Once a build is done, get back to the original derivation, and register
all the newly built outputs for this derivation.
This allows Nix to work properly with derivations that don't have all
their build inputs available − thus allowing garbage collection and
(once it's implemented) binary substitution
Don't only show the name of the output, but also the derivation to which
this output belongs (as otherwise it's very hard to track back what went
wrong)
PRs #4370 and #4348 had a bad interaction in that the second broke the fist
one in a not trivial way.
The issue was that since #4348 the logic for detecting whether a
derivation output is already built requires some logic that was specific
to the `LocalStore`.
It happens though that most of this logic could be upstreamed to any `Store`,
which is what this commit does.
`buildPaths` can be called even for stores where it's not defined in case it's
bound to be a no-op.
The “no-op detection” mechanism was only detecting the case wher `buildPaths`
was called on a set of (non-drv) paths that were already present on the store.
This commit extends this mechanism to also detect the case where `buildPaths`
is called on a set of derivation outputs which are already built on the store.
This only works with the ca-derivations flag. It could be possible to
extend this to also work without it, but it would add quite a bit of
complexity, and it's not used without it anyways.
Extend `FSAccessor::readFile` to allow not checking that the path is a
valid one, and rewrite `readInvalidDerivation` using this extended
`readFile`.
Several places in the code use `readInvalidDerivation`, either because
they need to read a derivation that has been written in the store but
not registered yet, or more generally to prevent a deadlock because
`readDerivation` tries to lock the state, so can't be called from a
place where the lock is already held.
However, `readInvalidDerivation` implicitely assumes that the store is a
`LocalFSStore`, which isn't always the case.
The concrete motivation for this is that it's required for `nix copy
--from someBinaryCache` to work, which is tremendously useful for the
tests.
In `nixStable` (2.3.7 to be precise) it's possible to connect to stores
using an IPv6 address:
nix ping-store --store ssh://root@2001:db8::1
This is also useful for `nixops(1)` where you could specify an IPv6
address in `deployment.targetHost`.
However, this behavior is broken on `nixUnstable` and fails with the
following error:
$ nix store ping --store ssh://root@2001:db8::1
don't know how to open Nix store 'ssh://root@2001:db8::1'
This happened because `openStore` from `libstore` uses the `parseURL`
function from `libfetchers` which expects a valid URL as defined in
RFC2732. However, this is unsupported by `ssh(1)`:
$ nix store ping --store 'ssh://root@[2001:db8::1]'
cannot connect to 'root@[2001:db8::1]'
This patch now allows both ways of specifying a store (`root@2001:db8::1`) and
also `root@[2001:db8::1]` since the latter one is useful to pass query
parameters to the remote store.
In order to achieve this, the following changes were made:
* The URL regex from `url-parts.hh` now allows an IPv6 address in the
form `2001:db8::1` and also `[2001:db8::1]`.
* In `libstore`, a new function named `extractConnStr` ensures that a
proper URL is passed to e.g. `ssh(1)`:
* If a URL looks like either `[2001:db8::1]` or `root@[2001:db8::1]`,
the brackets will be removed using a regex. No additional validation
is done here as only strings parsed by `parseURL` are expected.
* In any other case, the string will be left untouched.
* The rules above only apply for `LegacySSHStore` and `SSHStore` (a.k.a
`ssh://` and `ssh-ng://`).
Unresolved questions:
* I'm not really sure whether we want to allow both variants of IPv6
addresses in the URL parser. However it should be noted that both seem
to be possible according to RFC2732:
> This document incudes an update to the generic syntax for Uniform
> Resource Identifiers defined in RFC 2396 [URL]. It defines a syntax
> for IPv6 addresses and allows the use of "[" and "]" within a URI
> explicitly for this reserved purpose.
* Currently, it's not supported to specify a port number behind the
hostname, however it seems as this is not really supported by the URL
parser. Hence, this is probably out of scope here.
Until now, it was not possible to substitute missing paths from e.g.
`https://cache.nixos.org` on a remote server when building on it using
the new `ssh-ng` protocol.
This is because every store implementation except legacy `ssh://`
ignores the substitution flag passed to `Store::queryValidPaths` while
the `legacy-ssh-store` substitutes the remote store using
`cmdQueryValidPaths` when the remote store is opened with `nix-store
--serve`.
This patch slightly modifies the daemon protocol to allow passing an
integer value suggesting whether to substitute missing paths during
`wopQueryValidPaths`. To implement this on the daemon-side, the
substitution logic from `nix-store --serve` has been moved into a
protected method named `Store::substitutePaths` which gets currently
called from `LocalStore::queryValidPaths` and `Store::queryValidPaths`
if `maybeSubstitute` is `true`.
Fixes#2770
This removes the extra-substituters and extra-sandbox-paths settings
and instead makes every array setting extensible by setting
"extra-<name> = <value>" in the configuration file or passing
"--<name> <value>" on the command line.
Rework the `Store` hierarchy so that there's now one hierarchy for the
store configs and one for the implementations (where each implementation
extends the corresponding config). So a class hierarchy like
```
StoreConfig-------->Store
| |
v v
SubStoreConfig----->SubStore
| |
v v
SubSubStoreConfig-->SubSubStore
```
(with virtual inheritance to prevent DDD).
The advantage of this architecture is that we can now introspect the configuration of a store without having to instantiate the store itself
Add a new `init()` method to the `Store` class that is supposed to
handle all the effectful initialisation needed to set-up the store.
The constructor should remain side-effect free and just initialize the
c++ data structure.
The goal behind that is that we can create “dummy” instances of each
store to query static properties about it (the parameters it accepts for
example)
Directly register the store classes rather than a function to build an
instance of them.
This gives the possibility to introspect static members of the class or
choose different ways of instantiating them.
This assumption is broken by CA derivations. Making a PR now to do the
breaking daemon change as soon as possible (if it is already too late,
we can bump protocol intead).
to each Store implementation. The generic regStore implementation will
only be for the ambiguous shorthands, like "" and "auto".
This also could get us close to simplifying the daemon command.
Generalize `queryDerivationOutputNames` and `queryDerivationOutputs` by
adding a `queryDerivationOutputMap` that returns the map
`outputName=>outputPath`
(not that this is not equivalent to merging the results of
`queryDerivationOutputs` and `queryDerivationOutputNames` as sets don't
preserve the order, so we would end up with an incorrect mapping).
squash! Add a way to get all the outputs of a derivation with their label
Rename StorePathMap to OutputPathMap
This further continues with the dependency inverstion. Also I just went
ahead and exposed `parseDerivation`: it seems like the more proper
building block, and not a bad thing to expose if we are trying to be
less wedded to drv files on disk anywas.
On nix-env -qa -f '<nixpkgs>', this reduces maximum RSS by 20970 KiB
and runtime by 0.8%. This is mostly because we're not parsing the hash
part as a hash anymore (just validating that it consists of base-32
characters).
Also, replace storePathToHash() by StorePath::hashPart().
Substituters can substitute from one store dir to another with a
little bit of help. The store api just needs to have a CA so it can
recompute the store path based on the new store dir. We can only do
this for fixed output derivations with no references, though.
The idea is it's always more flexible to consumer a `Source` than a
plain string, and it might even reduce memory consumption.
I also looked at `addToStoreFromDump` with its `// FIXME: remove?`, but
the worked needed for that is far more up for interpretation, so I
punted for now.
This provides a pluggable mechanism for defining new fetchers. It adds
a builtin function 'fetchTree' that generalizes existing fetchers like
'fetchGit', 'fetchMercurial' and 'fetchTarball'. 'fetchTree' takes a
set of attributes, e.g.
fetchTree {
type = "git";
url = "https://example.org/repo.git";
ref = "some-branch";
rev = "abcdef...";
}
The existing fetchers are just wrappers around this. Note that the
input attributes to fetchTree are the same as flake input
specifications and flake lock file entries.
All fetchers share a common cache stored in
~/.cache/nix/fetcher-cache-v1.sqlite. This replaces the ad hoc caching
mechanisms in fetchGit and download.cc (e.g. ~/.cache/nix/{tarballs,git-revs*}).
This also adds support for Git worktrees (c169ea5904).