It turns out that in multi-user Nix, a builder may be able to do
ln /etc/shadow $out/foo
Afterwards, canonicalisePathMetaData() will be applied to $out/foo,
causing /etc/shadow's mode to be set to 444 (readable by everybody but
writable by nobody). That's obviously Very Bad.
Fortunately, this fails in NixOS's default configuration because
/nix/store is a bind mount, so "ln" will fail with "Invalid
cross-device link". It also fails if hard-link restrictions are
enabled, so a workaround is:
echo 1 > /proc/sys/fs/protected_hardlinks
The solution is to check that all files in $out are owned by the build
user. This means that innocuous operations like "ln
${pkgs.foo}/some-file $out/" are now rejected, but that already failed
in chroot builds anyway.
...where <XX> is the first two characters of the derivation.
Otherwise /nix/var/log/nix/drvs may become so large that we run into
all sorts of weird filesystem limits/inefficiences. For instance,
ext3/ext4 filesystems will barf with "ext4_dx_add_entry:1551:
Directory index full!" once you hit a few million files.
So if a path is not garbage solely because it's reachable from a root
due to the gc-keep-outputs or gc-keep-derivations settings, ‘nix-store
-q --roots’ now shows that root.
For example, given a derivation with outputs "out", "man" and "bin":
$ nix-build -A pkg
produces ./result pointing to the "out" output;
$ nix-build -A pkg.man
produces ./result-man pointing to the "man" output;
$ nix-build -A pkg.all
produces ./result, ./result-man and ./result-bin;
$ nix-build -A pkg.all -A pkg2
produces ./result, ./result-man, ./result-bin and ./result-2.
This flag causes paths that do not have a known substitute to be
quietly ignored. This is mostly useful for Charon, allowing it to
speed up deployment by letting a machine use substitutes for all
substitutable paths, instead of uploading them. The latter is
frequently faster, e.g. if the target machine has a fast Internet
connection while the source machine is on a slow ADSL line.
I.e. do what git does. I'm too lazy to keep the builtin help text up
to date :-)
Also add ‘--help’ to various commands that lacked it
(e.g. nix-collect-garbage).
With this flag, if any valid derivation output is missing or corrupt,
it will be recreated by using a substitute if available, or by
rebuilding the derivation. The latter may use hash rewriting if
chroots are not available.
This operation allows fixing corrupted or accidentally deleted store
paths by redownloading them using substituters, if available.
Since the corrupted path cannot be replaced atomically, there is a
very small time window (one system call) during which neither the old
(corrupted) nor the new (repaired) contents are available. So
repairing should be used with some care on critical packages like
Glibc.
Output names are now appended to resulting GC symlinks, e.g. by
nix-build. For backwards compatibility, if the output is named "out",
nothing is appended. E.g. doing "nix-build -A foo" on a derivation
that produces outputs "out", "bin" and "dev" will produce symlinks
"./result", "./result-bin" and "./result-dev", respectively.
optimiseStore() now creates persistent, content-addressed hard links
in /nix/store/.links. For instance, if it encounters a file P with
hash H, it will create a hard link
P' = /nix/store/.link/<H>
to P if P' doesn't already exist; if P' exist, then P is replaced by a
hard link to P'. This is better than the previous in-memory map,
because it had the tendency to unnecessarily replace hard links with a
hard link to whatever happened to be the first file with a given hash
it encountered. It also allows on-the-fly, incremental optimisation.
We can't open a SQLite database if the disk is full. Since this
prevents the garbage collector from running when it's most needed, we
reserve some dummy space that we can free just before doing a garbage
collection. This actually revives some old code from the Berkeley DB
days.
Fixes#27.
environment of the given derivation in a format that can be sourced
by the shell, e.g.
$ eval "$(nix-store --print-env $(nix-instantiate /etc/nixos/nixpkgs -A pkg))"
$ NIX_BUILD_TOP=/tmp
$ source $stdenv/setup
This is especially useful to reproduce the environment used to build
a package outside of its builder for development purposes.
TODO: add a nix-build option to do the above and fetch the
dependencies of the derivation as well.
‘nix-store --export’.
* Add a Perl module that provides the functionality of
‘nix-copy-closure --to’. This is used by build-remote.pl so it no
longer needs to start a separate nix-copy-closure process. Also, it
uses the Perl API to do the export, so it doesn't need to start a
separate nix-store process either. As a result, nix-copy-closure
and build-remote.pl should no longer fail on very large closures due
to an "Argument list too long" error. (Note that having very many
dependencies in a single derivation can still fail because the
environment can become too large. Can't be helped though.)
the contents of any of the given store paths have been modified.
E.g.
$ nix-store --verify-path $(nix-store -qR /var/run/current-system)
path `/nix/store/m2smyiwbxidlprfxfz4rjlvz2c3mg58y-etc' was modified! expected hash `fc87e271c5fdf179b47939b08ad13440493805584b35e3014109d04d8436e7b8', got `20f1a47281b3c0cbe299ce47ad5ca7340b20ab34246426915fce0ee9116483aa'
All paths are checked; the exit code is 1 if any path has been
modified, 0 otherwise.
This should also fix:
nix-instantiate: ./../boost/shared_ptr.hpp:254: T* boost::shared_ptr<T>::operator->() const [with T = nix::StoreAPI]: Assertion `px != 0' failed.
which was caused by hashDerivationModulo() calling the ‘store’
object (during store upgrades) before openStore() assigned it.
because it defines _FILE_OFFSET_BITS. Without this, on
OpenSolaris the system headers define it to be 32, and then
the 32-bit stat() ends up being called with a 64-bit "struct
stat", or vice versa.
This also ensures that we get 64-bit file sizes everywhere.
* Remove the redundant call to stat() in parseExprFromFile().
The file cannot be a symlink because that's the exit condition
of the loop before.
(Linux) machines no longer maintain the atime because it's too
expensive, and on the machines where --use-atime is useful (like the
buildfarm), reading the atimes on the entire Nix store takes way too
much time to make it practical.
would just silently store only (fileSize % 2^32) bytes.
* Use posix_fallocate if available when unpacking archives.
* Provide a better error message when trying to unpack something that
isn't a NAR archive.
SHA-256 outputs of fixed-output derivations. I.e. they now produce
the same store path:
$ nix-store --add x
/nix/store/j2fq9qxvvxgqymvpszhs773ncci45xsj-x
$ nix-store --add-fixed --recursive sha256 x
/nix/store/j2fq9qxvvxgqymvpszhs773ncci45xsj-x
the latter being the same as the path that a derivation
derivation {
name = "x";
outputHashAlgo = "sha256";
outputHashMode = "recursive";
outputHash = "...";
...
};
produces.
This does change the output path for such fixed-output derivations.
Fortunately they are quite rare. The most common use is fetchsvn
calls with SHA-256 hashes. (There are a handful of those is
Nixpkgs, mostly unstable development packages.)
* Documented the computation of store paths (in store-api.cc).
accessed time of paths that may be deleted. Anything more recently
used won't be deleted. The time is specified in time_t,
e.g. seconds since 1970-01-01 00:00:00 UTC; use `date +%s' to
convert to time_t from the command line.
Example: to delete everything that hasn't been used in the last two
months:
$ nix-store --gc -v --max-atime $(date +%s -d "2 months ago")
order of ascending last access time. This is useful in conjunction
with --max-freed or --max-links to prefer deleting non-recently used
garbage, which is good (especially in the build farm) since garbage
may become live again.
The code could easily be modified to accept other criteria for
ordering garbage by changing the comparison operator used by the
priority queue in collectGarbage().
bytes have been freed, `--max-links' to stop when the Nix store
directory has fewer than N hard links (the latter being important
for very large Nix stores on filesystems with a 32000 subdirectories
limit).
$ nix-env -e $(which firefox)
or
$ nix-env -e /nix/store/nywzlygrkfcgz7dfmhm5xixlx1l0m60v-pan-0.132
* nix-env -i: if an argument contains a slash anywhere, treat it as a
path and follow it through symlinks into the Nix store. This allows
things like
$ nix-build -A firefox
$ nix-env -i ./result
* nix-env -q/-i/-e: don't complain when the `*' selector doesn't match
anything. In particular, `nix-env -q \*' doesn't fail anymore on an
empty profile.
usage by finding identical files in the store and hard-linking them
to each other. It typically reduces the size of the store by
something like 25-35%. This is what the optimise-store.pl script
did, but the new command is faster and more correct (it's safe wrt
garbage collection and concurrent builds).
need any info on substitutable paths, we just call the substituters
(such as download-using-manifests.pl) directly. This means that
it's no longer necessary for nix-pull to register substitutes or for
nix-channel to clear them, which makes those operations much faster
(NIX-95). Also, we don't have to worry about keeping nix-pull
manifests (in /nix/var/nix/manifests) and the database in sync with
each other.
The downside is that there is some overhead in calling an external
program to get the substitutes info. For instance, "nix-env -qas"
takes a bit longer.
Abolishing the substitutes table also makes the logic in
local-store.cc simpler, as we don't need to store info for invalid
paths. On the downside, you cannot do things like "nix-store -qR"
on a substitutable but invalid path (but nobody did that anyway).
* Never catch interrupts (the Interrupted exception).
which paths specified on the command line are invalid (i.e., don't
barf when encountering an invalid path, just print it). This is
useful for build-remote.pl to figure out which paths need to be
copied to a remote machine. (Currently we use rsync, but that's
rather inefficient.)
--export' into the Nix store, and optionally check the cryptographic
signatures against /nix/etc/nix/signing-key.pub. (TODO: verify
against a set of public keys.)