IntroductionAbout NixNix is a purely functional package manager.
This means that it treats packages like values in purely functional
programming languages such as Haskell — they are built by functions
that don’t have side-effects, and they never change after they have
been built. Nix stores packages in the Nix
store, usually the directory
/nix/store, where each package has its own unique
subdirectory such as
/nix/store/nlc4z5y1hm8w9s8vm6m1f5hy962xjmp5-firefox-12.0
where nlc4z5… is a unique identifier for the
package that captures all its dependencies (it’s a cryptographic hash
of the package’s build dependency graph). This enables many powerful
features.Multiple versionsYou can have multiple versions or variants of a package
installed at the same time. This is especially important when
different applications have dependencies on different versions of the
same package — it prevents the “DLL hell”. Because of the hashing
scheme, different versions of a package end up in different paths in
the Nix store, so they don’t interfere with each other.An important consequence is that operations like upgrading or
uninstalling an application cannot break other applications, since
these operations never “destructively” update or delete files that are
used by other packages.Complete dependenciesNix helps you make sure that package dependency specifications
are complete. In general, when you’re making a package for a package
management system like RPM, you have to specify for each package what
its dependencies are, but there are no guarantees that this
specification is complete. If you forget a dependency, then the
package will build and work correctly on your
machine if you have the dependency installed, but not on the end
user's machine if it's not there.Since Nix on the other hand doesn’t install packages in “global”
locations like /usr/bin but in package-specific
directories, the risk of incomplete dependencies is greatly reduced.
This is because tools such as compilers don’t search in per-packages
directories such as
/nix/store/5lbfaxb722zp…-openssl-0.9.8d/include,
so if a package builds correctly on your system, this is because you
specified the dependency explicitly.Runtime dependencies are found by scanning binaries for the hash
parts of Nix store paths (such as r8vvq9kq…). This
sounds risky, but it works extremely well.Multi-user supportNix has multi-user support. This means that non-privileged
users can securely install software. Each user can have a different
profile, a set of packages in the Nix store that
appear in the user’s PATH. If a user installs a
package that another user has already installed previously, the
package won’t be built or downloaded a second time. At the same time,
it is not possible for one user to inject a Trojan horse into a
package that might be used by another user.Atomic upgrades and rollbacksSince package management operations never overwrite packages in
the Nix store but just add new versions in different paths, they are
atomic. So during a package upgrade, there is no
time window in which the package has some files from the old version
and some files from the new version — which would be bad because a
program might well crash if it’s started during that period.And since package aren’t overwritten, the old versions are still
there after an upgrade. This means that you can roll
back to the old version:
$ nix-env --upgrade some-packages
$ nix-env --rollback
Garbage collectionWhen you uninstall a package like this…
$ nix-env --uninstall firefox
the package isn’t deleted from the system right away (after all, you
might want to do a rollback, or it might be in the profiles of other
users). Instead, unused packages can be deleted safely by running the
garbage collector:
$ nix-collect-garbage
This deletes all packages that aren’t in use by any user profile or by
a currently running program.Functional package languagePackages are built from Nix expressions,
which is a simple functional language. A Nix expression describes
everything that goes into a package build action (a “derivation”):
other packages, sources, the build script, environment variables for
the build script, etc. Nix tries very hard to ensure that Nix
expressions are deterministic: building a Nix
expression twice should yield the same result.Because it’s a functional language, it’s easy to support
building variants of a package: turn the Nix expression into a
function and call it any number of times with the appropriate
arguments. Due to the hashing scheme, variants don’t conflict with
each other in the Nix store.Transparent source/binary deploymentNix expressions generally describe how to build a package from
source, so an installation action like
$ nix-env --install firefox
could cause quite a bit of build activity, as not
only Firefox but also all its dependencies (all the way up to the C
library and the compiler) would have to built, at least if they are
not already in the Nix store. This is a source deployment
model. For most users, building from source is not very
pleasant as it takes far too long. However, Nix can automatically
skip building from source and download a pre-built binary instead if
it knows about it. Nix channels provide Nix
expressions along with pre-built binaries.Binary patchingIn addition to downloading binaries automatically if they’re
available, Nix can download binary deltas that patch an existing
package in the Nix store into a new version. This speeds up
upgrades.Nix Packages collectionWe provide a large set of Nix expressions containing hundreds of
existing Unix packages, the Nix Packages
collection (Nixpkgs).Service deploymentNix can be used not only for rolling out packages, but also
complete configurations of services. This is
done by treating all the static bits of a service (such as software
packages, configuration files, control scripts, static web pages,
etc.) as “packages” that can be built by Nix expressions. As a
result, all the features above apply to services as well: for
instance, you can roll back a web server configuration if a
configuration change turns out to be undesirable, you can easily have
multiple instances of a service (e.g., a test and production server),
and because the whole service is built in a purely functional way from
a Nix expression, it is repeatable so you can easily reproduce the
service on another machine.PortabilityNix should run on most Unix systems, including Linux, FreeBSD and
Mac OS X.NixOSNixOS is a Linux distribution based on Nix. It uses Nix not
just for package management but also to manage the system
configuration (e.g., to build configuration files in
/etc). This means, among other things, that it’s
possible to easily roll back the entire configuration of the system to
an earlier state. Also, users can install software without root
privileges. For more information and downloads, see the NixOS homepage.About usNix was originally developed at the Department of Information and
Computing Sciences, Utrecht University by the TraCE
project (2003-2008). The project was funded by the Software
Engineering Research Program Jacquard to improve the
support for variability in software systems. Further funding was
provided by the NIRICT LaQuSo Build Farm project. Development is
currently supported by LogicBlox.About this manualThis manual tells you how to install and use Nix and how to
write Nix expressions for software not already in the Nix Packages
collection. It also discusses some advanced topics, such as setting
up distributed multi-platform building.LicenseNix is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any later
version. Nix is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.More informationSome background information on Nix can be found in a number of
papers. The ICSE 2004 paper Imposing
a Memory Management Discipline on Software Deployment
discusses the hashing mechanism used to ensure reliable dependency
identification and non-interference between different versions and
variants of packages. The LISA 2004 paper Nix:
A Safe and Policy-Free System for Software Deployment
gives a more general discussion of Nix from a system-administration
perspective. The CBSE 2005 paper Efficient
Upgrading in a Purely Functional Component Deployment Model
is about transparent patch deployment in Nix. The SCM-12
paper
Service Configuration Management shows how services (e.g.,
web servers) can be deployed and managed through Nix. An overview of
NixOS is given in the JFP article NixOS:
A Purely Functional Linux Distribution. The Nix homepage
has an up-to-date
list of Nix-related papers.Nix is the subject of Eelco Dolstra’s PhD thesis The
Purely Functional Software Deployment Model, which
contains most of the papers listed above.Nix has a homepage at .