chroot only changes the process root directory, not the mount namespace root
directory, and it is well-known that any process with chroot capability can
break out of a chroot "jail". By using pivot_root as well, and unmounting the
original mount namespace root directory, breaking out becomes impossible.
Non-root processes typically have no ability to use chroot() anyway, but they
can gain that capability through the use of clone() or unshare(). For security
reasons, these syscalls are limited in functionality when used inside a normal
chroot environment. Using pivot_root() this way does allow those syscalls to be
put to their full use.
I.e., not readable to the nixbld group. This improves purity a bit for
non-chroot builds, because it prevents a builder from enumerating
store paths (i.e. it can only access paths it knows about).
Especially in WAL mode on a highly loaded machine, this is not a good
idea because it results in a WAL file of approximately the same size
ad the database, which apparently cannot be deleted while anybody is
accessing it.
For the "stdenv accidentally referring to bootstrap-tools", it seems
easier to specify the path that we don't want to depend on, e.g.
disallowedRequisites = [ bootstrapTools ];
It turns out that using clone() to start a child process is unsafe in
a multithreaded program. It can cause the initialisation of a build
child process to hang in setgroups(), as seen several times in the
build farm:
The reason is that Glibc thinks that the other threads of the parent
exist in the child, so in setxid_mark_thread() it tries to get a futex
that has been acquired by another thread just before the clone(). With
fork(), Glibc runs pthread_atfork() handlers that take care of this
(in particular, __reclaim_stacks()). But clone() doesn't do that.
Fortunately, we can use fork()+unshare() instead of clone() to set up
private namespaces.
See also https://www.mail-archive.com/lxc-devel@lists.linuxcontainers.org/msg03434.html.