This basically reverts 6e5165b773.
It fixes errors like
sandbox-exec: <internal init prelude>:292:47: unable to open sandbox-minimal.sb: not found
when trying to run a development Nix installed in a user's home
directory.
Also, we're trying to minimize the number of installed files
to make it possible to deploy Nix as a single statically-linked
binary.
This change is needed to support aws-sdk-cpp 1.10 and newer.
I opted not to make this dependent on the sdk version because
the crt dependency has been in the interface of the older
sdk as well, and it was only coincidence that libstore didn't
make use of any privately defined symbols directly.
With this, Nix will write a copy of the sandbox shell to /bin/sh in
the sandbox rather than bind-mounting it from the host filesystem.
This makes /bin/sh work out of the box with nix-static, i.e. you no
longer get
/nix/store/qa36xhc5gpf42l3z1a8m1lysi40l9p7s-bootstrap-stage4-stdenv-linux/setup: ./configure: /bin/sh: bad interpreter: No such file or directory
Use `$(libdir)` while installing .pc files looks like a more generic
solution. For example, it will work for distributions like RHEL or
Fedora where .pc files are installed in `/usr/lib64/pkgconfig`.
Previously, the build system used uname(1) output when it wanted to
check the operating system it was being built for, which meant that it
didn't take into-account cross-compilation when the build and host
operating systems were different.
To fix this, instead of consulting uname output, we consult the host
triple, specifically the third "kernel" part.
For "kernel"s with stable ABIs, like Linux or Cygwin, we can use a
simple ifeq to test whether we're compiling for that system, but for
other platforms, like Darwin, FreeBSD, or Solaris, we have to use a
more complicated check to take into account the version numbers at the
end of the "kernel"s. I couldn't find a way to just strip these
version numbers in GNU Make without shelling out, which would be even
more ugly IMO. Because these checks differ between kernels, and the
patsubst ones are quite fiddly, I've added variables for each host OS
we might want to check to make them easier to reuse.
Linux is (as far as I know) the only mainstream operating system that
requires linking with libdl for dlopen. On BSD, libdl doesn't exist,
so on non-FreeBSD BSDs linking will currently fail. On macOS, it's
apparently just a symlink to libSystem (macOS libc), presumably
present for compatibility with things that assume Linux.
So the right thing to do here is to only add -ldl on Linux, not to add
it for everything that isn't FreeBSD.
Add a new table for tracking the derivation output mappings.
We used to hijack the `DerivationOutputs` table for that, but (despite its
name), it isn't a really good fit:
- Its entries depend on the drv being a valid path, making it play badly with
garbage collection and preventing us to copy a drv output without copying
the whole drv closure too;
- It dosen't guaranty that the output path exists;
By using a different table, we can experiment with a different schema better
suited for tracking the output mappings of CA derivations.
(incidentally, this also fixes#4138)
On nix-env -qa -f '<nixpkgs>', this reduces maximum RSS by 20970 KiB
and runtime by 0.8%. This is mostly because we're not parsing the hash
part as a hash anymore (just validating that it consists of base-32
characters).
Also, replace storePathToHash() by StorePath::hashPart().
Most functions now take a StorePath argument rather than a Path (which
is just an alias for std::string). The StorePath constructor ensures
that the path is syntactically correct (i.e. it looks like
<store-dir>/<base32-hash>-<name>). Similarly, functions like
buildPaths() now take a StorePathWithOutputs, rather than abusing Path
by adding a '!<outputs>' suffix.
Note that the StorePath type is implemented in Rust. This involves
some hackery to allow Rust values to be used directly in C++, via a
helper type whose destructor calls the Rust type's drop()
function. The main issue is the dynamic nature of C++ move semantics:
after we have moved a Rust value, we should not call the drop function
on the original value. So when we move a value, we set the original
value to bitwise zero, and the destructor only calls drop() if the
value is not bitwise zero. This should be sufficient for most types.
Also lots of minor cleanups to the C++ API to make it more modern
(e.g. using std::optional and std::string_view in some places).
Previously, SANDBOX_SHELL was set to empty when unavailable. This
caused issues when actually generating the sandbox. Instead, just set
SANDBOX_SHELL when --with-sandbox-shell= is non-empty. Alternative
implementation to https://github.com/NixOS/nix/pull/3038.
Previously, this would fail at startup for non-NixOS installs:
nix-env --help
The fix for this is to just use "nixManDir" as the value for MANPATH
when spawning "man".
To test this, I’m using the following:
$ nix-build release.nix -A build
$ MANPATH= ./result/bin/nix-env --help
Fixes#1627
This makes it slightly more manageable to see at a glance what in a
build's sandbox profile is unique to the build and what is standard. Also
a first step to factoring more of our Darwin logic into scheme functions
that will allow us a bit more flexibility. And of course less of that
nasty codegen in C++! 😀
Even with "build-use-sandbox = false", we now use sandboxing with a
permissive profile that allows everything except the creation of
setuid/setgid binaries.
Also, add rules to allow fixed-output derivations to access the
network.
These rules are sufficient to build stdenvDarwin without any
__sandboxProfile magic.
This prevents builders from setting the S_ISUID or S_ISGID bits,
preventing users from using a nixbld* user to create a setuid/setgid
binary to interfere with subsequent builds under the same nixbld* uid.
This is based on aszlig's seccomp code
(47f587700d).
Reported by Linus Heckemann.
And add a 116 KiB ash shell from busybox to the release build. This
helps to make sandbox builds work out of the box on non-NixOS systems
and with diverted stores.
We're going to use libseccomp instead of creating the raw BPF program,
because we have different syscall numbers on different architectures.
Although our initial seccomp rules will be quite small it really doesn't
make sense to generate the raw BPF program because we need to duplicate
it and/or make branches on every single architecture we want to suuport.
Signed-off-by: aszlig <aszlig@redmoonstudios.org>
This is currently only used by the Hydra queue runner rework, but like
eff5021eaa it presumably will be useful
for the C++ rewrite of nix-push and
download-from-binary-cache. (@shlevy)