status.known || status.known->isValid()) continue;
auto storePath = status.known->path;
debug("removing invalid path '%s'", worker.store.printStorePath(status.known->path));
deletePath(worker.store.Store::toRealPath(storePath));
}
2020-10-11 16:19:10 +00:00
/* Don't do a remote build if the derivation has the attribute
`preferLocalBuild' set. Also, check and repair modes are only
supported for local builds. */
bool buildLocally = buildMode != bmNormal || parsedDrv->willBuildLocally(worker.store);
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
if (!buildLocally) {
switch (tryBuildHook()) {
case rpAccept:
/* Yes, it has started doing so. Wait until we get
EOF from the hook. */
actLock.reset();
result.startTime = time(0); // inexact
state = &DerivationGoal::buildDone;
started();
return;
case rpPostpone:
/* Not now; wait until at least one child finishes or
the wake-up timeout expires. */
if (!actLock)
actLock = std::make_unique<Activity>(*logger, lvlWarn, actBuildWaiting,
fmt("waiting for a machine to build '%s'", yellowtxt(worker.store.printStorePath(drvPath))));
worker.waitForAWhile(shared_from_this());
outputLocks.unlock();
return;
case rpDecline:
/* We should do it ourselves. */
break;
}
}
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
actLock.reset();
2020-10-11 16:19:10 +00:00
state = &DerivationGoal::tryLocalBuild;
worker.wakeUp(shared_from_this());
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::tryLocalBuild() {
bool buildLocally = buildMode != bmNormal || parsedDrv->willBuildLocally(worker.store);
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
/* Make sure that we are allowed to start a build. If this
derivation prefers to be done locally, do it even if
maxBuildJobs is 0. */
unsigned int curBuilds = worker.getNrLocalBuilds();
if (curBuilds >= settings.maxBuildJobs && !(buildLocally && curBuilds == 0)) {
worker.waitForBuildSlot(shared_from_this());
outputLocks.unlock();
return;
}
2020-10-11 16:19:10 +00:00
/* If `build-users-group' is not empty, then we have to build as
one of the members of that group. */
if (settings.buildUsersGroup != "" && getuid() == 0) {
#if defined(__linux__) || defined(__APPLE__)
if (!buildUser) buildUser = std::make_unique<UserLock>();
2020-10-11 16:19:10 +00:00
if (buildUser->findFreeUser()) {
/* Make sure that no other processes are executing under this
uid. */
buildUser->kill();
} else {
if (!actLock)
actLock = std::make_unique<Activity>(*logger, lvlWarn, actBuildWaiting,
fmt("waiting for UID to build '%s'", yellowtxt(worker.store.printStorePath(drvPath))));
worker.waitForAWhile(shared_from_this());
return;
}
#else
/* Don't know how to block the creation of setuid/setgid
binaries on this platform. */
throw Error("build users are not supported on this platform for security reasons");
#endif
}
2020-10-11 16:19:10 +00:00
actLock.reset();
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
try {
2020-10-11 16:19:10 +00:00
/* Okay, we have to build. */
startBuilder();
2020-10-11 16:19:10 +00:00
} catch (BuildError & e) {
outputLocks.unlock();
buildUser.reset();
worker.permanentFailure = true;
done(BuildResult::InputRejected, e);
return;
}
2020-10-11 16:19:10 +00:00
/* This state will be reached when we get EOF on the child's
log pipe. */
state = &DerivationGoal::buildDone;
2020-10-11 16:19:10 +00:00
started();
}
2020-10-11 16:19:10 +00:00
static void chmod_(const Path & path, mode_t mode)
{
2020-10-11 16:19:10 +00:00
if (chmod(path.c_str(), mode) == -1)
throw SysError("setting permissions on '%s'", path);
}
2020-10-11 16:19:10 +00:00
/* Move/rename path 'src' to 'dst'. Temporarily make 'src' writable if
it's a directory and we're not root (to be able to update the
directory's parent link ".."). */
static void movePath(const Path & src, const Path & dst)
{
2020-10-11 16:19:10 +00:00
auto st = lstat(src);
2020-10-11 16:19:10 +00:00
bool changePerm = (geteuid() && S_ISDIR(st.st_mode) && !(st.st_mode & S_IWUSR));
2020-10-11 16:19:10 +00:00
if (changePerm)
chmod_(src, st.st_mode | S_IWUSR);
2020-10-11 16:19:10 +00:00
if (rename(src.c_str(), dst.c_str()))
throw SysError("renaming '%1%' to '%2%'", src, dst);
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
if (changePerm)
chmod_(dst, st.st_mode);
}
2020-10-11 16:19:10 +00:00
void replaceValidPath(const Path & storePath, const Path & tmpPath)
{
/* We can't atomically replace storePath (the original) with
tmpPath (the replacement), so we have to move it out of the
way first. We'd better not be interrupted here, because if
we're repairing (say) Glibc, we end up with a broken system. */
Path oldPath = (format("%1%.old-%2%-%3%") % storePath % getpid() % random()).str();
if (pathExists(storePath))
movePath(storePath, oldPath);
2020-10-11 16:19:10 +00:00
try {
movePath(tmpPath, storePath);
} catch (...) {
try {
// attempt to recover
movePath(oldPath, storePath);
} catch (...) {
ignoreException();
}
throw;
}
2020-10-11 16:19:10 +00:00
deletePath(oldPath);
}
2020-10-11 16:19:10 +00:00
MakeError(NotDeterministic, BuildError);
2020-10-11 16:19:10 +00:00
void DerivationGoal::buildDone()
{
trace("build done");
2020-10-11 16:19:10 +00:00
/* Release the build user at the end of this function. We don't do
it right away because we don't want another build grabbing this
uid and then messing around with our output. */
Finally releaseBuildUser([&]() { buildUser.reset(); });
2020-10-11 16:19:10 +00:00
sandboxMountNamespace = -1;
2020-10-11 16:19:10 +00:00
/* Since we got an EOF on the logger pipe, the builder is presumed
to have terminated. In fact, the builder could also have
simply have closed its end of the pipe, so just to be sure,
kill it. */
int status = hook ? hook->pid.kill() : pid.kill();
2020-10-11 16:19:10 +00:00
debug("builder process for '%s' finished", worker.store.printStorePath(drvPath));
2020-10-11 16:19:10 +00:00
result.timesBuilt++;
result.stopTime = time(0);
2020-10-11 16:19:10 +00:00
/* So the child is gone now. */
worker.childTerminated(this);
2020-10-11 16:19:10 +00:00
/* Close the read side of the logger pipe. */
if (hook) {
hook->builderOut.readSide = -1;
hook->fromHook.readSide = -1;
} else
builderOut.readSide = -1;
2020-10-11 16:19:10 +00:00
/* Close the log file. */
closeLogFile();
Recursive Nix support This allows Nix builders to call Nix to build derivations, with some limitations. Example: let nixpkgs = fetchTarball channel:nixos-18.03; in with import <nixpkgs> {}; runCommand "foo" { buildInputs = [ nix jq ]; NIX_PATH = "nixpkgs=${nixpkgs}"; } '' hello=$(nix-build -E '(import <nixpkgs> {}).hello.overrideDerivation (args: { name = "hello-3.5"; })') $hello/bin/hello mkdir -p $out/bin ln -s $hello/bin/hello $out/bin/hello nix path-info -r --json $hello | jq . '' This derivation makes a recursive Nix call to build GNU Hello and symlinks it from its $out, i.e. # ll ./result/bin/ lrwxrwxrwx 1 root root 63 Jan 1 1970 hello -> /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5/bin/hello # nix-store -qR ./result /nix/store/hwwqshlmazzjzj7yhrkyjydxamvvkfd3-glibc-2.26-131 /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5 /nix/store/sgmvvyw8vhfqdqb619bxkcpfn9lvd8ss-foo This is implemented as follows: * Before running the outer builder, Nix creates a Unix domain socket '.nix-socket' in the builder's temporary directory and sets $NIX_REMOTE to point to it. It starts a thread to process connections to this socket. (Thus you don't need to have nix-daemon running.) * The daemon thread uses a wrapper store (RestrictedStore) to keep track of paths added through recursive Nix calls, to implement some restrictions (see below), and to do some censorship (e.g. for purity, queryPathInfo() won't return impure information such as signatures and timestamps). * After the build finishes, the output paths are scanned for references to the paths added through recursive Nix calls (in addition to the inputs closure). Thus, in the example above, $out has a reference to $hello. The main restriction on recursive Nix calls is that they cannot do arbitrary substitutions. For example, doing nix-store -r /nix/store/kmwd1hq55akdb9sc7l3finr175dajlby-hello-2.10 is forbidden unless /nix/store/kmwd... is in the inputs closure or previously built by a recursive Nix call. This is to prevent irreproducible derivations that have hidden dependencies on substituters or the current store contents. Building a derivation is fine, however, and Nix will use substitutes if available. In other words, the builder has to present proof that it knows how to build a desired store path from scratch by constructing a derivation graph for that path. Probably we should also disallow instantiating/building fixed-output derivations (specifically, those that access the network, but currently we have no way to mark fixed-output derivations that don't access the network). Otherwise sandboxed derivations can bypass sandbox restrictions and access the network. When sandboxing is enabled, we make paths appear in the sandbox of the builder by entering the mount namespace of the builder and bind-mounting each path. This is tricky because we do a pivot_root() in the builder to change the root directory of its mount namespace, and thus the host /nix/store is not visible in the mount namespace of the builder. To get around this, just before doing pivot_root(), we branch a second mount namespace that shares its /nix/store mountpoint with the parent. Recursive Nix currently doesn't work on macOS in sandboxed mode (because we can't change the sandbox policy of a running build) and in non-root mode (because setns() barfs).
2018-10-02 14:01:26 +00:00
2020-10-11 16:19:10 +00:00
/* When running under a build user, make sure that all processes
running under that uid are gone. This is to prevent a
malicious user from leaving behind a process that keeps files
open and modifies them after they have been chown'ed to
root. */
if (buildUser) buildUser->kill();
2020-10-11 16:19:10 +00:00
/* Terminate the recursive Nix daemon. */
stopDaemon();
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
bool diskFull = false;
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
try {
2020-10-11 16:19:10 +00:00
/* Check the exit status. */
if (!statusOk(status)) {
2020-10-11 16:19:10 +00:00
/* Heuristically check whether the build failure may have
been caused by a disk full condition. We have no way
of knowing whether the build actually got an ENOSPC.
So instead, check if the disk is (nearly) full now. If
so, we don't mark this build as a permanent failure. */
#if HAVE_STATVFS
uint64_t required = 8ULL * 1024 * 1024; // FIXME: make configurable
struct statvfs st;
if (statvfs(worker.store.realStoreDir.c_str(), &st) == 0 &&
(uint64_t) st.f_bavail * st.f_bsize < required)
diskFull = true;
if (statvfs(tmpDir.c_str(), &st) == 0 &&
(uint64_t) st.f_bavail * st.f_bsize < required)
diskFull = true;
#endif
2020-10-11 16:19:10 +00:00
deleteTmpDir(false);
2020-08-07 19:09:26 +00:00
2020-10-11 16:19:10 +00:00
/* Move paths out of the chroot for easier debugging of
build failures. */
if (useChroot && buildMode == bmNormal)
for (auto & [_, status] : initialOutputs) {
if (!status.known) continue;
if (buildMode != bmCheck && status.known->isValid()) continue;
auto p = worker.store.printStorePath(status.known->path);
if (pathExists(chrootRootDir + p))
rename((chrootRootDir + p).c_str(), p.c_str());
}
2020-08-07 19:09:26 +00:00
2020-10-11 16:19:10 +00:00
auto msg = fmt("builder for '%s' %s",
yellowtxt(worker.store.printStorePath(drvPath)),
statusToString(status));
2020-08-07 19:09:26 +00:00
2020-10-11 16:19:10 +00:00
if (!logger->isVerbose() && !logTail.empty()) {
msg += (format("; last %d log lines:") % logTail.size()).str();
for (auto & line : logTail)
msg += "\n " + line;
}
2020-08-07 19:09:26 +00:00
2020-10-11 16:19:10 +00:00
if (diskFull)
msg += "\nnote: build failure may have been caused by lack of free disk space";
2014-02-17 22:04:52 +00:00
2020-10-11 16:19:10 +00:00
throw BuildError(msg);
}
2020-10-11 16:19:10 +00:00
/* Compute the FS closure of the outputs and register them as
being valid. */
registerOutputs();
2020-10-11 16:19:10 +00:00
if (settings.postBuildHook != "") {
Activity act(*logger, lvlInfo, actPostBuildHook,
fmt("running post-build-hook '%s'", settings.postBuildHook),
Logger::Fields{worker.store.printStorePath(drvPath)});
PushActivity pact(act.id);
StorePathSet outputPaths;
for (auto i : drv->outputs) {
outputPaths.insert(finalOutputs.at(i.first));
2020-10-11 16:19:10 +00:00
}
std::map<std::string, std::string> hookEnvironment = getEnv();
2020-10-11 16:19:10 +00:00
hookEnvironment.emplace("DRV_PATH", worker.store.printStorePath(drvPath));
hookEnvironment.emplace("OUT_PATHS", chomp(concatStringsSep(" ", worker.store.printStorePathSet(outputPaths))));
2020-10-11 16:19:10 +00:00
RunOptions opts(settings.postBuildHook, {});
opts.environment = hookEnvironment;
2020-10-11 16:19:10 +00:00
struct LogSink : Sink {
Activity & act;
std::string currentLine;
2020-10-11 16:19:10 +00:00
LogSink(Activity & act) : act(act) { }
2020-12-02 13:00:43 +00:00
void operator() (std::string_view data) override {
for (auto c : data) {
2020-10-11 16:19:10 +00:00
if (c == '\n') {
flushLine();
} else {
currentLine += c;
}
}
}
2017-08-15 13:31:59 +00:00
2020-10-11 16:19:10 +00:00
void flushLine() {
act.result(resPostBuildLogLine, currentLine);
currentLine.clear();
}
2020-10-11 16:19:10 +00:00
~LogSink() {
if (currentLine != "") {
currentLine += '\n';
flushLine();
}
}
};
LogSink sink(act);
2020-10-11 16:19:10 +00:00
opts.standardOut = &sink;
opts.mergeStderrToStdout = true;
runProgram2(opts);
}
2020-10-11 16:19:10 +00:00
if (buildMode == bmCheck) {
deleteTmpDir(true);
done(BuildResult::Built);
return;
}
Recursive Nix support This allows Nix builders to call Nix to build derivations, with some limitations. Example: let nixpkgs = fetchTarball channel:nixos-18.03; in with import <nixpkgs> {}; runCommand "foo" { buildInputs = [ nix jq ]; NIX_PATH = "nixpkgs=${nixpkgs}"; } '' hello=$(nix-build -E '(import <nixpkgs> {}).hello.overrideDerivation (args: { name = "hello-3.5"; })') $hello/bin/hello mkdir -p $out/bin ln -s $hello/bin/hello $out/bin/hello nix path-info -r --json $hello | jq . '' This derivation makes a recursive Nix call to build GNU Hello and symlinks it from its $out, i.e. # ll ./result/bin/ lrwxrwxrwx 1 root root 63 Jan 1 1970 hello -> /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5/bin/hello # nix-store -qR ./result /nix/store/hwwqshlmazzjzj7yhrkyjydxamvvkfd3-glibc-2.26-131 /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5 /nix/store/sgmvvyw8vhfqdqb619bxkcpfn9lvd8ss-foo This is implemented as follows: * Before running the outer builder, Nix creates a Unix domain socket '.nix-socket' in the builder's temporary directory and sets $NIX_REMOTE to point to it. It starts a thread to process connections to this socket. (Thus you don't need to have nix-daemon running.) * The daemon thread uses a wrapper store (RestrictedStore) to keep track of paths added through recursive Nix calls, to implement some restrictions (see below), and to do some censorship (e.g. for purity, queryPathInfo() won't return impure information such as signatures and timestamps). * After the build finishes, the output paths are scanned for references to the paths added through recursive Nix calls (in addition to the inputs closure). Thus, in the example above, $out has a reference to $hello. The main restriction on recursive Nix calls is that they cannot do arbitrary substitutions. For example, doing nix-store -r /nix/store/kmwd1hq55akdb9sc7l3finr175dajlby-hello-2.10 is forbidden unless /nix/store/kmwd... is in the inputs closure or previously built by a recursive Nix call. This is to prevent irreproducible derivations that have hidden dependencies on substituters or the current store contents. Building a derivation is fine, however, and Nix will use substitutes if available. In other words, the builder has to present proof that it knows how to build a desired store path from scratch by constructing a derivation graph for that path. Probably we should also disallow instantiating/building fixed-output derivations (specifically, those that access the network, but currently we have no way to mark fixed-output derivations that don't access the network). Otherwise sandboxed derivations can bypass sandbox restrictions and access the network. When sandboxing is enabled, we make paths appear in the sandbox of the builder by entering the mount namespace of the builder and bind-mounting each path. This is tricky because we do a pivot_root() in the builder to change the root directory of its mount namespace, and thus the host /nix/store is not visible in the mount namespace of the builder. To get around this, just before doing pivot_root(), we branch a second mount namespace that shares its /nix/store mountpoint with the parent. Recursive Nix currently doesn't work on macOS in sandboxed mode (because we can't change the sandbox policy of a running build) and in non-root mode (because setns() barfs).
2018-10-02 14:01:26 +00:00
2020-10-11 16:19:10 +00:00
/* Delete unused redirected outputs (when doing hash rewriting). */
for (auto & i : redirectedOutputs)
deletePath(worker.store.Store::toRealPath(i.second));
Recursive Nix support This allows Nix builders to call Nix to build derivations, with some limitations. Example: let nixpkgs = fetchTarball channel:nixos-18.03; in with import <nixpkgs> {}; runCommand "foo" { buildInputs = [ nix jq ]; NIX_PATH = "nixpkgs=${nixpkgs}"; } '' hello=$(nix-build -E '(import <nixpkgs> {}).hello.overrideDerivation (args: { name = "hello-3.5"; })') $hello/bin/hello mkdir -p $out/bin ln -s $hello/bin/hello $out/bin/hello nix path-info -r --json $hello | jq . '' This derivation makes a recursive Nix call to build GNU Hello and symlinks it from its $out, i.e. # ll ./result/bin/ lrwxrwxrwx 1 root root 63 Jan 1 1970 hello -> /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5/bin/hello # nix-store -qR ./result /nix/store/hwwqshlmazzjzj7yhrkyjydxamvvkfd3-glibc-2.26-131 /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5 /nix/store/sgmvvyw8vhfqdqb619bxkcpfn9lvd8ss-foo This is implemented as follows: * Before running the outer builder, Nix creates a Unix domain socket '.nix-socket' in the builder's temporary directory and sets $NIX_REMOTE to point to it. It starts a thread to process connections to this socket. (Thus you don't need to have nix-daemon running.) * The daemon thread uses a wrapper store (RestrictedStore) to keep track of paths added through recursive Nix calls, to implement some restrictions (see below), and to do some censorship (e.g. for purity, queryPathInfo() won't return impure information such as signatures and timestamps). * After the build finishes, the output paths are scanned for references to the paths added through recursive Nix calls (in addition to the inputs closure). Thus, in the example above, $out has a reference to $hello. The main restriction on recursive Nix calls is that they cannot do arbitrary substitutions. For example, doing nix-store -r /nix/store/kmwd1hq55akdb9sc7l3finr175dajlby-hello-2.10 is forbidden unless /nix/store/kmwd... is in the inputs closure or previously built by a recursive Nix call. This is to prevent irreproducible derivations that have hidden dependencies on substituters or the current store contents. Building a derivation is fine, however, and Nix will use substitutes if available. In other words, the builder has to present proof that it knows how to build a desired store path from scratch by constructing a derivation graph for that path. Probably we should also disallow instantiating/building fixed-output derivations (specifically, those that access the network, but currently we have no way to mark fixed-output derivations that don't access the network). Otherwise sandboxed derivations can bypass sandbox restrictions and access the network. When sandboxing is enabled, we make paths appear in the sandbox of the builder by entering the mount namespace of the builder and bind-mounting each path. This is tricky because we do a pivot_root() in the builder to change the root directory of its mount namespace, and thus the host /nix/store is not visible in the mount namespace of the builder. To get around this, just before doing pivot_root(), we branch a second mount namespace that shares its /nix/store mountpoint with the parent. Recursive Nix currently doesn't work on macOS in sandboxed mode (because we can't change the sandbox policy of a running build) and in non-root mode (because setns() barfs).
2018-10-02 14:01:26 +00:00
2020-10-11 16:19:10 +00:00
/* Delete the chroot (if we were using one). */
autoDelChroot.reset(); /* this runs the destructor */
2020-10-11 16:19:10 +00:00
deleteTmpDir(true);
Recursive Nix support This allows Nix builders to call Nix to build derivations, with some limitations. Example: let nixpkgs = fetchTarball channel:nixos-18.03; in with import <nixpkgs> {}; runCommand "foo" { buildInputs = [ nix jq ]; NIX_PATH = "nixpkgs=${nixpkgs}"; } '' hello=$(nix-build -E '(import <nixpkgs> {}).hello.overrideDerivation (args: { name = "hello-3.5"; })') $hello/bin/hello mkdir -p $out/bin ln -s $hello/bin/hello $out/bin/hello nix path-info -r --json $hello | jq . '' This derivation makes a recursive Nix call to build GNU Hello and symlinks it from its $out, i.e. # ll ./result/bin/ lrwxrwxrwx 1 root root 63 Jan 1 1970 hello -> /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5/bin/hello # nix-store -qR ./result /nix/store/hwwqshlmazzjzj7yhrkyjydxamvvkfd3-glibc-2.26-131 /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5 /nix/store/sgmvvyw8vhfqdqb619bxkcpfn9lvd8ss-foo This is implemented as follows: * Before running the outer builder, Nix creates a Unix domain socket '.nix-socket' in the builder's temporary directory and sets $NIX_REMOTE to point to it. It starts a thread to process connections to this socket. (Thus you don't need to have nix-daemon running.) * The daemon thread uses a wrapper store (RestrictedStore) to keep track of paths added through recursive Nix calls, to implement some restrictions (see below), and to do some censorship (e.g. for purity, queryPathInfo() won't return impure information such as signatures and timestamps). * After the build finishes, the output paths are scanned for references to the paths added through recursive Nix calls (in addition to the inputs closure). Thus, in the example above, $out has a reference to $hello. The main restriction on recursive Nix calls is that they cannot do arbitrary substitutions. For example, doing nix-store -r /nix/store/kmwd1hq55akdb9sc7l3finr175dajlby-hello-2.10 is forbidden unless /nix/store/kmwd... is in the inputs closure or previously built by a recursive Nix call. This is to prevent irreproducible derivations that have hidden dependencies on substituters or the current store contents. Building a derivation is fine, however, and Nix will use substitutes if available. In other words, the builder has to present proof that it knows how to build a desired store path from scratch by constructing a derivation graph for that path. Probably we should also disallow instantiating/building fixed-output derivations (specifically, those that access the network, but currently we have no way to mark fixed-output derivations that don't access the network). Otherwise sandboxed derivations can bypass sandbox restrictions and access the network. When sandboxing is enabled, we make paths appear in the sandbox of the builder by entering the mount namespace of the builder and bind-mounting each path. This is tricky because we do a pivot_root() in the builder to change the root directory of its mount namespace, and thus the host /nix/store is not visible in the mount namespace of the builder. To get around this, just before doing pivot_root(), we branch a second mount namespace that shares its /nix/store mountpoint with the parent. Recursive Nix currently doesn't work on macOS in sandboxed mode (because we can't change the sandbox policy of a running build) and in non-root mode (because setns() barfs).
2018-10-02 14:01:26 +00:00
2020-10-11 16:19:10 +00:00
/* Repeat the build if necessary. */
if (curRound++ < nrRounds) {
outputLocks.unlock();
state = &DerivationGoal::tryToBuild;
worker.wakeUp(shared_from_this());
return;
}
Recursive Nix support This allows Nix builders to call Nix to build derivations, with some limitations. Example: let nixpkgs = fetchTarball channel:nixos-18.03; in with import <nixpkgs> {}; runCommand "foo" { buildInputs = [ nix jq ]; NIX_PATH = "nixpkgs=${nixpkgs}"; } '' hello=$(nix-build -E '(import <nixpkgs> {}).hello.overrideDerivation (args: { name = "hello-3.5"; })') $hello/bin/hello mkdir -p $out/bin ln -s $hello/bin/hello $out/bin/hello nix path-info -r --json $hello | jq . '' This derivation makes a recursive Nix call to build GNU Hello and symlinks it from its $out, i.e. # ll ./result/bin/ lrwxrwxrwx 1 root root 63 Jan 1 1970 hello -> /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5/bin/hello # nix-store -qR ./result /nix/store/hwwqshlmazzjzj7yhrkyjydxamvvkfd3-glibc-2.26-131 /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5 /nix/store/sgmvvyw8vhfqdqb619bxkcpfn9lvd8ss-foo This is implemented as follows: * Before running the outer builder, Nix creates a Unix domain socket '.nix-socket' in the builder's temporary directory and sets $NIX_REMOTE to point to it. It starts a thread to process connections to this socket. (Thus you don't need to have nix-daemon running.) * The daemon thread uses a wrapper store (RestrictedStore) to keep track of paths added through recursive Nix calls, to implement some restrictions (see below), and to do some censorship (e.g. for purity, queryPathInfo() won't return impure information such as signatures and timestamps). * After the build finishes, the output paths are scanned for references to the paths added through recursive Nix calls (in addition to the inputs closure). Thus, in the example above, $out has a reference to $hello. The main restriction on recursive Nix calls is that they cannot do arbitrary substitutions. For example, doing nix-store -r /nix/store/kmwd1hq55akdb9sc7l3finr175dajlby-hello-2.10 is forbidden unless /nix/store/kmwd... is in the inputs closure or previously built by a recursive Nix call. This is to prevent irreproducible derivations that have hidden dependencies on substituters or the current store contents. Building a derivation is fine, however, and Nix will use substitutes if available. In other words, the builder has to present proof that it knows how to build a desired store path from scratch by constructing a derivation graph for that path. Probably we should also disallow instantiating/building fixed-output derivations (specifically, those that access the network, but currently we have no way to mark fixed-output derivations that don't access the network). Otherwise sandboxed derivations can bypass sandbox restrictions and access the network. When sandboxing is enabled, we make paths appear in the sandbox of the builder by entering the mount namespace of the builder and bind-mounting each path. This is tricky because we do a pivot_root() in the builder to change the root directory of its mount namespace, and thus the host /nix/store is not visible in the mount namespace of the builder. To get around this, just before doing pivot_root(), we branch a second mount namespace that shares its /nix/store mountpoint with the parent. Recursive Nix currently doesn't work on macOS in sandboxed mode (because we can't change the sandbox policy of a running build) and in non-root mode (because setns() barfs).
2018-10-02 14:01:26 +00:00
2020-10-11 16:19:10 +00:00
/* It is now safe to delete the lock files, since all future
lockers will see that the output paths are valid; they will
not create new lock files with the same names as the old
(unlinked) lock files. */
outputLocks.setDeletion(true);
outputLocks.unlock();
Recursive Nix support This allows Nix builders to call Nix to build derivations, with some limitations. Example: let nixpkgs = fetchTarball channel:nixos-18.03; in with import <nixpkgs> {}; runCommand "foo" { buildInputs = [ nix jq ]; NIX_PATH = "nixpkgs=${nixpkgs}"; } '' hello=$(nix-build -E '(import <nixpkgs> {}).hello.overrideDerivation (args: { name = "hello-3.5"; })') $hello/bin/hello mkdir -p $out/bin ln -s $hello/bin/hello $out/bin/hello nix path-info -r --json $hello | jq . '' This derivation makes a recursive Nix call to build GNU Hello and symlinks it from its $out, i.e. # ll ./result/bin/ lrwxrwxrwx 1 root root 63 Jan 1 1970 hello -> /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5/bin/hello # nix-store -qR ./result /nix/store/hwwqshlmazzjzj7yhrkyjydxamvvkfd3-glibc-2.26-131 /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5 /nix/store/sgmvvyw8vhfqdqb619bxkcpfn9lvd8ss-foo This is implemented as follows: * Before running the outer builder, Nix creates a Unix domain socket '.nix-socket' in the builder's temporary directory and sets $NIX_REMOTE to point to it. It starts a thread to process connections to this socket. (Thus you don't need to have nix-daemon running.) * The daemon thread uses a wrapper store (RestrictedStore) to keep track of paths added through recursive Nix calls, to implement some restrictions (see below), and to do some censorship (e.g. for purity, queryPathInfo() won't return impure information such as signatures and timestamps). * After the build finishes, the output paths are scanned for references to the paths added through recursive Nix calls (in addition to the inputs closure). Thus, in the example above, $out has a reference to $hello. The main restriction on recursive Nix calls is that they cannot do arbitrary substitutions. For example, doing nix-store -r /nix/store/kmwd1hq55akdb9sc7l3finr175dajlby-hello-2.10 is forbidden unless /nix/store/kmwd... is in the inputs closure or previously built by a recursive Nix call. This is to prevent irreproducible derivations that have hidden dependencies on substituters or the current store contents. Building a derivation is fine, however, and Nix will use substitutes if available. In other words, the builder has to present proof that it knows how to build a desired store path from scratch by constructing a derivation graph for that path. Probably we should also disallow instantiating/building fixed-output derivations (specifically, those that access the network, but currently we have no way to mark fixed-output derivations that don't access the network). Otherwise sandboxed derivations can bypass sandbox restrictions and access the network. When sandboxing is enabled, we make paths appear in the sandbox of the builder by entering the mount namespace of the builder and bind-mounting each path. This is tricky because we do a pivot_root() in the builder to change the root directory of its mount namespace, and thus the host /nix/store is not visible in the mount namespace of the builder. To get around this, just before doing pivot_root(), we branch a second mount namespace that shares its /nix/store mountpoint with the parent. Recursive Nix currently doesn't work on macOS in sandboxed mode (because we can't change the sandbox policy of a running build) and in non-root mode (because setns() barfs).
2018-10-02 14:01:26 +00:00
2020-10-11 16:19:10 +00:00
} catch (BuildError & e) {
outputLocks.unlock();
2020-10-11 16:19:10 +00:00
BuildResult::Status st = BuildResult::MiscFailure;
2019-05-12 20:47:41 +00:00
2020-10-11 16:19:10 +00:00
if (hook && WIFEXITED(status) && WEXITSTATUS(status) == 101)
st = BuildResult::TimedOut;
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
else if (hook && (!WIFEXITED(status) || WEXITSTATUS(status) != 100)) {
}
2020-10-11 16:19:10 +00:00
else {
st =
dynamic_cast<NotDeterministic*>(&e) ? BuildResult::NotDeterministic :
statusOk(status) ? BuildResult::OutputRejected :
derivationIsImpure(derivationType) || diskFull ? BuildResult::TransientFailure :
BuildResult::PermanentFailure;
}
2004-06-19 21:45:04 +00:00
2020-10-11 16:19:10 +00:00
done(st, e);
return;
}
2008-01-15 04:32:08 +00:00
2020-10-11 16:19:10 +00:00
done(BuildResult::Built);
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::resolvedFinished() {
done(BuildResult::Built);
}
Add support for passing structured data to builders Previously, all derivation attributes had to be coerced into strings so that they could be passed via the environment. This is lossy (e.g. lists get flattened, necessitating configureFlags vs. configureFlagsArray, of which the latter cannot be specified as an attribute), doesn't support attribute sets at all, and has size limitations (necessitating hacks like passAsFile). This patch adds a new mode for passing attributes to builders, namely encoded as a JSON file ".attrs.json" in the current directory of the builder. This mode is activated via the special attribute __structuredAttrs = true; (The idea is that one day we can set this in stdenv.mkDerivation.) For example, stdenv.mkDerivation { __structuredAttrs = true; name = "foo"; buildInputs = [ pkgs.hello pkgs.cowsay ]; doCheck = true; hardening.format = false; } results in a ".attrs.json" file containing (sans the indentation): { "buildInputs": [], "builder": "/nix/store/ygl61ycpr2vjqrx775l1r2mw1g2rb754-bash-4.3-p48/bin/bash", "configureFlags": [ "--with-foo", "--with-bar=1 2" ], "doCheck": true, "hardening": { "format": false }, "name": "foo", "nativeBuildInputs": [ "/nix/store/10h6li26i7g6z3mdpvra09yyf10mmzdr-hello-2.10", "/nix/store/4jnvjin0r6wp6cv1hdm5jbkx3vinlcvk-cowsay-3.03" ], "propagatedBuildInputs": [], "propagatedNativeBuildInputs": [], "stdenv": "/nix/store/f3hw3p8armnzy6xhd4h8s7anfjrs15n2-stdenv", "system": "x86_64-linux" } "passAsFile" is ignored in this mode because it's not needed - large strings are included directly in the JSON representation. It is up to the builder to do something with the JSON representation. For example, in bash-based builders, lists/attrsets of string values could be mapped to bash (associative) arrays.
2017-01-25 15:42:07 +00:00
2020-10-11 16:19:10 +00:00
HookReply DerivationGoal::tryBuildHook()
{
if (!worker.tryBuildHook || !useDerivation) return rpDecline;
Recursive Nix support This allows Nix builders to call Nix to build derivations, with some limitations. Example: let nixpkgs = fetchTarball channel:nixos-18.03; in with import <nixpkgs> {}; runCommand "foo" { buildInputs = [ nix jq ]; NIX_PATH = "nixpkgs=${nixpkgs}"; } '' hello=$(nix-build -E '(import <nixpkgs> {}).hello.overrideDerivation (args: { name = "hello-3.5"; })') $hello/bin/hello mkdir -p $out/bin ln -s $hello/bin/hello $out/bin/hello nix path-info -r --json $hello | jq . '' This derivation makes a recursive Nix call to build GNU Hello and symlinks it from its $out, i.e. # ll ./result/bin/ lrwxrwxrwx 1 root root 63 Jan 1 1970 hello -> /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5/bin/hello # nix-store -qR ./result /nix/store/hwwqshlmazzjzj7yhrkyjydxamvvkfd3-glibc-2.26-131 /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5 /nix/store/sgmvvyw8vhfqdqb619bxkcpfn9lvd8ss-foo This is implemented as follows: * Before running the outer builder, Nix creates a Unix domain socket '.nix-socket' in the builder's temporary directory and sets $NIX_REMOTE to point to it. It starts a thread to process connections to this socket. (Thus you don't need to have nix-daemon running.) * The daemon thread uses a wrapper store (RestrictedStore) to keep track of paths added through recursive Nix calls, to implement some restrictions (see below), and to do some censorship (e.g. for purity, queryPathInfo() won't return impure information such as signatures and timestamps). * After the build finishes, the output paths are scanned for references to the paths added through recursive Nix calls (in addition to the inputs closure). Thus, in the example above, $out has a reference to $hello. The main restriction on recursive Nix calls is that they cannot do arbitrary substitutions. For example, doing nix-store -r /nix/store/kmwd1hq55akdb9sc7l3finr175dajlby-hello-2.10 is forbidden unless /nix/store/kmwd... is in the inputs closure or previously built by a recursive Nix call. This is to prevent irreproducible derivations that have hidden dependencies on substituters or the current store contents. Building a derivation is fine, however, and Nix will use substitutes if available. In other words, the builder has to present proof that it knows how to build a desired store path from scratch by constructing a derivation graph for that path. Probably we should also disallow instantiating/building fixed-output derivations (specifically, those that access the network, but currently we have no way to mark fixed-output derivations that don't access the network). Otherwise sandboxed derivations can bypass sandbox restrictions and access the network. When sandboxing is enabled, we make paths appear in the sandbox of the builder by entering the mount namespace of the builder and bind-mounting each path. This is tricky because we do a pivot_root() in the builder to change the root directory of its mount namespace, and thus the host /nix/store is not visible in the mount namespace of the builder. To get around this, just before doing pivot_root(), we branch a second mount namespace that shares its /nix/store mountpoint with the parent. Recursive Nix currently doesn't work on macOS in sandboxed mode (because we can't change the sandbox policy of a running build) and in non-root mode (because setns() barfs).
2018-10-02 14:01:26 +00:00
2020-10-11 16:19:10 +00:00
if (!worker.hook)
worker.hook = std::make_unique<HookInstance>();
Recursive Nix support This allows Nix builders to call Nix to build derivations, with some limitations. Example: let nixpkgs = fetchTarball channel:nixos-18.03; in with import <nixpkgs> {}; runCommand "foo" { buildInputs = [ nix jq ]; NIX_PATH = "nixpkgs=${nixpkgs}"; } '' hello=$(nix-build -E '(import <nixpkgs> {}).hello.overrideDerivation (args: { name = "hello-3.5"; })') $hello/bin/hello mkdir -p $out/bin ln -s $hello/bin/hello $out/bin/hello nix path-info -r --json $hello | jq . '' This derivation makes a recursive Nix call to build GNU Hello and symlinks it from its $out, i.e. # ll ./result/bin/ lrwxrwxrwx 1 root root 63 Jan 1 1970 hello -> /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5/bin/hello # nix-store -qR ./result /nix/store/hwwqshlmazzjzj7yhrkyjydxamvvkfd3-glibc-2.26-131 /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5 /nix/store/sgmvvyw8vhfqdqb619bxkcpfn9lvd8ss-foo This is implemented as follows: * Before running the outer builder, Nix creates a Unix domain socket '.nix-socket' in the builder's temporary directory and sets $NIX_REMOTE to point to it. It starts a thread to process connections to this socket. (Thus you don't need to have nix-daemon running.) * The daemon thread uses a wrapper store (RestrictedStore) to keep track of paths added through recursive Nix calls, to implement some restrictions (see below), and to do some censorship (e.g. for purity, queryPathInfo() won't return impure information such as signatures and timestamps). * After the build finishes, the output paths are scanned for references to the paths added through recursive Nix calls (in addition to the inputs closure). Thus, in the example above, $out has a reference to $hello. The main restriction on recursive Nix calls is that they cannot do arbitrary substitutions. For example, doing nix-store -r /nix/store/kmwd1hq55akdb9sc7l3finr175dajlby-hello-2.10 is forbidden unless /nix/store/kmwd... is in the inputs closure or previously built by a recursive Nix call. This is to prevent irreproducible derivations that have hidden dependencies on substituters or the current store contents. Building a derivation is fine, however, and Nix will use substitutes if available. In other words, the builder has to present proof that it knows how to build a desired store path from scratch by constructing a derivation graph for that path. Probably we should also disallow instantiating/building fixed-output derivations (specifically, those that access the network, but currently we have no way to mark fixed-output derivations that don't access the network). Otherwise sandboxed derivations can bypass sandbox restrictions and access the network. When sandboxing is enabled, we make paths appear in the sandbox of the builder by entering the mount namespace of the builder and bind-mounting each path. This is tricky because we do a pivot_root() in the builder to change the root directory of its mount namespace, and thus the host /nix/store is not visible in the mount namespace of the builder. To get around this, just before doing pivot_root(), we branch a second mount namespace that shares its /nix/store mountpoint with the parent. Recursive Nix currently doesn't work on macOS in sandboxed mode (because we can't change the sandbox policy of a running build) and in non-root mode (because setns() barfs).
2018-10-02 14:01:26 +00:00
2020-10-11 16:19:10 +00:00
try {
Recursive Nix support This allows Nix builders to call Nix to build derivations, with some limitations. Example: let nixpkgs = fetchTarball channel:nixos-18.03; in with import <nixpkgs> {}; runCommand "foo" { buildInputs = [ nix jq ]; NIX_PATH = "nixpkgs=${nixpkgs}"; } '' hello=$(nix-build -E '(import <nixpkgs> {}).hello.overrideDerivation (args: { name = "hello-3.5"; })') $hello/bin/hello mkdir -p $out/bin ln -s $hello/bin/hello $out/bin/hello nix path-info -r --json $hello | jq . '' This derivation makes a recursive Nix call to build GNU Hello and symlinks it from its $out, i.e. # ll ./result/bin/ lrwxrwxrwx 1 root root 63 Jan 1 1970 hello -> /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5/bin/hello # nix-store -qR ./result /nix/store/hwwqshlmazzjzj7yhrkyjydxamvvkfd3-glibc-2.26-131 /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5 /nix/store/sgmvvyw8vhfqdqb619bxkcpfn9lvd8ss-foo This is implemented as follows: * Before running the outer builder, Nix creates a Unix domain socket '.nix-socket' in the builder's temporary directory and sets $NIX_REMOTE to point to it. It starts a thread to process connections to this socket. (Thus you don't need to have nix-daemon running.) * The daemon thread uses a wrapper store (RestrictedStore) to keep track of paths added through recursive Nix calls, to implement some restrictions (see below), and to do some censorship (e.g. for purity, queryPathInfo() won't return impure information such as signatures and timestamps). * After the build finishes, the output paths are scanned for references to the paths added through recursive Nix calls (in addition to the inputs closure). Thus, in the example above, $out has a reference to $hello. The main restriction on recursive Nix calls is that they cannot do arbitrary substitutions. For example, doing nix-store -r /nix/store/kmwd1hq55akdb9sc7l3finr175dajlby-hello-2.10 is forbidden unless /nix/store/kmwd... is in the inputs closure or previously built by a recursive Nix call. This is to prevent irreproducible derivations that have hidden dependencies on substituters or the current store contents. Building a derivation is fine, however, and Nix will use substitutes if available. In other words, the builder has to present proof that it knows how to build a desired store path from scratch by constructing a derivation graph for that path. Probably we should also disallow instantiating/building fixed-output derivations (specifically, those that access the network, but currently we have no way to mark fixed-output derivations that don't access the network). Otherwise sandboxed derivations can bypass sandbox restrictions and access the network. When sandboxing is enabled, we make paths appear in the sandbox of the builder by entering the mount namespace of the builder and bind-mounting each path. This is tricky because we do a pivot_root() in the builder to change the root directory of its mount namespace, and thus the host /nix/store is not visible in the mount namespace of the builder. To get around this, just before doing pivot_root(), we branch a second mount namespace that shares its /nix/store mountpoint with the parent. Recursive Nix currently doesn't work on macOS in sandboxed mode (because we can't change the sandbox policy of a running build) and in non-root mode (because setns() barfs).
2018-10-02 14:01:26 +00:00
2020-10-11 16:19:10 +00:00
/* Send the request to the hook. */
worker.hook->sink
<< "try"
<< (worker.getNrLocalBuilds() < settings.maxBuildJobs ? 1 : 0)
<< drv->platform
<< worker.store.printStorePath(drvPath)
<< parsedDrv->getRequiredSystemFeatures();
worker.hook->sink.flush();
2020-10-11 16:19:10 +00:00
/* Read the first line of input, which should be a word indicating
whether the hook wishes to perform the build. */
string reply;
while (true) {
string s = readLine(worker.hook->fromHook.readSide.get());
if (handleJSONLogMessage(s, worker.act, worker.hook->activities, true))
;
else if (string(s, 0, 2) == "# ") {
reply = string(s, 2);
break;
}
else {
s += "\n";
writeToStderr(s);
}
}
2020-10-11 16:19:10 +00:00
debug("hook reply is '%1%'", reply);
2020-10-11 16:19:10 +00:00
if (reply == "decline")
return rpDecline;
else if (reply == "decline-permanently") {
worker.tryBuildHook = false;
worker.hook = 0;
return rpDecline;
}
else if (reply == "postpone")
return rpPostpone;
else if (reply != "accept")
throw Error("bad hook reply '%s'", reply);
2020-10-11 16:19:10 +00:00
} catch (SysError & e) {
if (e.errNo == EPIPE) {
logError({
.name = "Build hook died",
.hint = hintfmt(
"build hook died unexpectedly: %s",
chomp(drainFD(worker.hook->fromHook.readSide.get())))
});
worker.hook = 0;
return rpDecline;
} else
throw;
}
2020-10-11 16:19:10 +00:00
hook = std::move(worker.hook);
2020-10-11 16:19:10 +00:00
machineName = readLine(hook->fromHook.readSide.get());
2020-10-11 16:19:10 +00:00
/* Tell the hook all the inputs that have to be copied to the
remote system. */
worker_proto::write(worker.store, hook->sink, inputPaths);
2020-10-11 16:19:10 +00:00
/* Tell the hooks the missing outputs that have to be copied back
from the remote system. */
{
StorePathSet missingPaths;
for (auto & [_, status] : initialOutputs) {
if (!status.known) continue;
if (buildMode != bmCheck && status.known->isValid()) continue;
missingPaths.insert(status.known->path);
}
worker_proto::write(worker.store, hook->sink, missingPaths);
}
2004-06-29 09:41:50 +00:00
2020-10-11 16:19:10 +00:00
hook->sink = FdSink();
hook->toHook.writeSide = -1;
2020-08-07 19:09:26 +00:00
2020-10-11 16:19:10 +00:00
/* Create the log file and pipe. */
Path logFile = openLogFile();
2020-10-11 16:19:10 +00:00
set<int> fds;
fds.insert(hook->fromHook.readSide.get());
fds.insert(hook->builderOut.readSide.get());
worker.childStarted(shared_from_this(), fds, false, false);
2020-10-11 16:19:10 +00:00
return rpAccept;
}
2020-10-11 16:19:10 +00:00
int childEntry(void * arg)
{
((DerivationGoal *) arg)->runChild();
return 1;
}
2020-10-11 16:19:10 +00:00
StorePathSet DerivationGoal::exportReferences(const StorePathSet & storePaths)
{
StorePathSet paths;
2020-10-11 16:19:10 +00:00
for (auto & storePath : storePaths) {
if (!inputPaths.count(storePath))
throw BuildError("cannot export references of path '%s' because it is not in the input closure of the derivation", worker.store.printStorePath(storePath));
2020-10-11 16:19:10 +00:00
worker.store.computeFSClosure({storePath}, paths);
}
2020-10-11 16:19:10 +00:00
/* If there are derivations in the graph, then include their
outputs as well. This is useful if you want to do things
like passing all build-time dependencies of some path to a
derivation that builds a NixOS DVD image. */
auto paths2 = paths;
2020-10-11 16:19:10 +00:00
for (auto & j : paths2) {
if (j.isDerivation()) {
Derivation drv = worker.store.derivationFromPath(j);
for (auto & k : drv.outputsAndOptPaths(worker.store)) {
if (!k.second.second)
/* FIXME: I am confused why we are calling
`computeFSClosure` on the output path, rather than
derivation itself. That doesn't seem right to me, so I
won't try to implemented this for CA derivations. */
throw UnimplementedError("exportReferences on CA derivations is not yet implemented");
worker.store.computeFSClosure(*k.second.second, paths);
}
}
}
2017-05-16 14:09:57 +00:00
2020-10-11 16:19:10 +00:00
return paths;
}
2020-10-11 16:19:10 +00:00
static std::once_flag dns_resolve_flag;
2020-10-11 16:19:10 +00:00
static void preloadNSS() {
/* builtin:fetchurl can trigger a DNS lookup, which with glibc can trigger a dynamic library load of
one of the glibc NSS libraries in a sandboxed child, which will fail unless the library's already
been loaded in the parent. So we force a lookup of an invalid domain to force the NSS machinery to
load its lookup libraries in the parent before any child gets a chance to. */
std::call_once(dns_resolve_flag, []() {
struct addrinfo *res = NULL;
2017-05-16 14:09:57 +00:00
2020-10-11 16:19:10 +00:00
if (getaddrinfo("this.pre-initializes.the.dns.resolvers.invalid.", "http", NULL, &res) != 0) {
if (res) freeaddrinfo(res);
}
});
}
2020-10-11 16:19:10 +00:00
void linkOrCopy(const Path & from, const Path & to)
{
2020-10-11 16:19:10 +00:00
if (link(from.c_str(), to.c_str()) == -1) {
/* Hard-linking fails if we exceed the maximum link count on a
file (e.g. 32000 of ext3), which is quite possible after a
'nix-store --optimise'. FIXME: actually, why don't we just
bind-mount in this case?
It can also fail with EPERM in BeegFS v7 and earlier versions
which don't allow hard-links to other directories */
if (errno != EMLINK && errno != EPERM)
throw SysError("linking '%s' to '%s'", to, from);
copyPath(from, to);
}
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::startBuilder()
2019-05-12 20:47:41 +00:00
{
2020-10-11 16:19:10 +00:00
/* Right platform? */
if (!parsedDrv->canBuildLocally(worker.store))
throw Error("a '%s' with features {%s} is required to build '%s', but I am a '%s' with features {%s}",
drv->platform,
concatStringsSep(", ", parsedDrv->getRequiredSystemFeatures()),
worker.store.printStorePath(drvPath),
settings.thisSystem,
concatStringsSep<StringSet>(", ", worker.store.systemFeatures));
2019-05-12 20:47:41 +00:00
2020-10-11 16:19:10 +00:00
if (drv->isBuiltin())
preloadNSS();
2019-05-12 20:47:41 +00:00
2020-10-11 16:19:10 +00:00
#if __APPLE__
additionalSandboxProfile = parsedDrv->getStringAttr("__sandboxProfile").value_or("");
#endif
2020-10-11 16:19:10 +00:00
/* Are we doing a chroot build? */
{
auto noChroot = parsedDrv->getBoolAttr("__noChroot");
if (settings.sandboxMode == smEnabled) {
if (noChroot)
throw Error("derivation '%s' has '__noChroot' set, "
"but that's not allowed when 'sandbox' is 'true'", worker.store.printStorePath(drvPath));
#if __APPLE__
if (additionalSandboxProfile != "")
throw Error("derivation '%s' specifies a sandbox profile, "
"but this is only allowed when 'sandbox' is 'relaxed'", worker.store.printStorePath(drvPath));
#endif
useChroot = true;
}
else if (settings.sandboxMode == smDisabled)
useChroot = false;
else if (settings.sandboxMode == smRelaxed)
useChroot = !(derivationIsImpure(derivationType)) && !noChroot;
}
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
if (worker.store.storeDir != worker.store.realStoreDir) {
#if __linux__
useChroot = true;
#else
throw Error("building using a diverted store is not supported on this platform");
#endif
}
2020-10-11 16:19:10 +00:00
/* Create a temporary directory where the build will take
place. */
tmpDir = createTempDir("", "nix-build-" + std::string(drvPath.name()), false, false, 0700);
2020-10-11 16:19:10 +00:00
chownToBuilder(tmpDir);
2020-10-11 16:19:10 +00:00
for (auto & [outputName, status] : initialOutputs) {
/* Set scratch path we'll actually use during the build.
2020-10-11 16:19:10 +00:00
If we're not doing a chroot build, but we have some valid
output paths. Since we can't just overwrite or delete
them, we have to do hash rewriting: i.e. in the
environment/arguments passed to the build, we replace the
hashes of the valid outputs with unique dummy strings;
after the build, we discard the redirected outputs
corresponding to the valid outputs, and rewrite the
contents of the new outputs to replace the dummy strings
with the actual hashes. */
auto scratchPath =
!status.known
? makeFallbackPath(outputName)
: !needsHashRewrite()
/* Can always use original path in sandbox */
? status.known->path
: !status.known->isPresent()
/* If path doesn't yet exist can just use it */
? status.known->path
: buildMode != bmRepair && !status.known->isValid()
/* If we aren't repairing we'll delete a corrupted path, so we
can use original path */
? status.known->path
: /* If we are repairing or the path is totally valid, we'll need
to use a temporary path */
makeFallbackPath(status.known->path);
scratchOutputs.insert_or_assign(outputName, scratchPath);
2020-10-11 16:19:10 +00:00
/* A non-removed corrupted path needs to be stored here, too */
if (buildMode == bmRepair && !status.known->isValid())
redirectedBadOutputs.insert(status.known->path);
2020-10-11 16:19:10 +00:00
/* Substitute output placeholders with the scratch output paths.
We'll use during the build. */
inputRewrites[hashPlaceholder(outputName)] = worker.store.printStorePath(scratchPath);
2020-10-11 16:19:10 +00:00
/* Additional tasks if we know the final path a priori. */
if (!status.known) continue;
auto fixedFinalPath = status.known->path;
2020-10-11 16:19:10 +00:00
/* Additional tasks if the final and scratch are both known and
differ. */
if (fixedFinalPath == scratchPath) continue;
2020-10-11 16:19:10 +00:00
/* Ensure scratch path is ours to use. */
deletePath(worker.store.printStorePath(scratchPath));
2020-10-11 16:19:10 +00:00
/* Rewrite and unrewrite paths */
{
std::string h1 { fixedFinalPath.hashPart() };
std::string h2 { scratchPath.hashPart() };
inputRewrites[h1] = h2;
}
2020-10-11 16:19:10 +00:00
redirectedOutputs.insert_or_assign(std::move(fixedFinalPath), std::move(scratchPath));
}
2020-10-11 16:19:10 +00:00
/* Construct the environment passed to the builder. */
initEnv();
2020-10-11 16:19:10 +00:00
writeStructuredAttrs();
2020-10-11 16:19:10 +00:00
/* Handle exportReferencesGraph(), if set. */
if (!parsedDrv->getStructuredAttrs()) {
/* The `exportReferencesGraph' feature allows the references graph
to be passed to a builder. This attribute should be a list of
pairs [name1 path1 name2 path2 ...]. The references graph of
each `pathN' will be stored in a text file `nameN' in the
temporary build directory. The text files have the format used
by `nix-store --register-validity'. However, the deriver
fields are left empty. */
string s = get(drv->env, "exportReferencesGraph").value_or("");
Strings ss = tokenizeString<Strings>(s);
if (ss.size() % 2 != 0)
throw BuildError("odd number of tokens in 'exportReferencesGraph': '%1%'", s);
for (Strings::iterator i = ss.begin(); i != ss.end(); ) {
string fileName = *i++;
static std::regex regex("[A-Za-z_][A-Za-z0-9_.-]*");
if (!std::regex_match(fileName, regex))
throw Error("invalid file name '%s' in 'exportReferencesGraph'", fileName);
2020-10-11 16:19:10 +00:00
auto storePathS = *i++;
if (!worker.store.isInStore(storePathS))
throw BuildError("'exportReferencesGraph' contains a non-store path '%1%'", storePathS);
auto storePath = worker.store.toStorePath(storePathS).first;
2020-10-11 16:19:10 +00:00
/* Write closure info to <fileName>. */
writeFile(tmpDir + "/" + fileName,
worker.store.makeValidityRegistration(
exportReferences({storePath}), false, false));
}
}
2020-10-11 16:19:10 +00:00
if (useChroot) {
2003-07-20 19:29:38 +00:00
2020-10-11 16:19:10 +00:00
/* Allow a user-configurable set of directories from the
host file system. */
dirsInChroot.clear();
for (auto i : settings.sandboxPaths.get()) {
2020-10-11 16:19:10 +00:00
if (i.empty()) continue;
bool optional = false;
if (i[i.size() - 1] == '?') {
optional = true;
i.pop_back();
}
size_t p = i.find('=');
if (p == string::npos)
dirsInChroot[i] = {i, optional};
else
dirsInChroot[string(i, 0, p)] = {string(i, p + 1), optional};
}
dirsInChroot[tmpDirInSandbox] = tmpDir;
2020-10-11 16:19:10 +00:00
/* Add the closure of store paths to the chroot. */
StorePathSet closure;
for (auto & i : dirsInChroot)
try {
if (worker.store.isInStore(i.second.source))
worker.store.computeFSClosure(worker.store.toStorePath(i.second.source).first, closure);
} catch (InvalidPath & e) {
} catch (Error & e) {
e.addTrace({}, "while processing 'sandbox-paths'");
throw;
}
for (auto & i : closure) {
auto p = worker.store.printStorePath(i);
dirsInChroot.insert_or_assign(p, p);
}
2020-10-11 16:19:10 +00:00
PathSet allowedPaths = settings.allowedImpureHostPrefixes;
2020-08-07 19:09:26 +00:00
2020-10-11 16:19:10 +00:00
/* This works like the above, except on a per-derivation level */
auto impurePaths = parsedDrv->getStringsAttr("__impureHostDeps").value_or(Strings());
2020-10-11 16:19:10 +00:00
for (auto & i : impurePaths) {
bool found = false;
/* Note: we're not resolving symlinks here to prevent
giving a non-root user info about inaccessible
files. */
Path canonI = canonPath(i);
/* If only we had a trie to do this more efficiently :) luckily, these are generally going to be pretty small */
for (auto & a : allowedPaths) {
Path canonA = canonPath(a);
if (canonI == canonA || isInDir(canonI, canonA)) {
found = true;
break;
}
}
if (!found)
throw Error("derivation '%s' requested impure path '%s', but it was not in allowed-impure-host-deps",
worker.store.printStorePath(drvPath), i);
2020-10-11 16:19:10 +00:00
dirsInChroot[i] = i;
2020-08-07 19:09:26 +00:00
}
2020-10-11 16:19:10 +00:00
#if __linux__
/* Create a temporary directory in which we set up the chroot
environment using bind-mounts. We put it in the Nix store
to ensure that we can create hard-links to non-directory
inputs in the fake Nix store in the chroot (see below). */
chrootRootDir = worker.store.Store::toRealPath(drvPath) + ".chroot";
deletePath(chrootRootDir);
2020-10-11 16:19:10 +00:00
/* Clean up the chroot directory automatically. */
autoDelChroot = std::make_shared<AutoDelete>(chrootRootDir);
2020-10-11 16:19:10 +00:00
printMsg(lvlChatty, format("setting up chroot environment in '%1%'") % chrootRootDir);
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
if (mkdir(chrootRootDir.c_str(), 0750) == -1)
throw SysError("cannot create '%1%'", chrootRootDir);
2020-10-11 16:19:10 +00:00
if (buildUser && chown(chrootRootDir.c_str(), 0, buildUser->getGID()) == -1)
throw SysError("cannot change ownership of '%1%'", chrootRootDir);
2020-10-11 16:19:10 +00:00
/* Create a writable /tmp in the chroot. Many builders need
this. (Of course they should really respect $TMPDIR
instead.) */
Path chrootTmpDir = chrootRootDir + "/tmp";
createDirs(chrootTmpDir);
chmod_(chrootTmpDir, 01777);
2020-10-11 16:19:10 +00:00
/* Create a /etc/passwd with entries for the build user and the
nobody account. The latter is kind of a hack to support
Samba-in-QEMU. */
createDirs(chrootRootDir + "/etc");
2020-10-11 16:19:10 +00:00
/* Declare the build user's group so that programs get a consistent
view of the system (e.g., "id -gn"). */
writeFile(chrootRootDir + "/etc/group",
fmt("root:x:0:\n"
"nixbld:!:%1%:\n"
"nogroup:x:65534:\n", sandboxGid()));
2020-10-11 16:19:10 +00:00
/* Create /etc/hosts with localhost entry. */
if (!(derivationIsImpure(derivationType)))
writeFile(chrootRootDir + "/etc/hosts", "127.0.0.1 localhost\n::1 localhost\n");
2020-10-11 16:19:10 +00:00
/* Make the closure of the inputs available in the chroot,
rather than the whole Nix store. This prevents any access
to undeclared dependencies. Directories are bind-mounted,
while other inputs are hard-linked (since only directories
can be bind-mounted). !!! As an extra security
precaution, make the fake Nix store only writable by the
build user. */
Path chrootStoreDir = chrootRootDir + worker.store.storeDir;
createDirs(chrootStoreDir);
chmod_(chrootStoreDir, 01775);
2020-08-07 19:09:26 +00:00
2020-10-11 16:19:10 +00:00
if (buildUser && chown(chrootStoreDir.c_str(), 0, buildUser->getGID()) == -1)
throw SysError("cannot change ownership of '%1%'", chrootStoreDir);
2020-10-11 16:19:10 +00:00
for (auto & i : inputPaths) {
auto p = worker.store.printStorePath(i);
Path r = worker.store.toRealPath(p);
if (S_ISDIR(lstat(r).st_mode))
dirsInChroot.insert_or_assign(p, r);
else
linkOrCopy(r, chrootRootDir + p);
}
2020-10-11 16:19:10 +00:00
/* If we're repairing, checking or rebuilding part of a
multiple-outputs derivation, it's possible that we're
rebuilding a path that is in settings.dirsInChroot
(typically the dependencies of /bin/sh). Throw them
out. */
for (auto & i : drv->outputsAndOptPaths(worker.store)) {
/* If the name isn't known a priori (i.e. floating
content-addressed derivation), the temporary location we use
should be fresh. Freshness means it is impossible that the path
is already in the sandbox, so we don't need to worry about
removing it. */
if (i.second.second)
dirsInChroot.erase(worker.store.printStorePath(*i.second.second));
}
2020-10-11 16:19:10 +00:00
#elif __APPLE__
/* We don't really have any parent prep work to do (yet?)
All work happens in the child, instead. */
#else
throw Error("sandboxing builds is not supported on this platform");
#endif
}
2020-10-11 16:19:10 +00:00
if (needsHashRewrite() && pathExists(homeDir))
throw Error("home directory '%1%' exists; please remove it to assure purity of builds without sandboxing", homeDir);
if (useChroot && settings.preBuildHook != "" && dynamic_cast<Derivation *>(drv.get())) {
printMsg(lvlChatty, format("executing pre-build hook '%1%'")
% settings.preBuildHook);
auto args = useChroot ? Strings({worker.store.printStorePath(drvPath), chrootRootDir}) :
Strings({ worker.store.printStorePath(drvPath) });
enum BuildHookState {
stBegin,
stExtraChrootDirs
};
auto state = stBegin;
auto lines = runProgram(settings.preBuildHook, false, args);
auto lastPos = std::string::size_type{0};
for (auto nlPos = lines.find('\n'); nlPos != string::npos;
nlPos = lines.find('\n', lastPos)) {
auto line = std::string{lines, lastPos, nlPos - lastPos};
lastPos = nlPos + 1;
if (state == stBegin) {
if (line == "extra-sandbox-paths" || line == "extra-chroot-dirs") {
state = stExtraChrootDirs;
} else {
throw Error("unknown pre-build hook command '%1%'", line);
}
} else if (state == stExtraChrootDirs) {
if (line == "") {
state = stBegin;
} else {
auto p = line.find('=');
if (p == string::npos)
dirsInChroot[line] = line;
else
dirsInChroot[string(line, 0, p)] = string(line, p + 1);
}
}
}
}
2020-10-11 16:19:10 +00:00
/* Fire up a Nix daemon to process recursive Nix calls from the
builder. */
if (parsedDrv->getRequiredSystemFeatures().count("recursive-nix"))
startDaemon();
2020-10-11 16:19:10 +00:00
/* Run the builder. */
printMsg(lvlChatty, "executing builder '%1%'", drv->builder);
2020-10-11 16:19:10 +00:00
/* Create the log file. */
Path logFile = openLogFile();
2020-10-11 16:19:10 +00:00
/* Create a pipe to get the output of the builder. */
//builderOut.create();
2020-10-11 16:19:10 +00:00
builderOut.readSide = posix_openpt(O_RDWR | O_NOCTTY);
if (!builderOut.readSide)
throw SysError("opening pseudoterminal master");
2020-10-11 16:19:10 +00:00
std::string slaveName(ptsname(builderOut.readSide.get()));
2020-10-11 16:19:10 +00:00
if (buildUser) {
if (chmod(slaveName.c_str(), 0600))
throw SysError("changing mode of pseudoterminal slave");
2020-10-11 16:19:10 +00:00
if (chown(slaveName.c_str(), buildUser->getUID(), 0))
throw SysError("changing owner of pseudoterminal slave");
}
#if __APPLE__
else {
if (grantpt(builderOut.readSide.get()))
throw SysError("granting access to pseudoterminal slave");
}
2020-10-11 16:19:10 +00:00
#endif
2020-10-11 16:19:10 +00:00
#if 0
// Mount the pt in the sandbox so that the "tty" command works.
// FIXME: this doesn't work with the new devpts in the sandbox.
if (useChroot)
dirsInChroot[slaveName] = {slaveName, false};
#endif
2020-10-11 16:19:10 +00:00
if (unlockpt(builderOut.readSide.get()))
throw SysError("unlocking pseudoterminal");
2020-10-11 16:19:10 +00:00
builderOut.writeSide = open(slaveName.c_str(), O_RDWR | O_NOCTTY);
if (!builderOut.writeSide)
throw SysError("opening pseudoterminal slave");
2020-10-11 16:19:10 +00:00
// Put the pt into raw mode to prevent \n -> \r\n translation.
struct termios term;
if (tcgetattr(builderOut.writeSide.get(), &term))
throw SysError("getting pseudoterminal attributes");
2020-10-11 16:19:10 +00:00
cfmakeraw(&term);
2020-10-11 16:19:10 +00:00
if (tcsetattr(builderOut.writeSide.get(), TCSANOW, &term))
throw SysError("putting pseudoterminal into raw mode");
2020-10-11 16:19:10 +00:00
result.startTime = time(0);
2020-10-11 16:19:10 +00:00
/* Fork a child to build the package. */
ProcessOptions options;
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
#if __linux__
if (useChroot) {
/* Set up private namespaces for the build:
2020-10-11 16:19:10 +00:00
- The PID namespace causes the build to start as PID 1.
Processes outside of the chroot are not visible to those
on the inside, but processes inside the chroot are
visible from the outside (though with different PIDs).
2020-10-11 16:19:10 +00:00
- The private mount namespace ensures that all the bind
mounts we do will only show up in this process and its
children, and will disappear automatically when we're
done.
2020-10-11 16:19:10 +00:00
- The private network namespace ensures that the builder
cannot talk to the outside world (or vice versa). It
only has a private loopback interface. (Fixed-output
derivations are not run in a private network namespace
to allow functions like fetchurl to work.)
2020-10-11 16:19:10 +00:00
- The IPC namespace prevents the builder from communicating
with outside processes using SysV IPC mechanisms (shared
memory, message queues, semaphores). It also ensures
that all IPC objects are destroyed when the builder
exits.
2020-10-11 16:19:10 +00:00
- The UTS namespace ensures that builders see a hostname of
localhost rather than the actual hostname.
2020-10-11 16:19:10 +00:00
We use a helper process to do the clone() to work around
clone() being broken in multi-threaded programs due to
at-fork handlers not being run. Note that we use
CLONE_PARENT to ensure that the real builder is parented to
us.
*/
2020-10-11 16:19:10 +00:00
if (!(derivationIsImpure(derivationType)))
privateNetwork = true;
2020-10-11 16:19:10 +00:00
userNamespaceSync.create();
2020-10-11 16:19:10 +00:00
options.allowVfork = false;
2020-10-11 16:19:10 +00:00
Path maxUserNamespaces = "/proc/sys/user/max_user_namespaces";
static bool userNamespacesEnabled =
pathExists(maxUserNamespaces)
&& trim(readFile(maxUserNamespaces)) != "0";
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
usingUserNamespace = userNamespacesEnabled;
2020-10-11 16:19:10 +00:00
Pid helper = startProcess([&]() {
2020-10-11 16:19:10 +00:00
/* Drop additional groups here because we can't do it
after we've created the new user namespace. FIXME:
this means that if we're not root in the parent
namespace, we can't drop additional groups; they will
be mapped to nogroup in the child namespace. There does
not seem to be a workaround for this. (But who can tell
from reading user_namespaces(7)?)
See also https://lwn.net/Articles/621612/. */
if (getuid() == 0 && setgroups(0, 0) == -1)
throw SysError("setgroups failed");
2020-10-11 16:19:10 +00:00
size_t stackSize = 1 * 1024 * 1024;
char * stack = (char *) mmap(0, stackSize,
PROT_WRITE | PROT_READ, MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK, -1, 0);
if (stack == MAP_FAILED) throw SysError("allocating stack");
2020-10-11 16:19:10 +00:00
int flags = CLONE_NEWPID | CLONE_NEWNS | CLONE_NEWIPC | CLONE_NEWUTS | CLONE_PARENT | SIGCHLD;
if (privateNetwork)
flags |= CLONE_NEWNET;
if (usingUserNamespace)
flags |= CLONE_NEWUSER;
2020-10-11 16:19:10 +00:00
pid_t child = clone(childEntry, stack + stackSize, flags, this);
if (child == -1 && errno == EINVAL) {
/* Fallback for Linux < 2.13 where CLONE_NEWPID and
CLONE_PARENT are not allowed together. */
flags &= ~CLONE_NEWPID;
child = clone(childEntry, stack + stackSize, flags, this);
}
if (usingUserNamespace && child == -1 && (errno == EPERM || errno == EINVAL)) {
/* Some distros patch Linux to not allow unprivileged
* user namespaces. If we get EPERM or EINVAL, try
* without CLONE_NEWUSER and see if that works.
*/
usingUserNamespace = false;
flags &= ~CLONE_NEWUSER;
child = clone(childEntry, stack + stackSize, flags, this);
}
/* Otherwise exit with EPERM so we can handle this in the
parent. This is only done when sandbox-fallback is set
to true (the default). */
if (child == -1 && (errno == EPERM || errno == EINVAL) && settings.sandboxFallback)
_exit(1);
if (child == -1) throw SysError("cloning builder process");
2020-08-07 19:09:26 +00:00
2020-10-11 16:19:10 +00:00
writeFull(builderOut.writeSide.get(),
fmt("%d %d\n", usingUserNamespace, child));
_exit(0);
}, options);
2020-10-11 16:19:10 +00:00
int res = helper.wait();
if (res != 0 && settings.sandboxFallback) {
useChroot = false;
initTmpDir();
goto fallback;
} else if (res != 0)
throw Error("unable to start build process");
2009-03-22 23:53:05 +00:00
2020-10-11 16:19:10 +00:00
userNamespaceSync.readSide = -1;
2020-10-11 16:19:10 +00:00
/* Close the write side to prevent runChild() from hanging
reading from this. */
Finally cleanup([&]() {
userNamespaceSync.writeSide = -1;
});
2020-10-11 16:19:10 +00:00
pid_t tmp;
auto ss = tokenizeString<std::vector<std::string>>(readLine(builderOut.readSide.get()));
assert(ss.size() == 2);
usingUserNamespace = ss[0] == "1";
if (!string2Int<pid_t>(ss[1], tmp)) abort();
pid = tmp;
2020-10-11 16:19:10 +00:00
if (usingUserNamespace) {
/* Set the UID/GID mapping of the builder's user namespace
such that the sandbox user maps to the build user, or to
the calling user (if build users are disabled). */
uid_t hostUid = buildUser ? buildUser->getUID() : getuid();
uid_t hostGid = buildUser ? buildUser->getGID() : getgid();
2020-10-11 16:19:10 +00:00
writeFile("/proc/" + std::to_string(pid) + "/uid_map",
fmt("%d %d 1", sandboxUid(), hostUid));
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
writeFile("/proc/" + std::to_string(pid) + "/setgroups", "deny");
2020-10-11 16:19:10 +00:00
writeFile("/proc/" + std::to_string(pid) + "/gid_map",
fmt("%d %d 1", sandboxGid(), hostGid));
} else {
debug("note: not using a user namespace");
if (!buildUser)
throw Error("cannot perform a sandboxed build because user namespaces are not enabled; check /proc/sys/user/max_user_namespaces");
}
/* Now that we now the sandbox uid, we can write
/etc/passwd. */
writeFile(chrootRootDir + "/etc/passwd", fmt(
"root:x:0:0:Nix build user:%3%:/noshell\n"
"nixbld:x:%1%:%2%:Nix build user:%3%:/noshell\n"
"nobody:x:65534:65534:Nobody:/:/noshell\n",
sandboxUid(), sandboxGid(), settings.sandboxBuildDir));
2020-10-11 16:19:10 +00:00
/* Save the mount namespace of the child. We have to do this
*before* the child does a chroot. */
sandboxMountNamespace = open(fmt("/proc/%d/ns/mnt", (pid_t) pid).c_str(), O_RDONLY);
if (sandboxMountNamespace.get() == -1)
throw SysError("getting sandbox mount namespace");
2020-10-11 16:19:10 +00:00
/* Signal the builder that we've updated its user namespace. */
writeFull(userNamespaceSync.writeSide.get(), "1");
} else
#endif
{
fallback:
options.allowVfork = !buildUser && !drv->isBuiltin();
pid = startProcess([&]() {
runChild();
}, options);
2009-03-22 23:53:05 +00:00
}
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
/* parent */
pid.setSeparatePG(true);
builderOut.writeSide = -1;
worker.childStarted(shared_from_this(), {builderOut.readSide.get()}, true, true);
2020-10-11 16:19:10 +00:00
/* Check if setting up the build environment failed. */
while (true) {
string msg = readLine(builderOut.readSide.get());
if (string(msg, 0, 1) == "\2") break;
if (string(msg, 0, 1) == "\1") {
FdSource source(builderOut.readSide.get());
auto ex = readError(source);
ex.addTrace({}, "while setting up the build environment");
throw ex;
}
2020-10-11 16:19:10 +00:00
debug("sandbox setup: " + msg);
}
2020-10-11 16:19:10 +00:00
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::initTmpDir() {
/* In a sandbox, for determinism, always use the same temporary
directory. */
#if __linux__
tmpDirInSandbox = useChroot ? settings.sandboxBuildDir : tmpDir;
#else
tmpDirInSandbox = tmpDir;
#endif
2004-06-19 21:45:04 +00:00
2020-10-11 16:19:10 +00:00
/* In non-structured mode, add all bindings specified in the
derivation via the environment, except those listed in the
passAsFile attribute. Those are passed as file names pointing
to temporary files containing the contents. Note that
passAsFile is ignored in structure mode because it's not
needed (attributes are not passed through the environment, so
there is no size constraint). */
if (!parsedDrv->getStructuredAttrs()) {
2020-10-11 16:19:10 +00:00
StringSet passAsFile = tokenizeString<StringSet>(get(drv->env, "passAsFile").value_or(""));
for (auto & i : drv->env) {
if (passAsFile.find(i.first) == passAsFile.end()) {
env[i.first] = i.second;
} else {
auto hash = hashString(htSHA256, i.first);
string fn = ".attr-" + hash.to_string(Base32, false);
Path p = tmpDir + "/" + fn;
writeFile(p, rewriteStrings(i.second, inputRewrites));
chownToBuilder(p);
env[i.first + "Path"] = tmpDirInSandbox + "/" + fn;
}
}
2004-06-19 21:45:04 +00:00
2020-10-11 16:19:10 +00:00
}
2017-08-15 13:31:59 +00:00
2020-10-11 16:19:10 +00:00
/* For convenience, set an environment pointing to the top build
directory. */
env["NIX_BUILD_TOP"] = tmpDirInSandbox;
2004-06-19 21:45:04 +00:00
2020-10-11 16:19:10 +00:00
/* Also set TMPDIR and variants to point to this directory. */
env["TMPDIR"] = env["TEMPDIR"] = env["TMP"] = env["TEMP"] = tmpDirInSandbox;
2004-06-19 21:45:04 +00:00
2020-10-11 16:19:10 +00:00
/* Explicitly set PWD to prevent problems with chroot builds. In
particular, dietlibc cannot figure out the cwd because the
inode of the current directory doesn't appear in .. (because
getdents returns the inode of the mount point). */
env["PWD"] = tmpDirInSandbox;
2020-09-23 19:29:10 +00:00
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::initEnv()
2020-09-23 19:29:10 +00:00
{
2020-10-11 16:19:10 +00:00
env.clear();
2020-09-23 19:29:10 +00:00
2020-10-11 16:19:10 +00:00
/* Most shells initialise PATH to some default (/bin:/usr/bin:...) when
PATH is not set. We don't want this, so we fill it in with some dummy
value. */
env["PATH"] = "/path-not-set";
2020-09-23 19:29:10 +00:00
2020-10-11 16:19:10 +00:00
/* Set HOME to a non-existing path to prevent certain programs from using
/etc/passwd (or NIS, or whatever) to locate the home directory (for
example, wget looks for ~/.wgetrc). I.e., these tools use /etc/passwd
if HOME is not set, but they will just assume that the settings file
they are looking for does not exist if HOME is set but points to some
non-existing path. */
env["HOME"] = homeDir;
2020-09-23 19:29:10 +00:00
2020-10-11 16:19:10 +00:00
/* Tell the builder where the Nix store is. Usually they
shouldn't care, but this is useful for purity checking (e.g.,
the compiler or linker might only want to accept paths to files
in the store or in the build directory). */
env["NIX_STORE"] = worker.store.storeDir;
2020-09-23 19:29:10 +00:00
2020-10-11 16:19:10 +00:00
/* The maximum number of cores to utilize for parallel building. */
env["NIX_BUILD_CORES"] = (format("%d") % settings.buildCores).str();
2020-09-23 19:29:10 +00:00
2020-10-11 16:19:10 +00:00
initTmpDir();
2020-09-23 19:29:10 +00:00
2020-10-11 16:19:10 +00:00
/* Compatibility hack with Nix <= 0.7: if this is a fixed-output
derivation, tell the builder, so that for instance `fetchurl'
can skip checking the output. On older Nixes, this environment
variable won't be set, so `fetchurl' will do the check. */
if (derivationIsFixed(derivationType)) env["NIX_OUTPUT_CHECKED"] = "1";
2020-09-23 19:29:10 +00:00
2020-10-11 16:19:10 +00:00
/* *Only* if this is a fixed-output derivation, propagate the
values of the environment variables specified in the
`impureEnvVars' attribute to the builder. This allows for
instance environment variables for proxy configuration such as
`http_proxy' to be easily passed to downloaders like
`fetchurl'. Passing such environment variables from the caller
to the builder is generally impure, but the output of
fixed-output derivations is by definition pure (since we
already know the cryptographic hash of the output). */
if (derivationIsImpure(derivationType)) {
for (auto & i : parsedDrv->getStringsAttr("impureEnvVars").value_or(Strings()))
env[i] = getEnv(i).value_or("");
}
2020-09-23 19:29:10 +00:00
2020-10-11 16:19:10 +00:00
/* Currently structured log messages piggyback on stderr, but we
may change that in the future. So tell the builder which file
descriptor to use for that. */
env["NIX_LOG_FD"] = "2";
/* Trigger colored output in various tools. */
env["TERM"] = "xterm-256color";
}
2020-10-11 16:19:10 +00:00
static std::regex shVarName("[A-Za-z_][A-Za-z0-9_]*");
2020-10-11 16:19:10 +00:00
void DerivationGoal::writeStructuredAttrs()
2004-06-19 21:45:04 +00:00
{
2020-10-11 16:19:10 +00:00
auto structuredAttrs = parsedDrv->getStructuredAttrs();
if (!structuredAttrs) return;
2004-06-19 21:45:04 +00:00
2020-10-11 16:19:10 +00:00
auto json = *structuredAttrs;
2017-01-25 11:45:38 +00:00
2020-10-11 16:19:10 +00:00
/* Add an "outputs" object containing the output paths. */
nlohmann::json outputs;
for (auto & i : drv->outputs) {
/* The placeholder must have a rewrite, so we use it to cover both the
cases where we know or don't know the output path ahead of time. */
outputs[i.first] = rewriteStrings(hashPlaceholder(i.first), inputRewrites);
}
json["outputs"] = outputs;
Recursive Nix support This allows Nix builders to call Nix to build derivations, with some limitations. Example: let nixpkgs = fetchTarball channel:nixos-18.03; in with import <nixpkgs> {}; runCommand "foo" { buildInputs = [ nix jq ]; NIX_PATH = "nixpkgs=${nixpkgs}"; } '' hello=$(nix-build -E '(import <nixpkgs> {}).hello.overrideDerivation (args: { name = "hello-3.5"; })') $hello/bin/hello mkdir -p $out/bin ln -s $hello/bin/hello $out/bin/hello nix path-info -r --json $hello | jq . '' This derivation makes a recursive Nix call to build GNU Hello and symlinks it from its $out, i.e. # ll ./result/bin/ lrwxrwxrwx 1 root root 63 Jan 1 1970 hello -> /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5/bin/hello # nix-store -qR ./result /nix/store/hwwqshlmazzjzj7yhrkyjydxamvvkfd3-glibc-2.26-131 /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5 /nix/store/sgmvvyw8vhfqdqb619bxkcpfn9lvd8ss-foo This is implemented as follows: * Before running the outer builder, Nix creates a Unix domain socket '.nix-socket' in the builder's temporary directory and sets $NIX_REMOTE to point to it. It starts a thread to process connections to this socket. (Thus you don't need to have nix-daemon running.) * The daemon thread uses a wrapper store (RestrictedStore) to keep track of paths added through recursive Nix calls, to implement some restrictions (see below), and to do some censorship (e.g. for purity, queryPathInfo() won't return impure information such as signatures and timestamps). * After the build finishes, the output paths are scanned for references to the paths added through recursive Nix calls (in addition to the inputs closure). Thus, in the example above, $out has a reference to $hello. The main restriction on recursive Nix calls is that they cannot do arbitrary substitutions. For example, doing nix-store -r /nix/store/kmwd1hq55akdb9sc7l3finr175dajlby-hello-2.10 is forbidden unless /nix/store/kmwd... is in the inputs closure or previously built by a recursive Nix call. This is to prevent irreproducible derivations that have hidden dependencies on substituters or the current store contents. Building a derivation is fine, however, and Nix will use substitutes if available. In other words, the builder has to present proof that it knows how to build a desired store path from scratch by constructing a derivation graph for that path. Probably we should also disallow instantiating/building fixed-output derivations (specifically, those that access the network, but currently we have no way to mark fixed-output derivations that don't access the network). Otherwise sandboxed derivations can bypass sandbox restrictions and access the network. When sandboxing is enabled, we make paths appear in the sandbox of the builder by entering the mount namespace of the builder and bind-mounting each path. This is tricky because we do a pivot_root() in the builder to change the root directory of its mount namespace, and thus the host /nix/store is not visible in the mount namespace of the builder. To get around this, just before doing pivot_root(), we branch a second mount namespace that shares its /nix/store mountpoint with the parent. Recursive Nix currently doesn't work on macOS in sandboxed mode (because we can't change the sandbox policy of a running build) and in non-root mode (because setns() barfs).
2018-10-02 14:01:26 +00:00
2020-10-11 16:19:10 +00:00
/* Handle exportReferencesGraph. */
auto e = json.find("exportReferencesGraph");
if (e != json.end() && e->is_object()) {
for (auto i = e->begin(); i != e->end(); ++i) {
std::ostringstream str;
{
JSONPlaceholder jsonRoot(str, true);
StorePathSet storePaths;
for (auto & p : *i)
storePaths.insert(worker.store.parseStorePath(p.get<std::string>()));
worker.store.pathInfoToJSON(jsonRoot,
exportReferences(storePaths), false, true);
}
json[i.key()] = nlohmann::json::parse(str.str()); // urgh
}
}
2004-06-19 21:45:04 +00:00
2020-10-11 16:19:10 +00:00
writeFile(tmpDir + "/.attrs.json", rewriteStrings(json.dump(), inputRewrites));
chownToBuilder(tmpDir + "/.attrs.json");
2020-10-11 16:19:10 +00:00
/* As a convenience to bash scripts, write a shell file that
maps all attributes that are representable in bash -
namely, strings, integers, nulls, Booleans, and arrays and
objects consisting entirely of those values. (So nested
arrays or objects are not supported.) */
2020-10-11 16:19:10 +00:00
auto handleSimpleType = [](const nlohmann::json & value) -> std::optional<std::string> {
if (value.is_string())
return shellEscape(value);
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
if (value.is_number()) {
auto f = value.get<float>();
if (std::ceil(f) == f)
return std::to_string(value.get<int>());
}
2020-10-11 16:19:10 +00:00
if (value.is_null())
return std::string("''");
2020-10-11 16:19:10 +00:00
if (value.is_boolean())
return value.get<bool>() ? std::string("1") : std::string("");
2020-10-11 16:19:10 +00:00
return {};
};
Recursive Nix support This allows Nix builders to call Nix to build derivations, with some limitations. Example: let nixpkgs = fetchTarball channel:nixos-18.03; in with import <nixpkgs> {}; runCommand "foo" { buildInputs = [ nix jq ]; NIX_PATH = "nixpkgs=${nixpkgs}"; } '' hello=$(nix-build -E '(import <nixpkgs> {}).hello.overrideDerivation (args: { name = "hello-3.5"; })') $hello/bin/hello mkdir -p $out/bin ln -s $hello/bin/hello $out/bin/hello nix path-info -r --json $hello | jq . '' This derivation makes a recursive Nix call to build GNU Hello and symlinks it from its $out, i.e. # ll ./result/bin/ lrwxrwxrwx 1 root root 63 Jan 1 1970 hello -> /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5/bin/hello # nix-store -qR ./result /nix/store/hwwqshlmazzjzj7yhrkyjydxamvvkfd3-glibc-2.26-131 /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5 /nix/store/sgmvvyw8vhfqdqb619bxkcpfn9lvd8ss-foo This is implemented as follows: * Before running the outer builder, Nix creates a Unix domain socket '.nix-socket' in the builder's temporary directory and sets $NIX_REMOTE to point to it. It starts a thread to process connections to this socket. (Thus you don't need to have nix-daemon running.) * The daemon thread uses a wrapper store (RestrictedStore) to keep track of paths added through recursive Nix calls, to implement some restrictions (see below), and to do some censorship (e.g. for purity, queryPathInfo() won't return impure information such as signatures and timestamps). * After the build finishes, the output paths are scanned for references to the paths added through recursive Nix calls (in addition to the inputs closure). Thus, in the example above, $out has a reference to $hello. The main restriction on recursive Nix calls is that they cannot do arbitrary substitutions. For example, doing nix-store -r /nix/store/kmwd1hq55akdb9sc7l3finr175dajlby-hello-2.10 is forbidden unless /nix/store/kmwd... is in the inputs closure or previously built by a recursive Nix call. This is to prevent irreproducible derivations that have hidden dependencies on substituters or the current store contents. Building a derivation is fine, however, and Nix will use substitutes if available. In other words, the builder has to present proof that it knows how to build a desired store path from scratch by constructing a derivation graph for that path. Probably we should also disallow instantiating/building fixed-output derivations (specifically, those that access the network, but currently we have no way to mark fixed-output derivations that don't access the network). Otherwise sandboxed derivations can bypass sandbox restrictions and access the network. When sandboxing is enabled, we make paths appear in the sandbox of the builder by entering the mount namespace of the builder and bind-mounting each path. This is tricky because we do a pivot_root() in the builder to change the root directory of its mount namespace, and thus the host /nix/store is not visible in the mount namespace of the builder. To get around this, just before doing pivot_root(), we branch a second mount namespace that shares its /nix/store mountpoint with the parent. Recursive Nix currently doesn't work on macOS in sandboxed mode (because we can't change the sandbox policy of a running build) and in non-root mode (because setns() barfs).
2018-10-02 14:01:26 +00:00
2020-10-11 16:19:10 +00:00
std::string jsonSh;
2020-10-11 16:19:10 +00:00
for (auto i = json.begin(); i != json.end(); ++i) {
2004-06-19 21:45:04 +00:00
2020-10-11 16:19:10 +00:00
if (!std::regex_match(i.key(), shVarName)) continue;
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
auto & value = i.value();
2004-06-19 21:45:04 +00:00
2020-10-11 16:19:10 +00:00
auto s = handleSimpleType(value);
if (s)
jsonSh += fmt("declare %s=%s\n", i.key(), *s);
2020-10-11 16:19:10 +00:00
else if (value.is_array()) {
std::string s2;
bool good = true;
2020-10-11 16:19:10 +00:00
for (auto i = value.begin(); i != value.end(); ++i) {
auto s3 = handleSimpleType(i.value());
if (!s3) { good = false; break; }
s2 += *s3; s2 += ' ';
}
2020-10-11 16:19:10 +00:00
if (good)
jsonSh += fmt("declare -a %s=(%s)\n", i.key(), s2);
}
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
else if (value.is_object()) {
std::string s2;
bool good = true;
2020-10-11 16:19:10 +00:00
for (auto i = value.begin(); i != value.end(); ++i) {
auto s3 = handleSimpleType(i.value());
if (!s3) { good = false; break; }
s2 += fmt("[%s]=%s ", shellEscape(i.key()), *s3);
2020-08-07 19:09:26 +00:00
}
Add a post-build-hook Passing `--post-build-hook /foo/bar` to a nix-* command will cause `/foo/bar` to be executed after each build with the following environment variables set: DRV_PATH=/nix/store/drv-that-has-been-built.drv OUT_PATHS=/nix/store/...build /nix/store/...build-bin /nix/store/...build-dev This can be useful in particular to upload all the builded artifacts to the cache (including the ones that don't appear in the runtime closure of the final derivation or are built because of IFD). This new feature prints the stderr/stdout output to the `nix-build` and `nix build` client, and the output is printed in a Nix 2 compatible format: [nix]$ ./inst/bin/nix-build ./test.nix these derivations will be built: /nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv building '/nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv'... hello! bye! running post-build-hook '/home/grahamc/projects/github.com/NixOS/nix/post-hook.sh'... post-build-hook: + sleep 1 post-build-hook: + echo 'Signing paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: Signing paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: + sleep 1 post-build-hook: + echo 'Uploading paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: Uploading paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: + sleep 1 post-build-hook: + printf 'very important stuff' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation [nix-shell:~/projects/github.com/NixOS/nix]$ ./inst/bin/nix build -L -f ./test.nix my-example-derivation> hello! my-example-derivation> bye! my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + echo 'Signing paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> Signing paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + echo 'Uploading paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> Uploading paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + printf 'very important stuff' [1 built, 0.0 MiB DL] Co-authored-by: Graham Christensen <graham@grahamc.com> Co-authored-by: Eelco Dolstra <edolstra@gmail.com>
2019-07-11 18:23:03 +00:00
2020-10-11 16:19:10 +00:00
if (good)
jsonSh += fmt("declare -A %s=(%s)\n", i.key(), s2);
}
}
Add a post-build-hook Passing `--post-build-hook /foo/bar` to a nix-* command will cause `/foo/bar` to be executed after each build with the following environment variables set: DRV_PATH=/nix/store/drv-that-has-been-built.drv OUT_PATHS=/nix/store/...build /nix/store/...build-bin /nix/store/...build-dev This can be useful in particular to upload all the builded artifacts to the cache (including the ones that don't appear in the runtime closure of the final derivation or are built because of IFD). This new feature prints the stderr/stdout output to the `nix-build` and `nix build` client, and the output is printed in a Nix 2 compatible format: [nix]$ ./inst/bin/nix-build ./test.nix these derivations will be built: /nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv building '/nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv'... hello! bye! running post-build-hook '/home/grahamc/projects/github.com/NixOS/nix/post-hook.sh'... post-build-hook: + sleep 1 post-build-hook: + echo 'Signing paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: Signing paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: + sleep 1 post-build-hook: + echo 'Uploading paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: Uploading paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: + sleep 1 post-build-hook: + printf 'very important stuff' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation [nix-shell:~/projects/github.com/NixOS/nix]$ ./inst/bin/nix build -L -f ./test.nix my-example-derivation> hello! my-example-derivation> bye! my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + echo 'Signing paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> Signing paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + echo 'Uploading paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> Uploading paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + printf 'very important stuff' [1 built, 0.0 MiB DL] Co-authored-by: Graham Christensen <graham@grahamc.com> Co-authored-by: Eelco Dolstra <edolstra@gmail.com>
2019-07-11 18:23:03 +00:00
2020-10-11 16:19:10 +00:00
writeFile(tmpDir + "/.attrs.sh", rewriteStrings(jsonSh, inputRewrites));
chownToBuilder(tmpDir + "/.attrs.sh");
}
Add a post-build-hook Passing `--post-build-hook /foo/bar` to a nix-* command will cause `/foo/bar` to be executed after each build with the following environment variables set: DRV_PATH=/nix/store/drv-that-has-been-built.drv OUT_PATHS=/nix/store/...build /nix/store/...build-bin /nix/store/...build-dev This can be useful in particular to upload all the builded artifacts to the cache (including the ones that don't appear in the runtime closure of the final derivation or are built because of IFD). This new feature prints the stderr/stdout output to the `nix-build` and `nix build` client, and the output is printed in a Nix 2 compatible format: [nix]$ ./inst/bin/nix-build ./test.nix these derivations will be built: /nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv building '/nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv'... hello! bye! running post-build-hook '/home/grahamc/projects/github.com/NixOS/nix/post-hook.sh'... post-build-hook: + sleep 1 post-build-hook: + echo 'Signing paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: Signing paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: + sleep 1 post-build-hook: + echo 'Uploading paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: Uploading paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: + sleep 1 post-build-hook: + printf 'very important stuff' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation [nix-shell:~/projects/github.com/NixOS/nix]$ ./inst/bin/nix build -L -f ./test.nix my-example-derivation> hello! my-example-derivation> bye! my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + echo 'Signing paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> Signing paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + echo 'Uploading paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> Uploading paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + printf 'very important stuff' [1 built, 0.0 MiB DL] Co-authored-by: Graham Christensen <graham@grahamc.com> Co-authored-by: Eelco Dolstra <edolstra@gmail.com>
2019-07-11 18:23:03 +00:00
2020-10-11 16:19:10 +00:00
struct RestrictedStoreConfig : LocalFSStoreConfig
{
using LocalFSStoreConfig::LocalFSStoreConfig;
const std::string name() { return "Restricted Store"; }
};
Add a post-build-hook Passing `--post-build-hook /foo/bar` to a nix-* command will cause `/foo/bar` to be executed after each build with the following environment variables set: DRV_PATH=/nix/store/drv-that-has-been-built.drv OUT_PATHS=/nix/store/...build /nix/store/...build-bin /nix/store/...build-dev This can be useful in particular to upload all the builded artifacts to the cache (including the ones that don't appear in the runtime closure of the final derivation or are built because of IFD). This new feature prints the stderr/stdout output to the `nix-build` and `nix build` client, and the output is printed in a Nix 2 compatible format: [nix]$ ./inst/bin/nix-build ./test.nix these derivations will be built: /nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv building '/nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv'... hello! bye! running post-build-hook '/home/grahamc/projects/github.com/NixOS/nix/post-hook.sh'... post-build-hook: + sleep 1 post-build-hook: + echo 'Signing paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: Signing paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: + sleep 1 post-build-hook: + echo 'Uploading paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: Uploading paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: + sleep 1 post-build-hook: + printf 'very important stuff' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation [nix-shell:~/projects/github.com/NixOS/nix]$ ./inst/bin/nix build -L -f ./test.nix my-example-derivation> hello! my-example-derivation> bye! my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + echo 'Signing paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> Signing paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + echo 'Uploading paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> Uploading paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + printf 'very important stuff' [1 built, 0.0 MiB DL] Co-authored-by: Graham Christensen <graham@grahamc.com> Co-authored-by: Eelco Dolstra <edolstra@gmail.com>
2019-07-11 18:23:03 +00:00
2020-10-11 16:19:10 +00:00
/* A wrapper around LocalStore that only allows building/querying of
paths that are in the input closures of the build or were added via
recursive Nix calls. */
struct RestrictedStore : public LocalFSStore, public virtual RestrictedStoreConfig
{
ref<LocalStore> next;
Add a post-build-hook Passing `--post-build-hook /foo/bar` to a nix-* command will cause `/foo/bar` to be executed after each build with the following environment variables set: DRV_PATH=/nix/store/drv-that-has-been-built.drv OUT_PATHS=/nix/store/...build /nix/store/...build-bin /nix/store/...build-dev This can be useful in particular to upload all the builded artifacts to the cache (including the ones that don't appear in the runtime closure of the final derivation or are built because of IFD). This new feature prints the stderr/stdout output to the `nix-build` and `nix build` client, and the output is printed in a Nix 2 compatible format: [nix]$ ./inst/bin/nix-build ./test.nix these derivations will be built: /nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv building '/nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv'... hello! bye! running post-build-hook '/home/grahamc/projects/github.com/NixOS/nix/post-hook.sh'... post-build-hook: + sleep 1 post-build-hook: + echo 'Signing paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: Signing paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: + sleep 1 post-build-hook: + echo 'Uploading paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: Uploading paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: + sleep 1 post-build-hook: + printf 'very important stuff' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation [nix-shell:~/projects/github.com/NixOS/nix]$ ./inst/bin/nix build -L -f ./test.nix my-example-derivation> hello! my-example-derivation> bye! my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + echo 'Signing paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> Signing paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + echo 'Uploading paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> Uploading paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + printf 'very important stuff' [1 built, 0.0 MiB DL] Co-authored-by: Graham Christensen <graham@grahamc.com> Co-authored-by: Eelco Dolstra <edolstra@gmail.com>
2019-07-11 18:23:03 +00:00
2020-10-11 16:19:10 +00:00
DerivationGoal & goal;
Add a post-build-hook Passing `--post-build-hook /foo/bar` to a nix-* command will cause `/foo/bar` to be executed after each build with the following environment variables set: DRV_PATH=/nix/store/drv-that-has-been-built.drv OUT_PATHS=/nix/store/...build /nix/store/...build-bin /nix/store/...build-dev This can be useful in particular to upload all the builded artifacts to the cache (including the ones that don't appear in the runtime closure of the final derivation or are built because of IFD). This new feature prints the stderr/stdout output to the `nix-build` and `nix build` client, and the output is printed in a Nix 2 compatible format: [nix]$ ./inst/bin/nix-build ./test.nix these derivations will be built: /nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv building '/nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv'... hello! bye! running post-build-hook '/home/grahamc/projects/github.com/NixOS/nix/post-hook.sh'... post-build-hook: + sleep 1 post-build-hook: + echo 'Signing paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: Signing paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: + sleep 1 post-build-hook: + echo 'Uploading paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: Uploading paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: + sleep 1 post-build-hook: + printf 'very important stuff' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation [nix-shell:~/projects/github.com/NixOS/nix]$ ./inst/bin/nix build -L -f ./test.nix my-example-derivation> hello! my-example-derivation> bye! my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + echo 'Signing paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> Signing paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + echo 'Uploading paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> Uploading paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + printf 'very important stuff' [1 built, 0.0 MiB DL] Co-authored-by: Graham Christensen <graham@grahamc.com> Co-authored-by: Eelco Dolstra <edolstra@gmail.com>
2019-07-11 18:23:03 +00:00
2020-10-11 16:19:10 +00:00
RestrictedStore(const Params & params, ref<LocalStore> next, DerivationGoal & goal)
: StoreConfig(params), Store(params), LocalFSStore(params), next(next), goal(goal)
{ }
Add a post-build-hook Passing `--post-build-hook /foo/bar` to a nix-* command will cause `/foo/bar` to be executed after each build with the following environment variables set: DRV_PATH=/nix/store/drv-that-has-been-built.drv OUT_PATHS=/nix/store/...build /nix/store/...build-bin /nix/store/...build-dev This can be useful in particular to upload all the builded artifacts to the cache (including the ones that don't appear in the runtime closure of the final derivation or are built because of IFD). This new feature prints the stderr/stdout output to the `nix-build` and `nix build` client, and the output is printed in a Nix 2 compatible format: [nix]$ ./inst/bin/nix-build ./test.nix these derivations will be built: /nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv building '/nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv'... hello! bye! running post-build-hook '/home/grahamc/projects/github.com/NixOS/nix/post-hook.sh'... post-build-hook: + sleep 1 post-build-hook: + echo 'Signing paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: Signing paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: + sleep 1 post-build-hook: + echo 'Uploading paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: Uploading paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: + sleep 1 post-build-hook: + printf 'very important stuff' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation [nix-shell:~/projects/github.com/NixOS/nix]$ ./inst/bin/nix build -L -f ./test.nix my-example-derivation> hello! my-example-derivation> bye! my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + echo 'Signing paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> Signing paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + echo 'Uploading paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> Uploading paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + printf 'very important stuff' [1 built, 0.0 MiB DL] Co-authored-by: Graham Christensen <graham@grahamc.com> Co-authored-by: Eelco Dolstra <edolstra@gmail.com>
2019-07-11 18:23:03 +00:00
2020-10-11 16:19:10 +00:00
Path getRealStoreDir() override
{ return next->realStoreDir; }
Add a post-build-hook Passing `--post-build-hook /foo/bar` to a nix-* command will cause `/foo/bar` to be executed after each build with the following environment variables set: DRV_PATH=/nix/store/drv-that-has-been-built.drv OUT_PATHS=/nix/store/...build /nix/store/...build-bin /nix/store/...build-dev This can be useful in particular to upload all the builded artifacts to the cache (including the ones that don't appear in the runtime closure of the final derivation or are built because of IFD). This new feature prints the stderr/stdout output to the `nix-build` and `nix build` client, and the output is printed in a Nix 2 compatible format: [nix]$ ./inst/bin/nix-build ./test.nix these derivations will be built: /nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv building '/nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv'... hello! bye! running post-build-hook '/home/grahamc/projects/github.com/NixOS/nix/post-hook.sh'... post-build-hook: + sleep 1 post-build-hook: + echo 'Signing paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: Signing paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: + sleep 1 post-build-hook: + echo 'Uploading paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: Uploading paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: + sleep 1 post-build-hook: + printf 'very important stuff' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation [nix-shell:~/projects/github.com/NixOS/nix]$ ./inst/bin/nix build -L -f ./test.nix my-example-derivation> hello! my-example-derivation> bye! my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + echo 'Signing paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> Signing paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + echo 'Uploading paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> Uploading paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + printf 'very important stuff' [1 built, 0.0 MiB DL] Co-authored-by: Graham Christensen <graham@grahamc.com> Co-authored-by: Eelco Dolstra <edolstra@gmail.com>
2019-07-11 18:23:03 +00:00
2020-10-11 16:19:10 +00:00
std::string getUri() override
{ return next->getUri(); }
Add a post-build-hook Passing `--post-build-hook /foo/bar` to a nix-* command will cause `/foo/bar` to be executed after each build with the following environment variables set: DRV_PATH=/nix/store/drv-that-has-been-built.drv OUT_PATHS=/nix/store/...build /nix/store/...build-bin /nix/store/...build-dev This can be useful in particular to upload all the builded artifacts to the cache (including the ones that don't appear in the runtime closure of the final derivation or are built because of IFD). This new feature prints the stderr/stdout output to the `nix-build` and `nix build` client, and the output is printed in a Nix 2 compatible format: [nix]$ ./inst/bin/nix-build ./test.nix these derivations will be built: /nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv building '/nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv'... hello! bye! running post-build-hook '/home/grahamc/projects/github.com/NixOS/nix/post-hook.sh'... post-build-hook: + sleep 1 post-build-hook: + echo 'Signing paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: Signing paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: + sleep 1 post-build-hook: + echo 'Uploading paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: Uploading paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: + sleep 1 post-build-hook: + printf 'very important stuff' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation [nix-shell:~/projects/github.com/NixOS/nix]$ ./inst/bin/nix build -L -f ./test.nix my-example-derivation> hello! my-example-derivation> bye! my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + echo 'Signing paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> Signing paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + echo 'Uploading paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> Uploading paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + printf 'very important stuff' [1 built, 0.0 MiB DL] Co-authored-by: Graham Christensen <graham@grahamc.com> Co-authored-by: Eelco Dolstra <edolstra@gmail.com>
2019-07-11 18:23:03 +00:00
2020-10-11 16:19:10 +00:00
StorePathSet queryAllValidPaths() override
{
StorePathSet paths;
for (auto & p : goal.inputPaths) paths.insert(p);
for (auto & p : goal.addedPaths) paths.insert(p);
return paths;
}
Add a post-build-hook Passing `--post-build-hook /foo/bar` to a nix-* command will cause `/foo/bar` to be executed after each build with the following environment variables set: DRV_PATH=/nix/store/drv-that-has-been-built.drv OUT_PATHS=/nix/store/...build /nix/store/...build-bin /nix/store/...build-dev This can be useful in particular to upload all the builded artifacts to the cache (including the ones that don't appear in the runtime closure of the final derivation or are built because of IFD). This new feature prints the stderr/stdout output to the `nix-build` and `nix build` client, and the output is printed in a Nix 2 compatible format: [nix]$ ./inst/bin/nix-build ./test.nix these derivations will be built: /nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv building '/nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv'... hello! bye! running post-build-hook '/home/grahamc/projects/github.com/NixOS/nix/post-hook.sh'... post-build-hook: + sleep 1 post-build-hook: + echo 'Signing paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: Signing paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: + sleep 1 post-build-hook: + echo 'Uploading paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: Uploading paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation post-build-hook: + sleep 1 post-build-hook: + printf 'very important stuff' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation [nix-shell:~/projects/github.com/NixOS/nix]$ ./inst/bin/nix build -L -f ./test.nix my-example-derivation> hello! my-example-derivation> bye! my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + echo 'Signing paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> Signing paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + echo 'Uploading paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> Uploading paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation my-example-derivation (post)> + sleep 1 my-example-derivation (post)> + printf 'very important stuff' [1 built, 0.0 MiB DL] Co-authored-by: Graham Christensen <graham@grahamc.com> Co-authored-by: Eelco Dolstra <edolstra@gmail.com>
2019-07-11 18:23:03 +00:00
2020-10-11 16:19:10 +00:00
void queryPathInfoUncached(const StorePath & path,
Callback<std::shared_ptr<const ValidPathInfo>> callback) noexcept override
{
if (goal.isAllowed(path)) {
try {
/* Censor impure information. */
auto info = std::make_shared<ValidPathInfo>(*next->queryPathInfo(path));
info->deriver.reset();
info->registrationTime = 0;
info->ultimate = false;
info->sigs.clear();
callback(info);
} catch (InvalidPath &) {
callback(nullptr);
}
} else
callback(nullptr);
};
2020-10-11 16:19:10 +00:00
void queryReferrers(const StorePath & path, StorePathSet & referrers) override
{ }
2020-10-11 16:19:10 +00:00
std::map<std::string, std::optional<StorePath>> queryPartialDerivationOutputMap(const StorePath & path) override
{
if (!goal.isAllowed(path))
throw InvalidPath("cannot query output map for unknown path '%s' in recursive Nix", printStorePath(path));
return next->queryPartialDerivationOutputMap(path);
}
2020-10-11 16:19:10 +00:00
std::optional<StorePath> queryPathFromHashPart(const std::string & hashPart) override
{ throw Error("queryPathFromHashPart"); }
2020-10-11 16:19:10 +00:00
StorePath addToStore(const string & name, const Path & srcPath,
FileIngestionMethod method = FileIngestionMethod::Recursive, HashType hashAlgo = htSHA256,
PathFilter & filter = defaultPathFilter, RepairFlag repair = NoRepair) override
{ throw Error("addToStore"); }
2020-10-11 16:19:10 +00:00
void addToStore(const ValidPathInfo & info, Source & narSource,
RepairFlag repair = NoRepair, CheckSigsFlag checkSigs = CheckSigs) override
{
next->addToStore(info, narSource, repair, checkSigs);
goal.addDependency(info.path);
}
2020-10-11 16:19:10 +00:00
StorePath addTextToStore(const string & name, const string & s,
const StorePathSet & references, RepairFlag repair = NoRepair) override
{
auto path = next->addTextToStore(name, s, references, repair);
goal.addDependency(path);
return path;
}
StorePath addToStoreFromDump(Source & dump, const string & name,
FileIngestionMethod method = FileIngestionMethod::Recursive, HashType hashAlgo = htSHA256, RepairFlag repair = NoRepair) override
{
auto path = next->addToStoreFromDump(dump, name, method, hashAlgo, repair);
goal.addDependency(path);
return path;
}
2020-10-11 16:19:10 +00:00
void narFromPath(const StorePath & path, Sink & sink) override
{
if (!goal.isAllowed(path))
throw InvalidPath("cannot dump unknown path '%s' in recursive Nix", printStorePath(path));
LocalFSStore::narFromPath(path, sink);
}
2020-10-11 16:19:10 +00:00
void ensurePath(const StorePath & path) override
{
if (!goal.isAllowed(path))
throw InvalidPath("cannot substitute unknown path '%s' in recursive Nix", printStorePath(path));
/* Nothing to be done; 'path' must already be valid. */
}
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
void buildPaths(const std::vector<StorePathWithOutputs> & paths, BuildMode buildMode) override
{
if (buildMode != bmNormal) throw Error("unsupported build mode");
StorePathSet newPaths;
for (auto & path : paths) {
if (!goal.isAllowed(path.path))
throw InvalidPath("cannot build unknown path '%s' in recursive Nix", printStorePath(path.path));
2014-08-17 17:09:03 +00:00
}
2020-10-11 16:19:10 +00:00
next->buildPaths(paths, buildMode);
for (auto & path : paths) {
if (!path.path.isDerivation()) continue;
auto outputs = next->queryDerivationOutputMap(path.path);
for (auto & output : outputs)
if (wantOutput(output.first, path.outputs))
newPaths.insert(output.second);
}
2020-10-11 16:19:10 +00:00
StorePathSet closure;
next->computeFSClosure(newPaths, closure);
for (auto & path : closure)
goal.addDependency(path);
}
2004-06-19 21:45:04 +00:00
2020-10-11 16:19:10 +00:00
BuildResult buildDerivation(const StorePath & drvPath, const BasicDerivation & drv,
BuildMode buildMode = bmNormal) override
{ unsupported("buildDerivation"); }
2004-06-19 21:45:04 +00:00
2020-10-11 16:19:10 +00:00
void addTempRoot(const StorePath & path) override
{ }
2004-06-19 21:45:04 +00:00
2020-10-11 16:19:10 +00:00
void addIndirectRoot(const Path & path) override
{ }
2004-06-19 21:45:04 +00:00
2020-10-11 16:19:10 +00:00
Roots findRoots(bool censor) override
{ return Roots(); }
2004-06-19 21:45:04 +00:00
2020-10-11 16:19:10 +00:00
void collectGarbage(const GCOptions & options, GCResults & results) override
{ }
2020-10-11 16:19:10 +00:00
void addSignatures(const StorePath & storePath, const StringSet & sigs) override
{ unsupported("addSignatures"); }
2020-10-11 16:19:10 +00:00
void queryMissing(const std::vector<StorePathWithOutputs> & targets,
StorePathSet & willBuild, StorePathSet & willSubstitute, StorePathSet & unknown,
uint64_t & downloadSize, uint64_t & narSize) override
{
/* This is slightly impure since it leaks information to the
client about what paths will be built/substituted or are
already present. Probably not a big deal. */
2020-10-11 16:19:10 +00:00
std::vector<StorePathWithOutputs> allowed;
for (auto & path : targets) {
if (goal.isAllowed(path.path))
allowed.emplace_back(path);
else
unknown.insert(path.path);
}
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
next->queryMissing(allowed, willBuild, willSubstitute,
unknown, downloadSize, narSize);
2020-08-07 19:09:26 +00:00
}
2020-10-11 16:19:10 +00:00
};
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
void DerivationGoal::startDaemon()
{
settings.requireExperimentalFeature("recursive-nix");
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
Store::Params params;
params["path-info-cache-size"] = "0";
params["store"] = worker.store.storeDir;
params["root"] = worker.store.rootDir;
params["state"] = "/no-such-path";
params["log"] = "/no-such-path";
auto store = make_ref<RestrictedStore>(params,
ref<LocalStore>(std::dynamic_pointer_cast<LocalStore>(worker.store.shared_from_this())),
*this);
2004-06-19 21:45:04 +00:00
2020-10-11 16:19:10 +00:00
addedPaths.clear();
2004-06-19 21:45:04 +00:00
2020-10-11 16:19:10 +00:00
auto socketName = ".nix-socket";
Path socketPath = tmpDir + "/" + socketName;
env["NIX_REMOTE"] = "unix://" + tmpDirInSandbox + "/" + socketName;
2020-10-11 16:19:10 +00:00
daemonSocket = createUnixDomainSocket(socketPath, 0600);
2020-10-11 16:19:10 +00:00
chownToBuilder(socketPath);
2020-10-11 16:19:10 +00:00
daemonThread = std::thread([this, store]() {
2020-10-11 16:19:10 +00:00
while (true) {
2020-10-11 16:19:10 +00:00
/* Accept a connection. */
struct sockaddr_un remoteAddr;
socklen_t remoteAddrLen = sizeof(remoteAddr);
2020-10-11 16:19:10 +00:00
AutoCloseFD remote = accept(daemonSocket.get(),
(struct sockaddr *) &remoteAddr, &remoteAddrLen);
if (!remote) {
if (errno == EINTR) continue;
if (errno == EINVAL) break;
throw SysError("accepting connection");
2020-08-07 19:09:26 +00:00
}
2020-10-11 16:19:10 +00:00
closeOnExec(remote.get());
2020-10-11 16:19:10 +00:00
debug("received daemon connection");
2020-10-11 16:19:10 +00:00
auto workerThread = std::thread([store, remote{std::move(remote)}]() {
FdSource from(remote.get());
FdSink to(remote.get());
try {
daemon::processConnection(store, from, to,
daemon::NotTrusted, daemon::Recursive,
[&](Store & store) { store.createUser("nobody", 65535); });
debug("terminated daemon connection");
} catch (SysError &) {
ignoreException();
}
});
2020-10-11 16:19:10 +00:00
daemonWorkerThreads.push_back(std::move(workerThread));
}
2020-10-11 16:19:10 +00:00
debug("daemon shutting down");
});
}
2018-10-02 09:22:13 +00:00
2020-10-11 16:19:10 +00:00
void DerivationGoal::stopDaemon()
2018-10-02 09:22:13 +00:00
{
2020-10-11 16:19:10 +00:00
if (daemonSocket && shutdown(daemonSocket.get(), SHUT_RDWR) == -1)
throw SysError("shutting down daemon socket");
2020-10-11 16:19:10 +00:00
if (daemonThread.joinable())
daemonThread.join();
// FIXME: should prune worker threads more quickly.
// FIXME: shutdown the client socket to speed up worker termination.
for (auto & thread : daemonWorkerThreads)
thread.join();
daemonWorkerThreads.clear();
daemonSocket = -1;
2018-10-02 09:22:13 +00:00
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::addDependency(const StorePath & path)
{
2020-10-11 16:19:10 +00:00
if (isAllowed(path)) return;
2020-10-11 16:19:10 +00:00
addedPaths.insert(path);
2020-10-11 16:19:10 +00:00
/* If we're doing a sandbox build, then we have to make the path
appear in the sandbox. */
if (useChroot) {
2020-10-11 16:19:10 +00:00
debug("materialising '%s' in the sandbox", worker.store.printStorePath(path));
#if __linux__
2020-10-11 16:19:10 +00:00
Path source = worker.store.Store::toRealPath(path);
Path target = chrootRootDir + worker.store.printStorePath(path);
debug("bind-mounting %s -> %s", target, source);
2020-10-11 16:19:10 +00:00
if (pathExists(target))
throw Error("store path '%s' already exists in the sandbox", worker.store.printStorePath(path));
2020-10-11 16:19:10 +00:00
auto st = lstat(source);
2020-08-07 19:09:26 +00:00
2020-10-11 16:19:10 +00:00
if (S_ISDIR(st.st_mode)) {
2020-08-07 19:09:26 +00:00
2020-10-11 16:19:10 +00:00
/* Bind-mount the path into the sandbox. This requires
entering its mount namespace, which is not possible
in multithreaded programs. So we do this in a
child process.*/
Pid child(startProcess([&]() {
2020-08-07 19:09:26 +00:00
2020-10-11 16:19:10 +00:00
if (setns(sandboxMountNamespace.get(), 0) == -1)
throw SysError("entering sandbox mount namespace");
2020-08-07 19:09:26 +00:00
2020-10-11 16:19:10 +00:00
createDirs(target);
2020-08-07 19:09:26 +00:00
2020-10-11 16:19:10 +00:00
if (mount(source.c_str(), target.c_str(), "", MS_BIND, 0) == -1)
throw SysError("bind mount from '%s' to '%s' failed", source, target);
2020-08-07 19:09:26 +00:00
2020-10-11 16:19:10 +00:00
_exit(0);
}));
2020-08-07 19:09:26 +00:00
2020-10-11 16:19:10 +00:00
int status = child.wait();
if (status != 0)
throw Error("could not add path '%s' to sandbox", worker.store.printStorePath(path));
} else
linkOrCopy(source, target);
#else
throw Error("don't know how to make path '%s' (produced by a recursive Nix call) appear in the sandbox",
worker.store.printStorePath(path));
#endif
2020-08-07 19:09:26 +00:00
}
2020-10-11 16:19:10 +00:00
}
Add support for passing structured data to builders Previously, all derivation attributes had to be coerced into strings so that they could be passed via the environment. This is lossy (e.g. lists get flattened, necessitating configureFlags vs. configureFlagsArray, of which the latter cannot be specified as an attribute), doesn't support attribute sets at all, and has size limitations (necessitating hacks like passAsFile). This patch adds a new mode for passing attributes to builders, namely encoded as a JSON file ".attrs.json" in the current directory of the builder. This mode is activated via the special attribute __structuredAttrs = true; (The idea is that one day we can set this in stdenv.mkDerivation.) For example, stdenv.mkDerivation { __structuredAttrs = true; name = "foo"; buildInputs = [ pkgs.hello pkgs.cowsay ]; doCheck = true; hardening.format = false; } results in a ".attrs.json" file containing (sans the indentation): { "buildInputs": [], "builder": "/nix/store/ygl61ycpr2vjqrx775l1r2mw1g2rb754-bash-4.3-p48/bin/bash", "configureFlags": [ "--with-foo", "--with-bar=1 2" ], "doCheck": true, "hardening": { "format": false }, "name": "foo", "nativeBuildInputs": [ "/nix/store/10h6li26i7g6z3mdpvra09yyf10mmzdr-hello-2.10", "/nix/store/4jnvjin0r6wp6cv1hdm5jbkx3vinlcvk-cowsay-3.03" ], "propagatedBuildInputs": [], "propagatedNativeBuildInputs": [], "stdenv": "/nix/store/f3hw3p8armnzy6xhd4h8s7anfjrs15n2-stdenv", "system": "x86_64-linux" } "passAsFile" is ignored in this mode because it's not needed - large strings are included directly in the JSON representation. It is up to the builder to do something with the JSON representation. For example, in bash-based builders, lists/attrsets of string values could be mapped to bash (associative) arrays.
2017-01-25 15:42:07 +00:00
2020-10-11 16:19:10 +00:00
void DerivationGoal::chownToBuilder(const Path & path)
{
if (!buildUser) return;
if (chown(path.c_str(), buildUser->getUID(), buildUser->getGID()) == -1)
throw SysError("cannot change ownership of '%1%'", path);
}
Add support for passing structured data to builders Previously, all derivation attributes had to be coerced into strings so that they could be passed via the environment. This is lossy (e.g. lists get flattened, necessitating configureFlags vs. configureFlagsArray, of which the latter cannot be specified as an attribute), doesn't support attribute sets at all, and has size limitations (necessitating hacks like passAsFile). This patch adds a new mode for passing attributes to builders, namely encoded as a JSON file ".attrs.json" in the current directory of the builder. This mode is activated via the special attribute __structuredAttrs = true; (The idea is that one day we can set this in stdenv.mkDerivation.) For example, stdenv.mkDerivation { __structuredAttrs = true; name = "foo"; buildInputs = [ pkgs.hello pkgs.cowsay ]; doCheck = true; hardening.format = false; } results in a ".attrs.json" file containing (sans the indentation): { "buildInputs": [], "builder": "/nix/store/ygl61ycpr2vjqrx775l1r2mw1g2rb754-bash-4.3-p48/bin/bash", "configureFlags": [ "--with-foo", "--with-bar=1 2" ], "doCheck": true, "hardening": { "format": false }, "name": "foo", "nativeBuildInputs": [ "/nix/store/10h6li26i7g6z3mdpvra09yyf10mmzdr-hello-2.10", "/nix/store/4jnvjin0r6wp6cv1hdm5jbkx3vinlcvk-cowsay-3.03" ], "propagatedBuildInputs": [], "propagatedNativeBuildInputs": [], "stdenv": "/nix/store/f3hw3p8armnzy6xhd4h8s7anfjrs15n2-stdenv", "system": "x86_64-linux" } "passAsFile" is ignored in this mode because it's not needed - large strings are included directly in the JSON representation. It is up to the builder to do something with the JSON representation. For example, in bash-based builders, lists/attrsets of string values could be mapped to bash (associative) arrays.
2017-01-25 15:42:07 +00:00
2020-10-11 16:19:10 +00:00
void setupSeccomp()
{
#if __linux__
if (!settings.filterSyscalls) return;
#if HAVE_SECCOMP
scmp_filter_ctx ctx;
2020-10-11 16:19:10 +00:00
if (!(ctx = seccomp_init(SCMP_ACT_ALLOW)))
throw SysError("unable to initialize seccomp mode 2");
2020-10-11 16:19:10 +00:00
Finally cleanup([&]() {
seccomp_release(ctx);
});
2020-10-11 16:19:10 +00:00
if (nativeSystem == "x86_64-linux" &&
seccomp_arch_add(ctx, SCMP_ARCH_X86) != 0)
throw SysError("unable to add 32-bit seccomp architecture");
2015-01-06 06:27:38 +00:00
2020-10-11 16:19:10 +00:00
if (nativeSystem == "x86_64-linux" &&
seccomp_arch_add(ctx, SCMP_ARCH_X32) != 0)
throw SysError("unable to add X32 seccomp architecture");
2020-10-11 16:19:10 +00:00
if (nativeSystem == "aarch64-linux" &&
seccomp_arch_add(ctx, SCMP_ARCH_ARM) != 0)
printError("unable to add ARM seccomp architecture; this may result in spurious build failures if running 32-bit ARM processes");
2015-01-06 06:27:38 +00:00
2020-10-11 16:19:10 +00:00
/* Prevent builders from creating setuid/setgid binaries. */
for (int perm : { S_ISUID, S_ISGID }) {
if (seccomp_rule_add(ctx, SCMP_ACT_ERRNO(EPERM), SCMP_SYS(chmod), 1,
SCMP_A1(SCMP_CMP_MASKED_EQ, (scmp_datum_t) perm, (scmp_datum_t) perm)) != 0)
throw SysError("unable to add seccomp rule");
2020-10-11 16:19:10 +00:00
if (seccomp_rule_add(ctx, SCMP_ACT_ERRNO(EPERM), SCMP_SYS(fchmod), 1,
SCMP_A1(SCMP_CMP_MASKED_EQ, (scmp_datum_t) perm, (scmp_datum_t) perm)) != 0)
throw SysError("unable to add seccomp rule");
2015-01-06 06:27:38 +00:00
2020-10-11 16:19:10 +00:00
if (seccomp_rule_add(ctx, SCMP_ACT_ERRNO(EPERM), SCMP_SYS(fchmodat), 1,
SCMP_A2(SCMP_CMP_MASKED_EQ, (scmp_datum_t) perm, (scmp_datum_t) perm)) != 0)
throw SysError("unable to add seccomp rule");
}
2015-01-06 06:27:38 +00:00
2020-10-11 16:19:10 +00:00
/* Prevent builders from creating EAs or ACLs. Not all filesystems
support these, and they're not allowed in the Nix store because
they're not representable in the NAR serialisation. */
if (seccomp_rule_add(ctx, SCMP_ACT_ERRNO(ENOTSUP), SCMP_SYS(setxattr), 0) != 0 ||
seccomp_rule_add(ctx, SCMP_ACT_ERRNO(ENOTSUP), SCMP_SYS(lsetxattr), 0) != 0 ||
seccomp_rule_add(ctx, SCMP_ACT_ERRNO(ENOTSUP), SCMP_SYS(fsetxattr), 0) != 0)
throw SysError("unable to add seccomp rule");
2015-01-06 06:27:38 +00:00
2020-10-11 16:19:10 +00:00
if (seccomp_attr_set(ctx, SCMP_FLTATR_CTL_NNP, settings.allowNewPrivileges ? 0 : 1) != 0)
throw SysError("unable to set 'no new privileges' seccomp attribute");
2015-01-06 06:27:38 +00:00
2020-10-11 16:19:10 +00:00
if (seccomp_load(ctx) != 0)
throw SysError("unable to load seccomp BPF program");
#else
throw Error(
"seccomp is not supported on this platform; "
"you can bypass this error by setting the option 'filter-syscalls' to false, but note that untrusted builds can then create setuid binaries!");
#endif
#endif
}
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
void DerivationGoal::runChild()
{
/* Warning: in the child we should absolutely not make any SQLite
calls! */
2020-10-11 16:19:10 +00:00
try { /* child */
2020-10-11 16:19:10 +00:00
commonChildInit(builderOut);
2020-10-11 16:19:10 +00:00
try {
setupSeccomp();
} catch (...) {
if (buildUser) throw;
}
2020-10-11 16:19:10 +00:00
bool setUser = true;
2020-10-11 16:19:10 +00:00
/* Make the contents of netrc available to builtin:fetchurl
(which may run under a different uid and/or in a sandbox). */
std::string netrcData;
try {
if (drv->isBuiltin() && drv->builder == "builtin:fetchurl")
netrcData = readFile(settings.netrcFile);
} catch (SysError &) { }
2020-10-11 16:19:10 +00:00
#if __linux__
if (useChroot) {
2020-10-11 16:19:10 +00:00
userNamespaceSync.writeSide = -1;
2020-10-11 16:19:10 +00:00
if (drainFD(userNamespaceSync.readSide.get()) != "1")
throw Error("user namespace initialisation failed");
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
userNamespaceSync.readSide = -1;
2020-10-11 16:19:10 +00:00
if (privateNetwork) {
2020-10-11 16:19:10 +00:00
/* Initialise the loopback interface. */
AutoCloseFD fd(socket(PF_INET, SOCK_DGRAM, IPPROTO_IP));
if (!fd) throw SysError("cannot open IP socket");
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
struct ifreq ifr;
strcpy(ifr.ifr_name, "lo");
ifr.ifr_flags = IFF_UP | IFF_LOOPBACK | IFF_RUNNING;
if (ioctl(fd.get(), SIOCSIFFLAGS, &ifr) == -1)
throw SysError("cannot set loopback interface flags");
}
Recursive Nix support This allows Nix builders to call Nix to build derivations, with some limitations. Example: let nixpkgs = fetchTarball channel:nixos-18.03; in with import <nixpkgs> {}; runCommand "foo" { buildInputs = [ nix jq ]; NIX_PATH = "nixpkgs=${nixpkgs}"; } '' hello=$(nix-build -E '(import <nixpkgs> {}).hello.overrideDerivation (args: { name = "hello-3.5"; })') $hello/bin/hello mkdir -p $out/bin ln -s $hello/bin/hello $out/bin/hello nix path-info -r --json $hello | jq . '' This derivation makes a recursive Nix call to build GNU Hello and symlinks it from its $out, i.e. # ll ./result/bin/ lrwxrwxrwx 1 root root 63 Jan 1 1970 hello -> /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5/bin/hello # nix-store -qR ./result /nix/store/hwwqshlmazzjzj7yhrkyjydxamvvkfd3-glibc-2.26-131 /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5 /nix/store/sgmvvyw8vhfqdqb619bxkcpfn9lvd8ss-foo This is implemented as follows: * Before running the outer builder, Nix creates a Unix domain socket '.nix-socket' in the builder's temporary directory and sets $NIX_REMOTE to point to it. It starts a thread to process connections to this socket. (Thus you don't need to have nix-daemon running.) * The daemon thread uses a wrapper store (RestrictedStore) to keep track of paths added through recursive Nix calls, to implement some restrictions (see below), and to do some censorship (e.g. for purity, queryPathInfo() won't return impure information such as signatures and timestamps). * After the build finishes, the output paths are scanned for references to the paths added through recursive Nix calls (in addition to the inputs closure). Thus, in the example above, $out has a reference to $hello. The main restriction on recursive Nix calls is that they cannot do arbitrary substitutions. For example, doing nix-store -r /nix/store/kmwd1hq55akdb9sc7l3finr175dajlby-hello-2.10 is forbidden unless /nix/store/kmwd... is in the inputs closure or previously built by a recursive Nix call. This is to prevent irreproducible derivations that have hidden dependencies on substituters or the current store contents. Building a derivation is fine, however, and Nix will use substitutes if available. In other words, the builder has to present proof that it knows how to build a desired store path from scratch by constructing a derivation graph for that path. Probably we should also disallow instantiating/building fixed-output derivations (specifically, those that access the network, but currently we have no way to mark fixed-output derivations that don't access the network). Otherwise sandboxed derivations can bypass sandbox restrictions and access the network. When sandboxing is enabled, we make paths appear in the sandbox of the builder by entering the mount namespace of the builder and bind-mounting each path. This is tricky because we do a pivot_root() in the builder to change the root directory of its mount namespace, and thus the host /nix/store is not visible in the mount namespace of the builder. To get around this, just before doing pivot_root(), we branch a second mount namespace that shares its /nix/store mountpoint with the parent. Recursive Nix currently doesn't work on macOS in sandboxed mode (because we can't change the sandbox policy of a running build) and in non-root mode (because setns() barfs).
2018-10-02 14:01:26 +00:00
2020-10-11 16:19:10 +00:00
/* Set the hostname etc. to fixed values. */
char hostname[] = "localhost";
if (sethostname(hostname, sizeof(hostname)) == -1)
throw SysError("cannot set host name");
char domainname[] = "(none)"; // kernel default
if (setdomainname(domainname, sizeof(domainname)) == -1)
throw SysError("cannot set domain name");
2020-10-11 16:19:10 +00:00
/* Make all filesystems private. This is necessary
because subtrees may have been mounted as "shared"
(MS_SHARED). (Systemd does this, for instance.) Even
though we have a private mount namespace, mounting
filesystems on top of a shared subtree still propagates
outside of the namespace. Making a subtree private is
local to the namespace, though, so setting MS_PRIVATE
does not affect the outside world. */
if (mount(0, "/", 0, MS_PRIVATE | MS_REC, 0) == -1)
throw SysError("unable to make '/' private");
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
/* Bind-mount chroot directory to itself, to treat it as a
different filesystem from /, as needed for pivot_root. */
if (mount(chrootRootDir.c_str(), chrootRootDir.c_str(), 0, MS_BIND, 0) == -1)
throw SysError("unable to bind mount '%1%'", chrootRootDir);
2020-10-11 16:19:10 +00:00
/* Bind-mount the sandbox's Nix store onto itself so that
we can mark it as a "shared" subtree, allowing bind
mounts made in *this* mount namespace to be propagated
into the child namespace created by the
unshare(CLONE_NEWNS) call below.
2020-10-11 16:19:10 +00:00
Marking chrootRootDir as MS_SHARED causes pivot_root()
to fail with EINVAL. Don't know why. */
Path chrootStoreDir = chrootRootDir + worker.store.storeDir;
2020-10-11 16:19:10 +00:00
if (mount(chrootStoreDir.c_str(), chrootStoreDir.c_str(), 0, MS_BIND, 0) == -1)
throw SysError("unable to bind mount the Nix store", chrootStoreDir);
2020-10-11 16:19:10 +00:00
if (mount(0, chrootStoreDir.c_str(), 0, MS_SHARED, 0) == -1)
throw SysError("unable to make '%s' shared", chrootStoreDir);
2020-10-11 16:19:10 +00:00
/* Set up a nearly empty /dev, unless the user asked to
bind-mount the host /dev. */
Strings ss;
if (dirsInChroot.find("/dev") == dirsInChroot.end()) {
createDirs(chrootRootDir + "/dev/shm");
createDirs(chrootRootDir + "/dev/pts");
ss.push_back("/dev/full");
if (worker.store.systemFeatures.get().count("kvm") && pathExists("/dev/kvm"))
ss.push_back("/dev/kvm");
ss.push_back("/dev/null");
ss.push_back("/dev/random");
ss.push_back("/dev/tty");
ss.push_back("/dev/urandom");
ss.push_back("/dev/zero");
createSymlink("/proc/self/fd", chrootRootDir + "/dev/fd");
createSymlink("/proc/self/fd/0", chrootRootDir + "/dev/stdin");
createSymlink("/proc/self/fd/1", chrootRootDir + "/dev/stdout");
createSymlink("/proc/self/fd/2", chrootRootDir + "/dev/stderr");
}
2020-10-11 16:19:10 +00:00
/* Fixed-output derivations typically need to access the
network, so give them access to /etc/resolv.conf and so
on. */
if (derivationIsImpure(derivationType)) {
ss.push_back("/etc/resolv.conf");
2020-10-11 16:19:10 +00:00
// Only use nss functions to resolve hosts and
// services. Dont use it for anything else that may
// be configured for this system. This limits the
// potential impurities introduced in fixed-outputs.
writeFile(chrootRootDir + "/etc/nsswitch.conf", "hosts: files dns\nservices: files\n");
2020-10-11 16:19:10 +00:00
ss.push_back("/etc/services");
ss.push_back("/etc/hosts");
if (pathExists("/var/run/nscd/socket"))
ss.push_back("/var/run/nscd/socket");
}
2020-10-11 16:19:10 +00:00
for (auto & i : ss) dirsInChroot.emplace(i, i);
2020-10-11 16:19:10 +00:00
/* Bind-mount all the directories from the "host"
filesystem that we want in the chroot
environment. */
auto doBind = [&](const Path & source, const Path & target, bool optional = false) {
debug("bind mounting '%1%' to '%2%'", source, target);
struct stat st;
if (stat(source.c_str(), &st) == -1) {
if (optional && errno == ENOENT)
return;
else
throw SysError("getting attributes of path '%1%'", source);
}
if (S_ISDIR(st.st_mode))
createDirs(target);
else {
createDirs(dirOf(target));
writeFile(target, "");
}
if (mount(source.c_str(), target.c_str(), "", MS_BIND | MS_REC, 0) == -1)
throw SysError("bind mount from '%1%' to '%2%' failed", source, target);
};
2020-10-11 16:19:10 +00:00
for (auto & i : dirsInChroot) {
if (i.second.source == "/proc") continue; // backwards compatibility
doBind(i.second.source, chrootRootDir + i.first, i.second.optional);
}
2020-10-11 16:19:10 +00:00
/* Bind a new instance of procfs on /proc. */
createDirs(chrootRootDir + "/proc");
if (mount("none", (chrootRootDir + "/proc").c_str(), "proc", 0, 0) == -1)
throw SysError("mounting /proc");
2020-10-11 16:19:10 +00:00
/* Mount a new tmpfs on /dev/shm to ensure that whatever
the builder puts in /dev/shm is cleaned up automatically. */
if (pathExists("/dev/shm") && mount("none", (chrootRootDir + "/dev/shm").c_str(), "tmpfs", 0,
fmt("size=%s", settings.sandboxShmSize).c_str()) == -1)
throw SysError("mounting /dev/shm");
2020-10-11 16:19:10 +00:00
/* Mount a new devpts on /dev/pts. Note that this
requires the kernel to be compiled with
CONFIG_DEVPTS_MULTIPLE_INSTANCES=y (which is the case
if /dev/ptx/ptmx exists). */
if (pathExists("/dev/pts/ptmx") &&
!pathExists(chrootRootDir + "/dev/ptmx")
&& !dirsInChroot.count("/dev/pts"))
{
if (mount("none", (chrootRootDir + "/dev/pts").c_str(), "devpts", 0, "newinstance,mode=0620") == 0)
{
createSymlink("/dev/pts/ptmx", chrootRootDir + "/dev/ptmx");
2020-10-11 16:19:10 +00:00
/* Make sure /dev/pts/ptmx is world-writable. With some
Linux versions, it is created with permissions 0. */
chmod_(chrootRootDir + "/dev/pts/ptmx", 0666);
} else {
if (errno != EINVAL)
throw SysError("mounting /dev/pts");
doBind("/dev/pts", chrootRootDir + "/dev/pts");
doBind("/dev/ptmx", chrootRootDir + "/dev/ptmx");
}
}
2020-10-11 16:19:10 +00:00
/* Unshare this mount namespace. This is necessary because
pivot_root() below changes the root of the mount
namespace. This means that the call to setns() in
addDependency() would hide the host's filesystem,
making it impossible to bind-mount paths from the host
Nix store into the sandbox. Therefore, we save the
pre-pivot_root namespace in
sandboxMountNamespace. Since we made /nix/store a
shared subtree above, this allows addDependency() to
make paths appear in the sandbox. */
if (unshare(CLONE_NEWNS) == -1)
throw SysError("unsharing mount namespace");
2020-10-11 16:19:10 +00:00
/* Do the chroot(). */
if (chdir(chrootRootDir.c_str()) == -1)
throw SysError("cannot change directory to '%1%'", chrootRootDir);
2020-10-11 16:19:10 +00:00
if (mkdir("real-root", 0) == -1)
throw SysError("cannot create real-root directory");
2020-10-11 16:19:10 +00:00
if (pivot_root(".", "real-root") == -1)
throw SysError("cannot pivot old root directory onto '%1%'", (chrootRootDir + "/real-root"));
2020-10-11 16:19:10 +00:00
if (chroot(".") == -1)
throw SysError("cannot change root directory to '%1%'", chrootRootDir);
2020-10-11 16:19:10 +00:00
if (umount2("real-root", MNT_DETACH) == -1)
throw SysError("cannot unmount real root filesystem");
2020-10-11 16:19:10 +00:00
if (rmdir("real-root") == -1)
throw SysError("cannot remove real-root directory");
2020-10-11 16:19:10 +00:00
/* Switch to the sandbox uid/gid in the user namespace,
which corresponds to the build user or calling user in
the parent namespace. */
if (setgid(sandboxGid()) == -1)
throw SysError("setgid failed");
if (setuid(sandboxUid()) == -1)
throw SysError("setuid failed");
2020-10-11 16:19:10 +00:00
setUser = false;
}
#endif
2020-10-11 16:19:10 +00:00
if (chdir(tmpDirInSandbox.c_str()) == -1)
throw SysError("changing into '%1%'", tmpDir);
2020-10-11 16:19:10 +00:00
/* Close all other file descriptors. */
closeMostFDs({STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO});
2020-10-11 16:19:10 +00:00
#if __linux__
/* Change the personality to 32-bit if we're doing an
i686-linux build on an x86_64-linux machine. */
struct utsname utsbuf;
uname(&utsbuf);
if (drv->platform == "i686-linux" &&
(settings.thisSystem == "x86_64-linux" ||
(!strcmp(utsbuf.sysname, "Linux") && !strcmp(utsbuf.machine, "x86_64")))) {
if (personality(PER_LINUX32) == -1)
throw SysError("cannot set i686-linux personality");
}
2020-10-11 16:19:10 +00:00
/* Impersonate a Linux 2.6 machine to get some determinism in
builds that depend on the kernel version. */
if ((drv->platform == "i686-linux" || drv->platform == "x86_64-linux") && settings.impersonateLinux26) {
int cur = personality(0xffffffff);
if (cur != -1) personality(cur | 0x0020000 /* == UNAME26 */);
}
2020-10-11 16:19:10 +00:00
/* Disable address space randomization for improved
determinism. */
int cur = personality(0xffffffff);
if (cur != -1) personality(cur | ADDR_NO_RANDOMIZE);
#endif
2020-10-11 16:19:10 +00:00
/* Disable core dumps by default. */
struct rlimit limit = { 0, RLIM_INFINITY };
setrlimit(RLIMIT_CORE, &limit);
2020-10-11 16:19:10 +00:00
// FIXME: set other limits to deterministic values?
2020-10-11 16:19:10 +00:00
/* Fill in the environment. */
Strings envStrs;
for (auto & i : env)
envStrs.push_back(rewriteStrings(i.first + "=" + i.second, inputRewrites));
2020-10-11 16:19:10 +00:00
/* If we are running in `build-users' mode, then switch to the
user we allocated above. Make sure that we drop all root
privileges. Note that above we have closed all file
descriptors except std*, so that's safe. Also note that
setuid() when run as root sets the real, effective and
saved UIDs. */
if (setUser && buildUser) {
/* Preserve supplementary groups of the build user, to allow
admins to specify groups such as "kvm". */
if (!buildUser->getSupplementaryGIDs().empty() &&
setgroups(buildUser->getSupplementaryGIDs().size(),
buildUser->getSupplementaryGIDs().data()) == -1)
throw SysError("cannot set supplementary groups of build user");
2020-10-11 16:19:10 +00:00
if (setgid(buildUser->getGID()) == -1 ||
getgid() != buildUser->getGID() ||
getegid() != buildUser->getGID())
throw SysError("setgid failed");
2020-10-11 16:19:10 +00:00
if (setuid(buildUser->getUID()) == -1 ||
getuid() != buildUser->getUID() ||
geteuid() != buildUser->getUID())
throw SysError("setuid failed");
}
2020-10-11 16:19:10 +00:00
/* Fill in the arguments. */
Strings args;
2020-10-11 16:19:10 +00:00
const char *builder = "invalid";
2020-10-11 16:19:10 +00:00
if (drv->isBuiltin()) {
;
}
2020-10-11 16:19:10 +00:00
#if __APPLE__
else {
/* This has to appear before import statements. */
std::string sandboxProfile = "(version 1)\n";
2020-10-11 16:19:10 +00:00
if (useChroot) {
Recursive Nix support This allows Nix builders to call Nix to build derivations, with some limitations. Example: let nixpkgs = fetchTarball channel:nixos-18.03; in with import <nixpkgs> {}; runCommand "foo" { buildInputs = [ nix jq ]; NIX_PATH = "nixpkgs=${nixpkgs}"; } '' hello=$(nix-build -E '(import <nixpkgs> {}).hello.overrideDerivation (args: { name = "hello-3.5"; })') $hello/bin/hello mkdir -p $out/bin ln -s $hello/bin/hello $out/bin/hello nix path-info -r --json $hello | jq . '' This derivation makes a recursive Nix call to build GNU Hello and symlinks it from its $out, i.e. # ll ./result/bin/ lrwxrwxrwx 1 root root 63 Jan 1 1970 hello -> /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5/bin/hello # nix-store -qR ./result /nix/store/hwwqshlmazzjzj7yhrkyjydxamvvkfd3-glibc-2.26-131 /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5 /nix/store/sgmvvyw8vhfqdqb619bxkcpfn9lvd8ss-foo This is implemented as follows: * Before running the outer builder, Nix creates a Unix domain socket '.nix-socket' in the builder's temporary directory and sets $NIX_REMOTE to point to it. It starts a thread to process connections to this socket. (Thus you don't need to have nix-daemon running.) * The daemon thread uses a wrapper store (RestrictedStore) to keep track of paths added through recursive Nix calls, to implement some restrictions (see below), and to do some censorship (e.g. for purity, queryPathInfo() won't return impure information such as signatures and timestamps). * After the build finishes, the output paths are scanned for references to the paths added through recursive Nix calls (in addition to the inputs closure). Thus, in the example above, $out has a reference to $hello. The main restriction on recursive Nix calls is that they cannot do arbitrary substitutions. For example, doing nix-store -r /nix/store/kmwd1hq55akdb9sc7l3finr175dajlby-hello-2.10 is forbidden unless /nix/store/kmwd... is in the inputs closure or previously built by a recursive Nix call. This is to prevent irreproducible derivations that have hidden dependencies on substituters or the current store contents. Building a derivation is fine, however, and Nix will use substitutes if available. In other words, the builder has to present proof that it knows how to build a desired store path from scratch by constructing a derivation graph for that path. Probably we should also disallow instantiating/building fixed-output derivations (specifically, those that access the network, but currently we have no way to mark fixed-output derivations that don't access the network). Otherwise sandboxed derivations can bypass sandbox restrictions and access the network. When sandboxing is enabled, we make paths appear in the sandbox of the builder by entering the mount namespace of the builder and bind-mounting each path. This is tricky because we do a pivot_root() in the builder to change the root directory of its mount namespace, and thus the host /nix/store is not visible in the mount namespace of the builder. To get around this, just before doing pivot_root(), we branch a second mount namespace that shares its /nix/store mountpoint with the parent. Recursive Nix currently doesn't work on macOS in sandboxed mode (because we can't change the sandbox policy of a running build) and in non-root mode (because setns() barfs).
2018-10-02 14:01:26 +00:00
2020-10-11 16:19:10 +00:00
/* Lots and lots and lots of file functions freak out if they can't stat their full ancestry */
PathSet ancestry;
2020-10-11 16:19:10 +00:00
/* We build the ancestry before adding all inputPaths to the store because we know they'll
all have the same parents (the store), and there might be lots of inputs. This isn't
particularly efficient... I doubt it'll be a bottleneck in practice */
for (auto & i : dirsInChroot) {
Path cur = i.first;
while (cur.compare("/") != 0) {
cur = dirOf(cur);
ancestry.insert(cur);
}
}
2020-10-11 16:19:10 +00:00
/* And we want the store in there regardless of how empty dirsInChroot. We include the innermost
path component this time, since it's typically /nix/store and we care about that. */
Path cur = worker.store.storeDir;
while (cur.compare("/") != 0) {
ancestry.insert(cur);
cur = dirOf(cur);
}
2020-10-11 16:19:10 +00:00
/* Add all our input paths to the chroot */
for (auto & i : inputPaths) {
auto p = worker.store.printStorePath(i);
dirsInChroot[p] = p;
}
2020-10-11 16:19:10 +00:00
/* Violations will go to the syslog if you set this. Unfortunately the destination does not appear to be configurable */
if (settings.darwinLogSandboxViolations) {
sandboxProfile += "(deny default)\n";
} else {
sandboxProfile += "(deny default (with no-log))\n";
}
2020-10-11 16:19:10 +00:00
sandboxProfile += "(import \"sandbox-defaults.sb\")\n";
2020-10-11 16:19:10 +00:00
if (derivationIsImpure(derivationType))
sandboxProfile += "(import \"sandbox-network.sb\")\n";
Add support for passing structured data to builders Previously, all derivation attributes had to be coerced into strings so that they could be passed via the environment. This is lossy (e.g. lists get flattened, necessitating configureFlags vs. configureFlagsArray, of which the latter cannot be specified as an attribute), doesn't support attribute sets at all, and has size limitations (necessitating hacks like passAsFile). This patch adds a new mode for passing attributes to builders, namely encoded as a JSON file ".attrs.json" in the current directory of the builder. This mode is activated via the special attribute __structuredAttrs = true; (The idea is that one day we can set this in stdenv.mkDerivation.) For example, stdenv.mkDerivation { __structuredAttrs = true; name = "foo"; buildInputs = [ pkgs.hello pkgs.cowsay ]; doCheck = true; hardening.format = false; } results in a ".attrs.json" file containing (sans the indentation): { "buildInputs": [], "builder": "/nix/store/ygl61ycpr2vjqrx775l1r2mw1g2rb754-bash-4.3-p48/bin/bash", "configureFlags": [ "--with-foo", "--with-bar=1 2" ], "doCheck": true, "hardening": { "format": false }, "name": "foo", "nativeBuildInputs": [ "/nix/store/10h6li26i7g6z3mdpvra09yyf10mmzdr-hello-2.10", "/nix/store/4jnvjin0r6wp6cv1hdm5jbkx3vinlcvk-cowsay-3.03" ], "propagatedBuildInputs": [], "propagatedNativeBuildInputs": [], "stdenv": "/nix/store/f3hw3p8armnzy6xhd4h8s7anfjrs15n2-stdenv", "system": "x86_64-linux" } "passAsFile" is ignored in this mode because it's not needed - large strings are included directly in the JSON representation. It is up to the builder to do something with the JSON representation. For example, in bash-based builders, lists/attrsets of string values could be mapped to bash (associative) arrays.
2017-01-25 15:42:07 +00:00
2020-10-11 16:19:10 +00:00
/* Add the output paths we'll use at build-time to the chroot */
sandboxProfile += "(allow file-read* file-write* process-exec\n";
for (auto & [_, path] : scratchOutputs)
sandboxProfile += fmt("\t(subpath \"%s\")\n", worker.store.printStorePath(path));
Add support for passing structured data to builders Previously, all derivation attributes had to be coerced into strings so that they could be passed via the environment. This is lossy (e.g. lists get flattened, necessitating configureFlags vs. configureFlagsArray, of which the latter cannot be specified as an attribute), doesn't support attribute sets at all, and has size limitations (necessitating hacks like passAsFile). This patch adds a new mode for passing attributes to builders, namely encoded as a JSON file ".attrs.json" in the current directory of the builder. This mode is activated via the special attribute __structuredAttrs = true; (The idea is that one day we can set this in stdenv.mkDerivation.) For example, stdenv.mkDerivation { __structuredAttrs = true; name = "foo"; buildInputs = [ pkgs.hello pkgs.cowsay ]; doCheck = true; hardening.format = false; } results in a ".attrs.json" file containing (sans the indentation): { "buildInputs": [], "builder": "/nix/store/ygl61ycpr2vjqrx775l1r2mw1g2rb754-bash-4.3-p48/bin/bash", "configureFlags": [ "--with-foo", "--with-bar=1 2" ], "doCheck": true, "hardening": { "format": false }, "name": "foo", "nativeBuildInputs": [ "/nix/store/10h6li26i7g6z3mdpvra09yyf10mmzdr-hello-2.10", "/nix/store/4jnvjin0r6wp6cv1hdm5jbkx3vinlcvk-cowsay-3.03" ], "propagatedBuildInputs": [], "propagatedNativeBuildInputs": [], "stdenv": "/nix/store/f3hw3p8armnzy6xhd4h8s7anfjrs15n2-stdenv", "system": "x86_64-linux" } "passAsFile" is ignored in this mode because it's not needed - large strings are included directly in the JSON representation. It is up to the builder to do something with the JSON representation. For example, in bash-based builders, lists/attrsets of string values could be mapped to bash (associative) arrays.
2017-01-25 15:42:07 +00:00
2020-10-11 16:19:10 +00:00
sandboxProfile += ")\n";
2020-10-11 16:19:10 +00:00
/* Our inputs (transitive dependencies and any impurities computed above)
2020-10-11 16:19:10 +00:00
without file-write* allowed, access() incorrectly returns EPERM
*/
sandboxProfile += "(allow file-read* file-write* process-exec\n";
for (auto & i : dirsInChroot) {
if (i.first != i.second.source)
throw Error(
"can't map '%1%' to '%2%': mismatched impure paths not supported on Darwin",
i.first, i.second.source);
2020-10-11 16:19:10 +00:00
string path = i.first;
struct stat st;
if (lstat(path.c_str(), &st)) {
if (i.second.optional && errno == ENOENT)
continue;
throw SysError("getting attributes of path '%s", path);
}
if (S_ISDIR(st.st_mode))
sandboxProfile += fmt("\t(subpath \"%s\")\n", path);
else
sandboxProfile += fmt("\t(literal \"%s\")\n", path);
}
sandboxProfile += ")\n";
2020-10-11 16:19:10 +00:00
/* Allow file-read* on full directory hierarchy to self. Allows realpath() */
sandboxProfile += "(allow file-read*\n";
for (auto & i : ancestry) {
sandboxProfile += fmt("\t(literal \"%s\")\n", i);
}
sandboxProfile += ")\n";
2020-10-11 16:19:10 +00:00
sandboxProfile += additionalSandboxProfile;
} else
sandboxProfile += "(import \"sandbox-minimal.sb\")\n";
2020-10-11 16:19:10 +00:00
debug("Generated sandbox profile:");
debug(sandboxProfile);
2020-10-11 16:19:10 +00:00
Path sandboxFile = tmpDir + "/.sandbox.sb";
2020-10-11 16:19:10 +00:00
writeFile(sandboxFile, sandboxProfile);
2020-10-11 16:19:10 +00:00
bool allowLocalNetworking = parsedDrv->getBoolAttr("__darwinAllowLocalNetworking");
2020-10-11 16:19:10 +00:00
/* The tmpDir in scope points at the temporary build directory for our derivation. Some packages try different mechanisms
to find temporary directories, so we want to open up a broader place for them to dump their files, if needed. */
Path globalTmpDir = canonPath(getEnv("TMPDIR").value_or("/tmp"), true);
2020-10-11 16:19:10 +00:00
/* They don't like trailing slashes on subpath directives */
if (globalTmpDir.back() == '/') globalTmpDir.pop_back();
2020-10-11 16:19:10 +00:00
if (getEnv("_NIX_TEST_NO_SANDBOX") != "1") {
builder = "/usr/bin/sandbox-exec";
args.push_back("sandbox-exec");
args.push_back("-f");
args.push_back(sandboxFile);
args.push_back("-D");
args.push_back("_GLOBAL_TMP_DIR=" + globalTmpDir);
args.push_back("-D");
args.push_back("IMPORT_DIR=" + settings.nixDataDir + "/nix/sandbox/");
if (allowLocalNetworking) {
args.push_back("-D");
args.push_back(string("_ALLOW_LOCAL_NETWORKING=1"));
}
args.push_back(drv->builder);
} else {
builder = drv->builder.c_str();
args.push_back(std::string(baseNameOf(drv->builder)));
}
}
#else
else {
builder = drv->builder.c_str();
args.push_back(std::string(baseNameOf(drv->builder)));
}
#endif
2020-10-11 16:19:10 +00:00
for (auto & i : drv->args)
args.push_back(rewriteStrings(i, inputRewrites));
2019-05-19 14:56:08 +00:00
2020-10-11 16:19:10 +00:00
/* Indicate that we managed to set up the build environment. */
writeFull(STDERR_FILENO, string("\2\n"));
2020-10-11 16:19:10 +00:00
/* Execute the program. This should not return. */
if (drv->isBuiltin()) {
try {
logger = makeJSONLogger(*logger);
2020-10-11 16:19:10 +00:00
BasicDerivation & drv2(*drv);
for (auto & e : drv2.env)
e.second = rewriteStrings(e.second, inputRewrites);
2020-10-11 16:19:10 +00:00
if (drv->builder == "builtin:fetchurl")
builtinFetchurl(drv2, netrcData);
else if (drv->builder == "builtin:buildenv")
builtinBuildenv(drv2);
else if (drv->builder == "builtin:unpack-channel")
builtinUnpackChannel(drv2);
else
throw Error("unsupported builtin function '%1%'", string(drv->builder, 8));
_exit(0);
} catch (std::exception & e) {
writeFull(STDERR_FILENO, e.what() + std::string("\n"));
_exit(1);
}
}
2020-10-11 16:19:10 +00:00
execve(builder, stringsToCharPtrs(args).data(), stringsToCharPtrs(envStrs).data());
2020-10-11 16:19:10 +00:00
throw SysError("executing '%1%'", drv->builder);
2020-10-11 16:19:10 +00:00
} catch (Error & e) {
writeFull(STDERR_FILENO, "\1\n");
FdSink sink(STDERR_FILENO);
sink << e;
sink.flush();
_exit(1);
2020-08-07 19:09:26 +00:00
}
2020-10-11 16:19:10 +00:00
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::registerOutputs()
{
/* When using a build hook, the build hook can register the output
as valid (by doing `nix-store --import'). If so we don't have
to do anything here.
We can only early return when the outputs are known a priori. For
floating content-addressed derivations this isn't the case.
*/
if (hook) {
bool allValid = true;
for (auto & i : drv->outputsAndOptPaths(worker.store)) {
if (!i.second.second || !worker.store.isValidPath(*i.second.second))
allValid = false;
else
finalOutputs.insert_or_assign(i.first, *i.second.second);
}
2020-10-11 16:19:10 +00:00
if (allValid) return;
}
2020-10-11 16:19:10 +00:00
std::map<std::string, ValidPathInfo> infos;
2020-10-11 16:19:10 +00:00
/* Set of inodes seen during calls to canonicalisePathMetaData()
for this build's outputs. This needs to be shared between
outputs to allow hard links between outputs. */
InodesSeen inodesSeen;
Add support for passing structured data to builders Previously, all derivation attributes had to be coerced into strings so that they could be passed via the environment. This is lossy (e.g. lists get flattened, necessitating configureFlags vs. configureFlagsArray, of which the latter cannot be specified as an attribute), doesn't support attribute sets at all, and has size limitations (necessitating hacks like passAsFile). This patch adds a new mode for passing attributes to builders, namely encoded as a JSON file ".attrs.json" in the current directory of the builder. This mode is activated via the special attribute __structuredAttrs = true; (The idea is that one day we can set this in stdenv.mkDerivation.) For example, stdenv.mkDerivation { __structuredAttrs = true; name = "foo"; buildInputs = [ pkgs.hello pkgs.cowsay ]; doCheck = true; hardening.format = false; } results in a ".attrs.json" file containing (sans the indentation): { "buildInputs": [], "builder": "/nix/store/ygl61ycpr2vjqrx775l1r2mw1g2rb754-bash-4.3-p48/bin/bash", "configureFlags": [ "--with-foo", "--with-bar=1 2" ], "doCheck": true, "hardening": { "format": false }, "name": "foo", "nativeBuildInputs": [ "/nix/store/10h6li26i7g6z3mdpvra09yyf10mmzdr-hello-2.10", "/nix/store/4jnvjin0r6wp6cv1hdm5jbkx3vinlcvk-cowsay-3.03" ], "propagatedBuildInputs": [], "propagatedNativeBuildInputs": [], "stdenv": "/nix/store/f3hw3p8armnzy6xhd4h8s7anfjrs15n2-stdenv", "system": "x86_64-linux" } "passAsFile" is ignored in this mode because it's not needed - large strings are included directly in the JSON representation. It is up to the builder to do something with the JSON representation. For example, in bash-based builders, lists/attrsets of string values could be mapped to bash (associative) arrays.
2017-01-25 15:42:07 +00:00
2020-10-11 16:19:10 +00:00
Path checkSuffix = ".check";
bool keepPreviousRound = settings.keepFailed || settings.runDiffHook;
2020-10-11 16:19:10 +00:00
std::exception_ptr delayedException;
2020-10-11 16:19:10 +00:00
/* The paths that can be referenced are the input closures, the
output paths, and any paths that have been built via recursive
Nix calls. */
StorePathSet referenceablePaths;
for (auto & p : inputPaths) referenceablePaths.insert(p);
for (auto & i : scratchOutputs) referenceablePaths.insert(i.second);
for (auto & p : addedPaths) referenceablePaths.insert(p);
2020-10-11 16:19:10 +00:00
/* FIXME `needsHashRewrite` should probably be removed and we get to the
real reason why we aren't using the chroot dir */
auto toRealPathChroot = [&](const Path & p) -> Path {
return useChroot && !needsHashRewrite()
? chrootRootDir + p
: worker.store.toRealPath(p);
};
2020-10-11 16:19:10 +00:00
/* Check whether the output paths were created, and make all
output paths read-only. Then get the references of each output (that we
might need to register), so we can topologically sort them. For the ones
that are most definitely already installed, we just store their final
name so we can also use it in rewrites. */
StringSet outputsToSort;
struct AlreadyRegistered { StorePath path; };
struct PerhapsNeedToRegister { StorePathSet refs; };
std::map<std::string, std::variant<AlreadyRegistered, PerhapsNeedToRegister>> outputReferencesIfUnregistered;
std::map<std::string, struct stat> outputStats;
for (auto & [outputName, _] : drv->outputs) {
auto actualPath = toRealPathChroot(worker.store.printStorePath(scratchOutputs.at(outputName)));
2020-10-11 16:19:10 +00:00
outputsToSort.insert(outputName);
2020-10-11 16:19:10 +00:00
/* Updated wanted info to remove the outputs we definitely don't need to register */
auto & initialInfo = initialOutputs.at(outputName);
2020-10-11 16:19:10 +00:00
/* Don't register if already valid, and not checking */
initialInfo.wanted = buildMode == bmCheck
|| !(initialInfo.known && initialInfo.known->isValid());
if (!initialInfo.wanted) {
outputReferencesIfUnregistered.insert_or_assign(
outputName,
AlreadyRegistered { .path = initialInfo.known->path });
continue;
}
2020-10-11 16:19:10 +00:00
struct stat st;
if (lstat(actualPath.c_str(), &st) == -1) {
if (errno == ENOENT)
throw BuildError(
"builder for '%s' failed to produce output path for output '%s' at '%s'",
worker.store.printStorePath(drvPath), outputName, actualPath);
throw SysError("getting attributes of path '%s'", actualPath);
}
2020-10-11 16:19:10 +00:00
#ifndef __CYGWIN__
/* Check that the output is not group or world writable, as
that means that someone else can have interfered with the
build. Also, the output should be owned by the build
user. */
if ((!S_ISLNK(st.st_mode) && (st.st_mode & (S_IWGRP | S_IWOTH))) ||
(buildUser && st.st_uid != buildUser->getUID()))
throw BuildError(
"suspicious ownership or permission on '%s' for output '%s'; rejecting this build output",
actualPath, outputName);
#endif
2020-10-11 16:19:10 +00:00
/* Canonicalise first. This ensures that the path we're
rewriting doesn't contain a hard link to /etc/shadow or
something like that. */
canonicalisePathMetaData(actualPath, buildUser ? buildUser->getUID() : -1, inodesSeen);
2020-10-11 16:19:10 +00:00
debug("scanning for references for output '%s' in temp location '%s'", outputName, actualPath);
2020-10-11 16:19:10 +00:00
/* Pass blank Sink as we are not ready to hash data at this stage. */
NullSink blank;
auto references = worker.store.parseStorePathSet(
scanForReferences(blank, actualPath, worker.store.printStorePathSet(referenceablePaths)));
2020-10-11 16:19:10 +00:00
outputReferencesIfUnregistered.insert_or_assign(
outputName,
PerhapsNeedToRegister { .refs = references });
outputStats.insert_or_assign(outputName, std::move(st));
}
2020-10-11 16:19:10 +00:00
auto sortedOutputNames = topoSort(outputsToSort,
{[&](const std::string & name) {
return std::visit(overloaded {
/* Since we'll use the already installed versions of these, we
can treat them as leaves and ignore any references they
have. */
[&](AlreadyRegistered _) { return StringSet {}; },
[&](PerhapsNeedToRegister refs) {
StringSet referencedOutputs;
/* FIXME build inverted map up front so no quadratic waste here */
for (auto & r : refs.refs)
for (auto & [o, p] : scratchOutputs)
if (r == p)
referencedOutputs.insert(o);
return referencedOutputs;
},
}, outputReferencesIfUnregistered.at(name));
}},
{[&](const std::string & path, const std::string & parent) {
// TODO with more -vvvv also show the temporary paths for manual inspection.
return BuildError(
"cycle detected in build of '%s' in the references of output '%s' from output '%s'",
worker.store.printStorePath(drvPath), path, parent);
}});
Add support for passing structured data to builders Previously, all derivation attributes had to be coerced into strings so that they could be passed via the environment. This is lossy (e.g. lists get flattened, necessitating configureFlags vs. configureFlagsArray, of which the latter cannot be specified as an attribute), doesn't support attribute sets at all, and has size limitations (necessitating hacks like passAsFile). This patch adds a new mode for passing attributes to builders, namely encoded as a JSON file ".attrs.json" in the current directory of the builder. This mode is activated via the special attribute __structuredAttrs = true; (The idea is that one day we can set this in stdenv.mkDerivation.) For example, stdenv.mkDerivation { __structuredAttrs = true; name = "foo"; buildInputs = [ pkgs.hello pkgs.cowsay ]; doCheck = true; hardening.format = false; } results in a ".attrs.json" file containing (sans the indentation): { "buildInputs": [], "builder": "/nix/store/ygl61ycpr2vjqrx775l1r2mw1g2rb754-bash-4.3-p48/bin/bash", "configureFlags": [ "--with-foo", "--with-bar=1 2" ], "doCheck": true, "hardening": { "format": false }, "name": "foo", "nativeBuildInputs": [ "/nix/store/10h6li26i7g6z3mdpvra09yyf10mmzdr-hello-2.10", "/nix/store/4jnvjin0r6wp6cv1hdm5jbkx3vinlcvk-cowsay-3.03" ], "propagatedBuildInputs": [], "propagatedNativeBuildInputs": [], "stdenv": "/nix/store/f3hw3p8armnzy6xhd4h8s7anfjrs15n2-stdenv", "system": "x86_64-linux" } "passAsFile" is ignored in this mode because it's not needed - large strings are included directly in the JSON representation. It is up to the builder to do something with the JSON representation. For example, in bash-based builders, lists/attrsets of string values could be mapped to bash (associative) arrays.
2017-01-25 15:42:07 +00:00
2020-10-11 16:19:10 +00:00
std::reverse(sortedOutputNames.begin(), sortedOutputNames.end());
Recursive Nix support This allows Nix builders to call Nix to build derivations, with some limitations. Example: let nixpkgs = fetchTarball channel:nixos-18.03; in with import <nixpkgs> {}; runCommand "foo" { buildInputs = [ nix jq ]; NIX_PATH = "nixpkgs=${nixpkgs}"; } '' hello=$(nix-build -E '(import <nixpkgs> {}).hello.overrideDerivation (args: { name = "hello-3.5"; })') $hello/bin/hello mkdir -p $out/bin ln -s $hello/bin/hello $out/bin/hello nix path-info -r --json $hello | jq . '' This derivation makes a recursive Nix call to build GNU Hello and symlinks it from its $out, i.e. # ll ./result/bin/ lrwxrwxrwx 1 root root 63 Jan 1 1970 hello -> /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5/bin/hello # nix-store -qR ./result /nix/store/hwwqshlmazzjzj7yhrkyjydxamvvkfd3-glibc-2.26-131 /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5 /nix/store/sgmvvyw8vhfqdqb619bxkcpfn9lvd8ss-foo This is implemented as follows: * Before running the outer builder, Nix creates a Unix domain socket '.nix-socket' in the builder's temporary directory and sets $NIX_REMOTE to point to it. It starts a thread to process connections to this socket. (Thus you don't need to have nix-daemon running.) * The daemon thread uses a wrapper store (RestrictedStore) to keep track of paths added through recursive Nix calls, to implement some restrictions (see below), and to do some censorship (e.g. for purity, queryPathInfo() won't return impure information such as signatures and timestamps). * After the build finishes, the output paths are scanned for references to the paths added through recursive Nix calls (in addition to the inputs closure). Thus, in the example above, $out has a reference to $hello. The main restriction on recursive Nix calls is that they cannot do arbitrary substitutions. For example, doing nix-store -r /nix/store/kmwd1hq55akdb9sc7l3finr175dajlby-hello-2.10 is forbidden unless /nix/store/kmwd... is in the inputs closure or previously built by a recursive Nix call. This is to prevent irreproducible derivations that have hidden dependencies on substituters or the current store contents. Building a derivation is fine, however, and Nix will use substitutes if available. In other words, the builder has to present proof that it knows how to build a desired store path from scratch by constructing a derivation graph for that path. Probably we should also disallow instantiating/building fixed-output derivations (specifically, those that access the network, but currently we have no way to mark fixed-output derivations that don't access the network). Otherwise sandboxed derivations can bypass sandbox restrictions and access the network. When sandboxing is enabled, we make paths appear in the sandbox of the builder by entering the mount namespace of the builder and bind-mounting each path. This is tricky because we do a pivot_root() in the builder to change the root directory of its mount namespace, and thus the host /nix/store is not visible in the mount namespace of the builder. To get around this, just before doing pivot_root(), we branch a second mount namespace that shares its /nix/store mountpoint with the parent. Recursive Nix currently doesn't work on macOS in sandboxed mode (because we can't change the sandbox policy of a running build) and in non-root mode (because setns() barfs).
2018-10-02 14:01:26 +00:00
2020-10-11 16:19:10 +00:00
for (auto & outputName : sortedOutputNames) {
auto output = drv->outputs.at(outputName);
auto & scratchPath = scratchOutputs.at(outputName);
auto actualPath = toRealPathChroot(worker.store.printStorePath(scratchPath));
Recursive Nix support This allows Nix builders to call Nix to build derivations, with some limitations. Example: let nixpkgs = fetchTarball channel:nixos-18.03; in with import <nixpkgs> {}; runCommand "foo" { buildInputs = [ nix jq ]; NIX_PATH = "nixpkgs=${nixpkgs}"; } '' hello=$(nix-build -E '(import <nixpkgs> {}).hello.overrideDerivation (args: { name = "hello-3.5"; })') $hello/bin/hello mkdir -p $out/bin ln -s $hello/bin/hello $out/bin/hello nix path-info -r --json $hello | jq . '' This derivation makes a recursive Nix call to build GNU Hello and symlinks it from its $out, i.e. # ll ./result/bin/ lrwxrwxrwx 1 root root 63 Jan 1 1970 hello -> /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5/bin/hello # nix-store -qR ./result /nix/store/hwwqshlmazzjzj7yhrkyjydxamvvkfd3-glibc-2.26-131 /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5 /nix/store/sgmvvyw8vhfqdqb619bxkcpfn9lvd8ss-foo This is implemented as follows: * Before running the outer builder, Nix creates a Unix domain socket '.nix-socket' in the builder's temporary directory and sets $NIX_REMOTE to point to it. It starts a thread to process connections to this socket. (Thus you don't need to have nix-daemon running.) * The daemon thread uses a wrapper store (RestrictedStore) to keep track of paths added through recursive Nix calls, to implement some restrictions (see below), and to do some censorship (e.g. for purity, queryPathInfo() won't return impure information such as signatures and timestamps). * After the build finishes, the output paths are scanned for references to the paths added through recursive Nix calls (in addition to the inputs closure). Thus, in the example above, $out has a reference to $hello. The main restriction on recursive Nix calls is that they cannot do arbitrary substitutions. For example, doing nix-store -r /nix/store/kmwd1hq55akdb9sc7l3finr175dajlby-hello-2.10 is forbidden unless /nix/store/kmwd... is in the inputs closure or previously built by a recursive Nix call. This is to prevent irreproducible derivations that have hidden dependencies on substituters or the current store contents. Building a derivation is fine, however, and Nix will use substitutes if available. In other words, the builder has to present proof that it knows how to build a desired store path from scratch by constructing a derivation graph for that path. Probably we should also disallow instantiating/building fixed-output derivations (specifically, those that access the network, but currently we have no way to mark fixed-output derivations that don't access the network). Otherwise sandboxed derivations can bypass sandbox restrictions and access the network. When sandboxing is enabled, we make paths appear in the sandbox of the builder by entering the mount namespace of the builder and bind-mounting each path. This is tricky because we do a pivot_root() in the builder to change the root directory of its mount namespace, and thus the host /nix/store is not visible in the mount namespace of the builder. To get around this, just before doing pivot_root(), we branch a second mount namespace that shares its /nix/store mountpoint with the parent. Recursive Nix currently doesn't work on macOS in sandboxed mode (because we can't change the sandbox policy of a running build) and in non-root mode (because setns() barfs).
2018-10-02 14:01:26 +00:00
2020-10-11 16:19:10 +00:00
auto finish = [&](StorePath finalStorePath) {
/* Store the final path */
finalOutputs.insert_or_assign(outputName, finalStorePath);
/* The rewrite rule will be used in downstream outputs that refer to
use. This is why the topological sort is essential to do first
before this for loop. */
if (scratchPath != finalStorePath)
outputRewrites[std::string { scratchPath.hashPart() }] = std::string { finalStorePath.hashPart() };
};
Recursive Nix support This allows Nix builders to call Nix to build derivations, with some limitations. Example: let nixpkgs = fetchTarball channel:nixos-18.03; in with import <nixpkgs> {}; runCommand "foo" { buildInputs = [ nix jq ]; NIX_PATH = "nixpkgs=${nixpkgs}"; } '' hello=$(nix-build -E '(import <nixpkgs> {}).hello.overrideDerivation (args: { name = "hello-3.5"; })') $hello/bin/hello mkdir -p $out/bin ln -s $hello/bin/hello $out/bin/hello nix path-info -r --json $hello | jq . '' This derivation makes a recursive Nix call to build GNU Hello and symlinks it from its $out, i.e. # ll ./result/bin/ lrwxrwxrwx 1 root root 63 Jan 1 1970 hello -> /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5/bin/hello # nix-store -qR ./result /nix/store/hwwqshlmazzjzj7yhrkyjydxamvvkfd3-glibc-2.26-131 /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5 /nix/store/sgmvvyw8vhfqdqb619bxkcpfn9lvd8ss-foo This is implemented as follows: * Before running the outer builder, Nix creates a Unix domain socket '.nix-socket' in the builder's temporary directory and sets $NIX_REMOTE to point to it. It starts a thread to process connections to this socket. (Thus you don't need to have nix-daemon running.) * The daemon thread uses a wrapper store (RestrictedStore) to keep track of paths added through recursive Nix calls, to implement some restrictions (see below), and to do some censorship (e.g. for purity, queryPathInfo() won't return impure information such as signatures and timestamps). * After the build finishes, the output paths are scanned for references to the paths added through recursive Nix calls (in addition to the inputs closure). Thus, in the example above, $out has a reference to $hello. The main restriction on recursive Nix calls is that they cannot do arbitrary substitutions. For example, doing nix-store -r /nix/store/kmwd1hq55akdb9sc7l3finr175dajlby-hello-2.10 is forbidden unless /nix/store/kmwd... is in the inputs closure or previously built by a recursive Nix call. This is to prevent irreproducible derivations that have hidden dependencies on substituters or the current store contents. Building a derivation is fine, however, and Nix will use substitutes if available. In other words, the builder has to present proof that it knows how to build a desired store path from scratch by constructing a derivation graph for that path. Probably we should also disallow instantiating/building fixed-output derivations (specifically, those that access the network, but currently we have no way to mark fixed-output derivations that don't access the network). Otherwise sandboxed derivations can bypass sandbox restrictions and access the network. When sandboxing is enabled, we make paths appear in the sandbox of the builder by entering the mount namespace of the builder and bind-mounting each path. This is tricky because we do a pivot_root() in the builder to change the root directory of its mount namespace, and thus the host /nix/store is not visible in the mount namespace of the builder. To get around this, just before doing pivot_root(), we branch a second mount namespace that shares its /nix/store mountpoint with the parent. Recursive Nix currently doesn't work on macOS in sandboxed mode (because we can't change the sandbox policy of a running build) and in non-root mode (because setns() barfs).
2018-10-02 14:01:26 +00:00
2020-10-11 16:19:10 +00:00
std::optional<StorePathSet> referencesOpt = std::visit(overloaded {
[&](AlreadyRegistered skippedFinalPath) -> std::optional<StorePathSet> {
finish(skippedFinalPath.path);
return std::nullopt;
},
[&](PerhapsNeedToRegister r) -> std::optional<StorePathSet> {
return r.refs;
},
}, outputReferencesIfUnregistered.at(outputName));
Recursive Nix support This allows Nix builders to call Nix to build derivations, with some limitations. Example: let nixpkgs = fetchTarball channel:nixos-18.03; in with import <nixpkgs> {}; runCommand "foo" { buildInputs = [ nix jq ]; NIX_PATH = "nixpkgs=${nixpkgs}"; } '' hello=$(nix-build -E '(import <nixpkgs> {}).hello.overrideDerivation (args: { name = "hello-3.5"; })') $hello/bin/hello mkdir -p $out/bin ln -s $hello/bin/hello $out/bin/hello nix path-info -r --json $hello | jq . '' This derivation makes a recursive Nix call to build GNU Hello and symlinks it from its $out, i.e. # ll ./result/bin/ lrwxrwxrwx 1 root root 63 Jan 1 1970 hello -> /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5/bin/hello # nix-store -qR ./result /nix/store/hwwqshlmazzjzj7yhrkyjydxamvvkfd3-glibc-2.26-131 /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5 /nix/store/sgmvvyw8vhfqdqb619bxkcpfn9lvd8ss-foo This is implemented as follows: * Before running the outer builder, Nix creates a Unix domain socket '.nix-socket' in the builder's temporary directory and sets $NIX_REMOTE to point to it. It starts a thread to process connections to this socket. (Thus you don't need to have nix-daemon running.) * The daemon thread uses a wrapper store (RestrictedStore) to keep track of paths added through recursive Nix calls, to implement some restrictions (see below), and to do some censorship (e.g. for purity, queryPathInfo() won't return impure information such as signatures and timestamps). * After the build finishes, the output paths are scanned for references to the paths added through recursive Nix calls (in addition to the inputs closure). Thus, in the example above, $out has a reference to $hello. The main restriction on recursive Nix calls is that they cannot do arbitrary substitutions. For example, doing nix-store -r /nix/store/kmwd1hq55akdb9sc7l3finr175dajlby-hello-2.10 is forbidden unless /nix/store/kmwd... is in the inputs closure or previously built by a recursive Nix call. This is to prevent irreproducible derivations that have hidden dependencies on substituters or the current store contents. Building a derivation is fine, however, and Nix will use substitutes if available. In other words, the builder has to present proof that it knows how to build a desired store path from scratch by constructing a derivation graph for that path. Probably we should also disallow instantiating/building fixed-output derivations (specifically, those that access the network, but currently we have no way to mark fixed-output derivations that don't access the network). Otherwise sandboxed derivations can bypass sandbox restrictions and access the network. When sandboxing is enabled, we make paths appear in the sandbox of the builder by entering the mount namespace of the builder and bind-mounting each path. This is tricky because we do a pivot_root() in the builder to change the root directory of its mount namespace, and thus the host /nix/store is not visible in the mount namespace of the builder. To get around this, just before doing pivot_root(), we branch a second mount namespace that shares its /nix/store mountpoint with the parent. Recursive Nix currently doesn't work on macOS in sandboxed mode (because we can't change the sandbox policy of a running build) and in non-root mode (because setns() barfs).
2018-10-02 14:01:26 +00:00
2020-10-11 16:19:10 +00:00
if (!referencesOpt)
continue;
auto references = *referencesOpt;
Recursive Nix support This allows Nix builders to call Nix to build derivations, with some limitations. Example: let nixpkgs = fetchTarball channel:nixos-18.03; in with import <nixpkgs> {}; runCommand "foo" { buildInputs = [ nix jq ]; NIX_PATH = "nixpkgs=${nixpkgs}"; } '' hello=$(nix-build -E '(import <nixpkgs> {}).hello.overrideDerivation (args: { name = "hello-3.5"; })') $hello/bin/hello mkdir -p $out/bin ln -s $hello/bin/hello $out/bin/hello nix path-info -r --json $hello | jq . '' This derivation makes a recursive Nix call to build GNU Hello and symlinks it from its $out, i.e. # ll ./result/bin/ lrwxrwxrwx 1 root root 63 Jan 1 1970 hello -> /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5/bin/hello # nix-store -qR ./result /nix/store/hwwqshlmazzjzj7yhrkyjydxamvvkfd3-glibc-2.26-131 /nix/store/s0awxrs71gickhaqdwxl506hzccb30y5-hello-3.5 /nix/store/sgmvvyw8vhfqdqb619bxkcpfn9lvd8ss-foo This is implemented as follows: * Before running the outer builder, Nix creates a Unix domain socket '.nix-socket' in the builder's temporary directory and sets $NIX_REMOTE to point to it. It starts a thread to process connections to this socket. (Thus you don't need to have nix-daemon running.) * The daemon thread uses a wrapper store (RestrictedStore) to keep track of paths added through recursive Nix calls, to implement some restrictions (see below), and to do some censorship (e.g. for purity, queryPathInfo() won't return impure information such as signatures and timestamps). * After the build finishes, the output paths are scanned for references to the paths added through recursive Nix calls (in addition to the inputs closure). Thus, in the example above, $out has a reference to $hello. The main restriction on recursive Nix calls is that they cannot do arbitrary substitutions. For example, doing nix-store -r /nix/store/kmwd1hq55akdb9sc7l3finr175dajlby-hello-2.10 is forbidden unless /nix/store/kmwd... is in the inputs closure or previously built by a recursive Nix call. This is to prevent irreproducible derivations that have hidden dependencies on substituters or the current store contents. Building a derivation is fine, however, and Nix will use substitutes if available. In other words, the builder has to present proof that it knows how to build a desired store path from scratch by constructing a derivation graph for that path. Probably we should also disallow instantiating/building fixed-output derivations (specifically, those that access the network, but currently we have no way to mark fixed-output derivations that don't access the network). Otherwise sandboxed derivations can bypass sandbox restrictions and access the network. When sandboxing is enabled, we make paths appear in the sandbox of the builder by entering the mount namespace of the builder and bind-mounting each path. This is tricky because we do a pivot_root() in the builder to change the root directory of its mount namespace, and thus the host /nix/store is not visible in the mount namespace of the builder. To get around this, just before doing pivot_root(), we branch a second mount namespace that shares its /nix/store mountpoint with the parent. Recursive Nix currently doesn't work on macOS in sandboxed mode (because we can't change the sandbox policy of a running build) and in non-root mode (because setns() barfs).
2018-10-02 14:01:26 +00:00
2020-10-11 16:19:10 +00:00
auto rewriteOutput = [&]() {
/* Apply hash rewriting if necessary. */
if (!outputRewrites.empty()) {
logWarning({
.name = "Rewriting hashes",
.hint = hintfmt("rewriting hashes in '%1%'; cross fingers", actualPath),
});
2020-10-11 16:19:10 +00:00
/* FIXME: this is in-memory. */
StringSink sink;
dumpPath(actualPath, sink);
deletePath(actualPath);
sink.s = make_ref<std::string>(rewriteStrings(*sink.s, outputRewrites));
StringSource source(*sink.s);
restorePath(actualPath, source);
2020-10-11 16:19:10 +00:00
/* FIXME: set proper permissions in restorePath() so
we don't have to do another traversal. */
canonicalisePathMetaData(actualPath, -1, inodesSeen);
}
};
2020-10-11 16:19:10 +00:00
auto rewriteRefs = [&]() -> std::pair<bool, StorePathSet> {
/* In the CA case, we need the rewritten refs to calculate the
final path, therefore we look for a *non-rewritten
self-reference, and use a bool rather try to solve the
computationally intractable fixed point. */
std::pair<bool, StorePathSet> res {
false,
{},
};
for (auto & r : references) {
auto name = r.name();
auto origHash = std::string { r.hashPart() };
if (r == scratchPath)
res.first = true;
else if (outputRewrites.count(origHash) == 0)
res.second.insert(r);
else {
std::string newRef = outputRewrites.at(origHash);
newRef += '-';
newRef += name;
res.second.insert(StorePath { newRef });
}
}
return res;
};
2020-10-11 16:19:10 +00:00
auto newInfoFromCA = [&](const DerivationOutputCAFloating outputHash) -> ValidPathInfo {
auto & st = outputStats.at(outputName);
if (outputHash.method == FileIngestionMethod::Flat) {
/* The output path should be a regular file without execute permission. */
if (!S_ISREG(st.st_mode) || (st.st_mode & S_IXUSR) != 0)
throw BuildError(
"output path '%1%' should be a non-executable regular file "
"since recursive hashing is not enabled (outputHashMode=flat)",
actualPath);
}
rewriteOutput();
/* FIXME optimize and deduplicate with addToStore */
std::string oldHashPart { scratchPath.hashPart() };
HashModuloSink caSink { outputHash.hashType, oldHashPart };
switch (outputHash.method) {
case FileIngestionMethod::Recursive:
dumpPath(actualPath, caSink);
break;
case FileIngestionMethod::Flat:
readFile(actualPath, caSink);
break;
}
auto got = caSink.finish().first;
auto refs = rewriteRefs();
HashModuloSink narSink { htSHA256, oldHashPart };
dumpPath(actualPath, narSink);
auto narHashAndSize = narSink.finish();
ValidPathInfo newInfo0 {
worker.store.makeFixedOutputPath(
outputHash.method,
got,
outputPathName(drv->name, outputName),
refs.second,
refs.first),
narHashAndSize.first,
};
newInfo0.narSize = narHashAndSize.second;
newInfo0.ca = FixedOutputHash {
.method = outputHash.method,
.hash = got,
};
newInfo0.references = refs.second;
if (refs.first)
newInfo0.references.insert(newInfo0.path);
if (scratchPath != newInfo0.path) {
// Also rewrite the output path
auto source = sinkToSource([&](Sink & nextSink) {
StringSink sink;
dumpPath(actualPath, sink);
RewritingSink rsink2(oldHashPart, std::string(newInfo0.path.hashPart()), nextSink);
2020-12-02 13:00:43 +00:00
rsink2(*sink.s);
rsink2.flush();
});
Path tmpPath = actualPath + ".tmp";
restorePath(tmpPath, *source);
deletePath(actualPath);
movePath(tmpPath, actualPath);
}
2017-08-15 13:31:59 +00:00
2020-10-11 16:19:10 +00:00
assert(newInfo0.ca);
return newInfo0;
};
2017-08-15 13:31:59 +00:00
2020-10-11 16:19:10 +00:00
ValidPathInfo newInfo = std::visit(overloaded {
[&](DerivationOutputInputAddressed output) {
/* input-addressed case */
auto requiredFinalPath = output.path;
/* Preemptively add rewrite rule for final hash, as that is
what the NAR hash will use rather than normalized-self references */
if (scratchPath != requiredFinalPath)
outputRewrites.insert_or_assign(
std::string { scratchPath.hashPart() },
std::string { requiredFinalPath.hashPart() });
rewriteOutput();
auto narHashAndSize = hashPath(htSHA256, actualPath);
ValidPathInfo newInfo0 { requiredFinalPath, narHashAndSize.first };
newInfo0.narSize = narHashAndSize.second;
auto refs = rewriteRefs();
newInfo0.references = refs.second;
if (refs.first)
newInfo0.references.insert(newInfo0.path);
return newInfo0;
},
[&](DerivationOutputCAFixed dof) {
auto newInfo0 = newInfoFromCA(DerivationOutputCAFloating {
.method = dof.hash.method,
.hashType = dof.hash.hash.type,
});
2020-10-11 16:19:10 +00:00
/* Check wanted hash */
Hash & wanted = dof.hash.hash;
assert(newInfo0.ca);
auto got = getContentAddressHash(*newInfo0.ca);
if (wanted != got) {
/* Throw an error after registering the path as
valid. */
worker.hashMismatch = true;
delayedException = std::make_exception_ptr(
BuildError("hash mismatch in fixed-output derivation '%s':\n specified: %s\n got: %s",
2020-10-11 16:19:10 +00:00
worker.store.printStorePath(drvPath),
wanted.to_string(SRI, true),
got.to_string(SRI, true)));
}
return newInfo0;
},
[&](DerivationOutputCAFloating dof) {
return newInfoFromCA(dof);
},
[&](DerivationOutputDeferred) {
// No derivation should reach that point without having been
// rewritten first
assert(false);
// Ugly, but the compiler insists on having this return a value
// of type `ValidPathInfo` despite the `assert(false)`, so
// let's provide it
return *(ValidPathInfo*)0;
},
2020-10-11 16:19:10 +00:00
}, output.output);
2020-10-11 16:19:10 +00:00
/* Calculate where we'll move the output files. In the checking case we
will leave leave them where they are, for now, rather than move to
their usual "final destination" */
auto finalDestPath = worker.store.printStorePath(newInfo.path);
2020-10-11 16:19:10 +00:00
/* Lock final output path, if not already locked. This happens with
floating CA derivations and hash-mismatching fixed-output
derivations. */
PathLocks dynamicOutputLock;
auto optFixedPath = output.path(worker.store, drv->name, outputName);
if (!optFixedPath ||
worker.store.printStorePath(*optFixedPath) != finalDestPath)
{
assert(newInfo.ca);
dynamicOutputLock.lockPaths({worker.store.toRealPath(finalDestPath)});
}
2020-10-11 16:19:10 +00:00
/* Move files, if needed */
if (worker.store.toRealPath(finalDestPath) != actualPath) {
if (buildMode == bmRepair) {
/* Path already exists, need to replace it */
replaceValidPath(worker.store.toRealPath(finalDestPath), actualPath);
actualPath = worker.store.toRealPath(finalDestPath);
} else if (buildMode == bmCheck) {
/* Path already exists, and we want to compare, so we leave out
new path in place. */
} else if (worker.store.isValidPath(newInfo.path)) {
/* Path already exists because CA path produced by something
else. No moving needed. */
assert(newInfo.ca);
} else {
auto destPath = worker.store.toRealPath(finalDestPath);
movePath(actualPath, destPath);
actualPath = destPath;
}
}
2020-10-11 16:19:10 +00:00
if (buildMode == bmCheck) {
if (!worker.store.isValidPath(newInfo.path)) continue;
ValidPathInfo oldInfo(*worker.store.queryPathInfo(newInfo.path));
if (newInfo.narHash != oldInfo.narHash) {
worker.checkMismatch = true;
if (settings.runDiffHook || settings.keepFailed) {
auto dst = worker.store.toRealPath(finalDestPath + checkSuffix);
deletePath(dst);
movePath(actualPath, dst);
2020-10-11 16:19:10 +00:00
handleDiffHook(
buildUser ? buildUser->getUID() : getuid(),
buildUser ? buildUser->getGID() : getgid(),
finalDestPath, dst, worker.store.printStorePath(drvPath), tmpDir);
2020-10-11 16:19:10 +00:00
throw NotDeterministic("derivation '%s' may not be deterministic: output '%s' differs from '%s'",
worker.store.printStorePath(drvPath), worker.store.toRealPath(finalDestPath), dst);
} else
throw NotDeterministic("derivation '%s' may not be deterministic: output '%s' differs",
worker.store.printStorePath(drvPath), worker.store.toRealPath(finalDestPath));
}
2020-10-11 16:19:10 +00:00
/* Since we verified the build, it's now ultimately trusted. */
if (!oldInfo.ultimate) {
oldInfo.ultimate = true;
worker.store.signPathInfo(oldInfo);
2020-11-03 11:52:57 +00:00
worker.store.registerValidPaths({{oldInfo.path, oldInfo}});
2020-10-11 16:19:10 +00:00
}
2020-10-11 16:19:10 +00:00
continue;
}
2004-06-22 17:04:10 +00:00
2020-10-11 16:19:10 +00:00
/* For debugging, print out the referenced and unreferenced paths. */
for (auto & i : inputPaths) {
auto j = references.find(i);
if (j == references.end())
debug("unreferenced input: '%1%'", worker.store.printStorePath(i));
else
debug("referenced input: '%1%'", worker.store.printStorePath(i));
}
2020-10-11 16:19:10 +00:00
if (curRound == nrRounds) {
worker.store.optimisePath(actualPath); // FIXME: combine with scanForReferences()
worker.markContentsGood(newInfo.path);
}
2020-10-11 16:19:10 +00:00
newInfo.deriver = drvPath;
newInfo.ultimate = true;
worker.store.signPathInfo(newInfo);
2020-10-11 16:19:10 +00:00
finish(newInfo.path);
2020-10-11 16:19:10 +00:00
/* If it's a CA path, register it right away. This is necessary if it
isn't statically known so that we can safely unlock the path before
the next iteration */
if (newInfo.ca)
2020-11-03 11:52:57 +00:00
worker.store.registerValidPaths({{newInfo.path, newInfo}});
2020-10-11 16:19:10 +00:00
infos.emplace(outputName, std::move(newInfo));
}
2020-10-11 16:19:10 +00:00
if (buildMode == bmCheck) return;
2020-10-11 16:19:10 +00:00
/* Apply output checks. */
checkOutputs(infos);
2020-10-11 16:19:10 +00:00
/* Compare the result with the previous round, and report which
path is different, if any.*/
if (curRound > 1 && prevInfos != infos) {
assert(prevInfos.size() == infos.size());
for (auto i = prevInfos.begin(), j = infos.begin(); i != prevInfos.end(); ++i, ++j)
if (!(*i == *j)) {
result.isNonDeterministic = true;
Path prev = worker.store.printStorePath(i->second.path) + checkSuffix;
bool prevExists = keepPreviousRound && pathExists(prev);
hintformat hint = prevExists
? hintfmt("output '%s' of '%s' differs from '%s' from previous round",
worker.store.printStorePath(i->second.path), worker.store.printStorePath(drvPath), prev)
: hintfmt("output '%s' of '%s' differs from previous round",
worker.store.printStorePath(i->second.path), worker.store.printStorePath(drvPath));
2020-10-11 16:19:10 +00:00
handleDiffHook(
buildUser ? buildUser->getUID() : getuid(),
buildUser ? buildUser->getGID() : getgid(),
prev, worker.store.printStorePath(i->second.path),
worker.store.printStorePath(drvPath), tmpDir);
2020-10-11 16:19:10 +00:00
if (settings.enforceDeterminism)
throw NotDeterministic(hint);
2020-10-11 16:19:10 +00:00
logError({
.name = "Output determinism error",
.hint = hint
});
2020-10-11 16:19:10 +00:00
curRound = nrRounds; // we know enough, bail out early
}
}
2020-10-11 16:19:10 +00:00
/* If this is the first round of several, then move the output out of the way. */
if (nrRounds > 1 && curRound == 1 && curRound < nrRounds && keepPreviousRound) {
for (auto & [_, outputStorePath] : finalOutputs) {
auto path = worker.store.printStorePath(outputStorePath);
Path prev = path + checkSuffix;
deletePath(prev);
Path dst = path + checkSuffix;
if (rename(path.c_str(), dst.c_str()))
throw SysError("renaming '%s' to '%s'", path, dst);
}
2020-10-11 16:19:10 +00:00
}
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
if (curRound < nrRounds) {
prevInfos = std::move(infos);
return;
}
2020-10-11 16:19:10 +00:00
/* Remove the .check directories if we're done. FIXME: keep them
if the result was not determistic? */
if (curRound == nrRounds) {
for (auto & [_, outputStorePath] : finalOutputs) {
Path prev = worker.store.printStorePath(outputStorePath) + checkSuffix;
deletePath(prev);
}
}
2020-10-11 16:19:10 +00:00
/* Register each output path as valid, and register the sets of
paths referenced by each of them. If there are cycles in the
outputs, this will fail. */
{
ValidPathInfos infos2;
for (auto & [outputName, newInfo] : infos) {
2020-11-03 11:52:57 +00:00
infos2.insert_or_assign(newInfo.path, newInfo);
2020-10-11 16:19:10 +00:00
}
worker.store.registerValidPaths(infos2);
}
2020-10-11 16:19:10 +00:00
/* In case of a fixed-output derivation hash mismatch, throw an
exception now that we have registered the output as valid. */
if (delayedException)
std::rethrow_exception(delayedException);
2020-10-11 16:19:10 +00:00
/* If we made it this far, we are sure the output matches the derivation
(since the delayedException would be a fixed output CA mismatch). That
means it's safe to link the derivation to the output hash. We must do
that for floating CA derivations, which otherwise couldn't be cached,
but it's fine to do in all cases. */
bool isCaFloating = drv->type() == DerivationType::CAFloating;
2020-10-11 16:19:10 +00:00
auto drvPathResolved = drvPath;
if (!useDerivation && isCaFloating) {
/* Once a floating CA derivations reaches this point, it
must already be resolved, so we don't bother trying to
downcast drv to get would would just be an empty
inputDrvs field. */
Derivation drv2 { *drv };
drvPathResolved = writeDerivation(worker.store, drv2);
}
2020-10-11 16:19:10 +00:00
if (useDerivation || isCaFloating)
for (auto & [outputName, newInfo] : infos)
worker.store.linkDeriverToPath(drvPathResolved, outputName, newInfo.path);
2004-06-29 09:41:50 +00:00
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::checkOutputs(const std::map<Path, ValidPathInfo> & outputs)
{
2020-10-11 16:19:10 +00:00
std::map<Path, const ValidPathInfo &> outputsByPath;
for (auto & output : outputs)
outputsByPath.emplace(worker.store.printStorePath(output.second.path), output.second);
2020-10-11 16:19:10 +00:00
for (auto & output : outputs) {
auto & outputName = output.first;
auto & info = output.second;
2020-10-11 16:19:10 +00:00
struct Checks
{
bool ignoreSelfRefs = false;
std::optional<uint64_t> maxSize, maxClosureSize;
std::optional<Strings> allowedReferences, allowedRequisites, disallowedReferences, disallowedRequisites;
};
2020-10-11 16:19:10 +00:00
/* Compute the closure and closure size of some output. This
is slightly tricky because some of its references (namely
other outputs) may not be valid yet. */
auto getClosure = [&](const StorePath & path)
{
uint64_t closureSize = 0;
StorePathSet pathsDone;
std::queue<StorePath> pathsLeft;
pathsLeft.push(path);
2020-10-11 16:19:10 +00:00
while (!pathsLeft.empty()) {
auto path = pathsLeft.front();
pathsLeft.pop();
if (!pathsDone.insert(path).second) continue;
2020-10-11 16:19:10 +00:00
auto i = outputsByPath.find(worker.store.printStorePath(path));
if (i != outputsByPath.end()) {
closureSize += i->second.narSize;
for (auto & ref : i->second.references)
pathsLeft.push(ref);
} else {
auto info = worker.store.queryPathInfo(path);
closureSize += info->narSize;
for (auto & ref : info->references)
pathsLeft.push(ref);
}
}
2003-07-20 19:29:38 +00:00
2020-10-11 16:19:10 +00:00
return std::make_pair(std::move(pathsDone), closureSize);
};
2020-10-11 16:19:10 +00:00
auto applyChecks = [&](const Checks & checks)
{
if (checks.maxSize && info.narSize > *checks.maxSize)
throw BuildError("path '%s' is too large at %d bytes; limit is %d bytes",
worker.store.printStorePath(info.path), info.narSize, *checks.maxSize);
2020-10-11 16:19:10 +00:00
if (checks.maxClosureSize) {
uint64_t closureSize = getClosure(info.path).second;
if (closureSize > *checks.maxClosureSize)
throw BuildError("closure of path '%s' is too large at %d bytes; limit is %d bytes",
worker.store.printStorePath(info.path), closureSize, *checks.maxClosureSize);
}
2020-10-11 16:19:10 +00:00
auto checkRefs = [&](const std::optional<Strings> & value, bool allowed, bool recursive)
{
if (!value) return;
2020-10-11 16:19:10 +00:00
/* Parse a list of reference specifiers. Each element must
either be a store path, or the symbolic name of the output
of the derivation (such as `out'). */
StorePathSet spec;
for (auto & i : *value) {
if (worker.store.isStorePath(i))
spec.insert(worker.store.parseStorePath(i));
else if (finalOutputs.count(i))
spec.insert(finalOutputs.at(i));
else throw BuildError("derivation contains an illegal reference specifier '%s'", i);
}
2020-10-11 16:19:10 +00:00
auto used = recursive
? getClosure(info.path).first
: info.references;
2020-10-11 16:19:10 +00:00
if (recursive && checks.ignoreSelfRefs)
used.erase(info.path);
2020-10-11 16:19:10 +00:00
StorePathSet badPaths;
2020-10-11 16:19:10 +00:00
for (auto & i : used)
if (allowed) {
if (!spec.count(i))
badPaths.insert(i);
} else {
if (spec.count(i))
badPaths.insert(i);
}
2020-10-11 16:19:10 +00:00
if (!badPaths.empty()) {
string badPathsStr;
for (auto & i : badPaths) {
badPathsStr += "\n ";
badPathsStr += worker.store.printStorePath(i);
}
throw BuildError("output '%s' is not allowed to refer to the following paths:%s",
worker.store.printStorePath(info.path), badPathsStr);
}
};
2020-10-11 16:19:10 +00:00
checkRefs(checks.allowedReferences, true, false);
checkRefs(checks.allowedRequisites, true, true);
checkRefs(checks.disallowedReferences, false, false);
checkRefs(checks.disallowedRequisites, false, true);
};
2020-10-11 16:19:10 +00:00
if (auto structuredAttrs = parsedDrv->getStructuredAttrs()) {
auto outputChecks = structuredAttrs->find("outputChecks");
if (outputChecks != structuredAttrs->end()) {
auto output = outputChecks->find(outputName);
2003-11-21 16:05:19 +00:00
2020-10-11 16:19:10 +00:00
if (output != outputChecks->end()) {
Checks checks;
2020-10-11 16:19:10 +00:00
auto maxSize = output->find("maxSize");
if (maxSize != output->end())
checks.maxSize = maxSize->get<uint64_t>();
2020-10-11 16:19:10 +00:00
auto maxClosureSize = output->find("maxClosureSize");
if (maxClosureSize != output->end())
checks.maxClosureSize = maxClosureSize->get<uint64_t>();
2020-10-11 16:19:10 +00:00
auto get = [&](const std::string & name) -> std::optional<Strings> {
auto i = output->find(name);
if (i != output->end()) {
Strings res;
for (auto j = i->begin(); j != i->end(); ++j) {
if (!j->is_string())
throw Error("attribute '%s' of derivation '%s' must be a list of strings", name, worker.store.printStorePath(drvPath));
res.push_back(j->get<std::string>());
}
checks.disallowedRequisites = res;
return res;
}
return {};
};
2003-07-20 19:29:38 +00:00
2020-10-11 16:19:10 +00:00
checks.allowedReferences = get("allowedReferences");
checks.allowedRequisites = get("allowedRequisites");
checks.disallowedReferences = get("disallowedReferences");
checks.disallowedRequisites = get("disallowedRequisites");
2003-07-20 19:29:38 +00:00
2020-10-11 16:19:10 +00:00
applyChecks(checks);
}
}
} else {
// legacy non-structured-attributes case
Checks checks;
checks.ignoreSelfRefs = true;
checks.allowedReferences = parsedDrv->getStringsAttr("allowedReferences");
checks.allowedRequisites = parsedDrv->getStringsAttr("allowedRequisites");
checks.disallowedReferences = parsedDrv->getStringsAttr("disallowedReferences");
checks.disallowedRequisites = parsedDrv->getStringsAttr("disallowedRequisites");
applyChecks(checks);
}
}
}
2003-07-20 19:29:38 +00:00
2020-10-11 16:19:10 +00:00
Path DerivationGoal::openLogFile()
{
2020-10-11 16:19:10 +00:00
logSize = 0;
2004-06-19 21:45:04 +00:00
2020-10-11 16:19:10 +00:00
if (!settings.keepLog) return "";
2004-06-19 21:45:04 +00:00
2020-10-11 16:19:10 +00:00
auto baseName = std::string(baseNameOf(worker.store.printStorePath(drvPath)));
2020-10-11 16:19:10 +00:00
/* Create a log file. */
Path dir = fmt("%s/%s/%s/", worker.store.logDir, worker.store.drvsLogDir, string(baseName, 0, 2));
createDirs(dir);
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
Path logFileName = fmt("%s/%s%s", dir, string(baseName, 2),
settings.compressLog ? ".bz2" : "");
2020-10-11 16:19:10 +00:00
fdLogFile = open(logFileName.c_str(), O_CREAT | O_WRONLY | O_TRUNC | O_CLOEXEC, 0666);
if (!fdLogFile) throw SysError("creating log file '%1%'", logFileName);
2020-10-11 16:19:10 +00:00
logFileSink = std::make_shared<FdSink>(fdLogFile.get());
2020-10-11 16:19:10 +00:00
if (settings.compressLog)
logSink = std::shared_ptr<CompressionSink>(makeCompressionSink("bzip2", *logFileSink));
else
2020-10-11 16:19:10 +00:00
logSink = logFileSink;
2020-10-11 16:19:10 +00:00
return logFileName;
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::closeLogFile()
{
2020-10-11 16:19:10 +00:00
auto logSink2 = std::dynamic_pointer_cast<CompressionSink>(logSink);
if (logSink2) logSink2->finish();
if (logFileSink) logFileSink->flush();
logSink = logFileSink = 0;
fdLogFile = -1;
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::deleteTmpDir(bool force)
{
2020-10-11 16:19:10 +00:00
if (tmpDir != "") {
/* Don't keep temporary directories for builtins because they
might have privileged stuff (like a copy of netrc). */
if (settings.keepFailed && !force && !drv->isBuiltin()) {
printError("note: keeping build directory '%s'", tmpDir);
chmod(tmpDir.c_str(), 0755);
}
2020-10-11 16:19:10 +00:00
else
deletePath(tmpDir);
tmpDir = "";
}
2003-07-20 19:29:38 +00:00
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::handleChildOutput(int fd, const string & data)
{
if ((hook && fd == hook->builderOut.readSide.get()) ||
(!hook && fd == builderOut.readSide.get()))
{
logSize += data.size();
if (settings.maxLogSize && logSize > settings.maxLogSize) {
killChild();
done(
BuildResult::LogLimitExceeded,
Error("%s killed after writing more than %d bytes of log output",
getName(), settings.maxLogSize));
return;
}
2003-07-20 19:29:38 +00:00
2020-10-11 16:19:10 +00:00
for (auto c : data)
if (c == '\r')
currentLogLinePos = 0;
else if (c == '\n')
flushLine();
else {
if (currentLogLinePos >= currentLogLine.size())
currentLogLine.resize(currentLogLinePos + 1);
currentLogLine[currentLogLinePos++] = c;
}
2020-10-11 16:19:10 +00:00
if (logSink) (*logSink)(data);
}
2020-10-11 16:19:10 +00:00
if (hook && fd == hook->fromHook.readSide.get()) {
for (auto c : data)
if (c == '\n') {
handleJSONLogMessage(currentHookLine, worker.act, hook->activities, true);
currentHookLine.clear();
} else
currentHookLine += c;
}
2003-07-20 19:29:38 +00:00
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::handleEOF(int fd)
{
2020-10-11 16:19:10 +00:00
if (!currentLogLine.empty()) flushLine();
worker.wakeUp(shared_from_this());
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::flushLine()
{
2020-10-11 16:19:10 +00:00
if (handleJSONLogMessage(currentLogLine, *act, builderActivities, false))
;
else {
2020-10-11 16:19:10 +00:00
logTail.push_back(currentLogLine);
if (logTail.size() > settings.logLines) logTail.pop_front();
2020-10-11 16:19:10 +00:00
act->result(resBuildLogLine, currentLogLine);
}
2020-10-11 16:19:10 +00:00
currentLogLine = "";
currentLogLinePos = 0;
}
2020-10-11 16:19:10 +00:00
std::map<std::string, std::optional<StorePath>> DerivationGoal::queryPartialDerivationOutputMap()
{
2020-10-11 16:19:10 +00:00
if (!useDerivation || drv->type() != DerivationType::CAFloating) {
std::map<std::string, std::optional<StorePath>> res;
for (auto & [name, output] : drv->outputs)
res.insert_or_assign(name, output.path(worker.store, drv->name, name));
return res;
} else {
return worker.store.queryPartialDerivationOutputMap(drvPath);
}
}
2020-10-11 16:19:10 +00:00
OutputPathMap DerivationGoal::queryDerivationOutputMap()
{
2020-10-11 16:19:10 +00:00
if (!useDerivation || drv->type() != DerivationType::CAFloating) {
OutputPathMap res;
for (auto & [name, output] : drv->outputsAndOptPaths(worker.store))
res.insert_or_assign(name, *output.second);
return res;
} else {
return worker.store.queryDerivationOutputMap(drvPath);
}
2020-10-11 16:19:10 +00:00
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::checkPathValidity()
{
bool checkHash = buildMode == bmRepair;
for (auto & i : queryPartialDerivationOutputMap()) {
InitialOutput info {
.wanted = wantOutput(i.first, wantedOutputs),
};
if (i.second) {
auto outputPath = *i.second;
info.known = {
.path = outputPath,
.status = !worker.store.isValidPath(outputPath)
? PathStatus::Absent
: !checkHash || worker.pathContentsGood(outputPath)
? PathStatus::Valid
: PathStatus::Corrupt,
};
}
2020-10-11 16:19:10 +00:00
initialOutputs.insert_or_assign(i.first, info);
}
}
2020-10-11 16:19:10 +00:00
StorePath DerivationGoal::makeFallbackPath(std::string_view outputName)
{
return worker.store.makeStorePath(
"rewrite:" + std::string(drvPath.to_string()) + ":name:" + std::string(outputName),
Hash(htSHA256), outputPathName(drv->name, outputName));
}
2020-10-11 16:19:10 +00:00
StorePath DerivationGoal::makeFallbackPath(const StorePath & path)
2003-07-20 19:29:38 +00:00
{
2020-10-11 16:19:10 +00:00
return worker.store.makeStorePath(
"rewrite:" + std::string(drvPath.to_string()) + ":" + std::string(path.to_string()),
Hash(htSHA256), path.name());
}
2020-10-11 16:19:10 +00:00
void DerivationGoal::done(BuildResult::Status status, std::optional<Error> ex)
{
result.status = status;
if (ex)
result.errorMsg = ex->what();
amDone(result.success() ? ecSuccess : ecFailed, ex);
if (result.status == BuildResult::TimedOut)
worker.timedOut = true;
if (result.status == BuildResult::PermanentFailure)
worker.permanentFailure = true;
2020-10-11 16:19:10 +00:00
mcExpectedBuilds.reset();
mcRunningBuilds.reset();
2020-10-11 16:19:10 +00:00
if (result.success()) {
if (status == BuildResult::Built)
worker.doneBuilds++;
} else {
if (status != BuildResult::DependencyFailed)
worker.failedBuilds++;
}
2012-07-27 13:59:18 +00:00
2020-10-11 16:19:10 +00:00
worker.updateProgress();
}
}