#pragma once #include "ref.hh" #include #include #include #include #include #include #include namespace nix { typedef std::list Strings; typedef std::set StringSet; typedef std::map StringMap; typedef std::map StringPairs; /* Paths are just strings. */ typedef std::string Path; typedef std::string_view PathView; typedef std::list Paths; typedef std::set PathSet; typedef std::vector> Headers; /* Helper class to run code at startup. */ template struct OnStartup { OnStartup(T && t) { t(); } }; /* Wrap bools to prevent string literals (i.e. 'char *') from being cast to a bool in Attr. */ template struct Explicit { T t; bool operator ==(const Explicit & other) const { return t == other.t; } }; /* This wants to be a little bit like rust's Cow type. Some parts of the evaluator benefit greatly from being able to reuse existing allocations for strings, but have to be able to also use newly allocated storage for values. We do not define implicit conversions, even with ref qualifiers, since those can easily become ambiguous to the reader and can degrade into copying behaviour we want to avoid. */ class BackedStringView { private: std::variant data; /* Needed to introduce a temporary since operator-> must return a pointer. Without this we'd need to store the view object even when we already own a string. */ class Ptr { private: std::string_view view; public: Ptr(std::string_view view): view(view) {} const std::string_view * operator->() const { return &view; } }; public: BackedStringView(std::string && s): data(std::move(s)) {} BackedStringView(std::string_view sv): data(sv) {} template BackedStringView(const char (& lit)[N]): data(std::string_view(lit)) {} BackedStringView(const BackedStringView &) = delete; BackedStringView & operator=(const BackedStringView &) = delete; /* We only want move operations defined since the sole purpose of this type is to avoid copies. */ BackedStringView(BackedStringView && other) = default; BackedStringView & operator=(BackedStringView && other) = default; bool isOwned() const { return std::holds_alternative(data); } std::string toOwned() && { return isOwned() ? std::move(std::get(data)) : std::string(std::get(data)); } std::string_view operator*() const { return isOwned() ? std::get(data) : std::get(data); } Ptr operator->() const { return Ptr(**this); } }; /* Provides an indexable container like vector<> with memory overhead guarantees like list<> by allocating storage in chunks of ChunkSize elements instead of using a contiguous memory allocation like vector<> does. Not using a single vector that is resized reduces memory overhead on large data sets by on average (growth factor)/2, mostly eliminates copies within the vector during resizing, and provides stable references to its elements. */ template class ChunkedVector { private: uint32_t size_ = 0; std::vector> chunks; /* keep this out of the ::add hot path */ [[gnu::noinline]] auto & addChunk() { if (size_ >= std::numeric_limits::max() - ChunkSize) abort(); chunks.emplace_back(); chunks.back().reserve(ChunkSize); return chunks.back(); } public: ChunkedVector(uint32_t reserve) { chunks.reserve(reserve); addChunk(); } uint32_t size() const { return size_; } std::pair add(T value) { const auto idx = size_++; auto & chunk = [&] () -> auto & { if (auto & back = chunks.back(); back.size() < ChunkSize) return back; return addChunk(); }(); auto & result = chunk.emplace_back(std::move(value)); return {result, idx}; } const T & operator[](uint32_t idx) const { return chunks[idx / ChunkSize][idx % ChunkSize]; } template void forEach(Fn fn) const { for (const auto & c : chunks) for (const auto & e : c) fn(e); } }; }