I noticed a regression in the lazy-trees branch, which I'm trying to
capture with this test. While the tests succeeds in master, the
lazy-trees branch gives the following error message:
error: access to path
'/build/nix-test/tests/flakes/flake-in-submodule/rootRepo/submodule/flake.nix'
is forbidden because it is not under Git control; maybe you should
'git add' it to the repository
'/build/nix-test/tests/flakes/flake-in-submodule/rootRepo'?
This provides a platform-independent way to configure the SSL
certificates file in the Nix daemon. Previously we provided
instructions for overriding the environment variable in launchd, but
that obviously doesn't work with systemd. Now we can just tell users
to add
ssl-cert-file = /etc/ssl/my-certificate-bundle.crt
to their nix.conf.
PRs that don't increase our ongoing obligations (i.e. by adding new
features) but do increase test coverage of existing features are good
things to merge for the health of the project, and thus good to
prioritize.
These methods would previously fail on the other `Installable`s, so
moving them to this class is more correct as to where they actually
work.
Additionally, a `InstallableValueCommand` is created to make it easier
(or rather no worse than before) to write commands that just work on
`InstallableValue`s.
Besides being a cleanup to avoid failing default methods, this gets us
closer to https://github.com/NixOS/rfcs/pull/134.
- Try not to put cryptic "99" in many places
Factor out `exit 99` into `skipTest` function
- Alows make sure skipping a test is done with a reason
`skipTest` takes a mandatory argument
- Separate pure conditionals vs side-effectful test skipping.
"require daemon" already had this, but "sandbox support" did not.
Already, we had classes like `BuiltPathsCommand` and `StorePathsCommand`
which provided alternative `run` virtual functions providing the
implementation with more arguments. This was a very nice and easy way to
make writing command; just fill in the virtual functions and it is
fairly clear what to do.
However, exception to this pattern were `Installable{,s}Command`. These
two classes instead just had a field where the installables would be
stored, and various side-effecting `prepare` and `load` machinery too
fill them in. Command would wish out those fields.
This isn't so clear to use.
What this commit does is make those command classes like the others,
with richer `run` functions.
Not only does this restore the pattern making commands easier to write,
it has a number of other benefits:
- `prepare` and `load` are gone entirely! One command just hands just
hands off to the next.
- `useDefaultInstallables` because `defaultInstallables`. This takes
over `prepare` for the one case that needs it, and provides enough
flexiblity to handle `nix repl`'s idiosyncratic migration.
- We can use `ref` instead of `std::shared_ptr`. The former must be
initialized (so it is like Rust's `Box` rather than `Option<Box>`,
This expresses the invariant that the installable are in fact
initialized much better.
This is possible because since we just have local variables not
fields, we can stop worrying about the not-yet-initialized case.
- Fewer lines of code! (Finally I have a large refactor that makes the
number go down not up...)
- `nix repl` is now implemented in a clearer way.
The last item deserves further mention. `nix repl` is not like the other
installable commands because instead working from once-loaded
installables, it needs to be able to load them again and again.
To properly support this, we make a new superclass
`RawInstallablesCommand`. This class has the argument parsing and
completion logic, but does *not* hand off parsed installables but
instead just the raw string arguments.
This is exactly what `nix repl` needs, and allows us to instead of
having the logic awkwardly split between `prepare`,
`useDefaultInstallables,` and `load`, have everything right next to each
other. I think this will enable future simplifications of that argument
defaulting logic, but I am saving those for a future PR --- best to keep
code motion and more complicated boolean expression rewriting separate
steps.
The "diagnostic ignored `-Woverloaded-virtual`" pragma helps because C++
doesn't like our many `run` methods. In our case, we don't mind the
shadowing it all --- it is *intentional* that the derived class only
provides a `run` method, and doesn't call any of the overridden `run`
methods.
Helps with https://github.com/NixOS/rfcs/pull/134
Add the --base64 and --sri flags for the Base64 and SRI format output.
Add the --base16 flag to explicitly specify the hexadecimal format.
Add the --to-base64 and --to-sri flag to convert a hash to the above
mentioned format.
Hopefully this fixes "unexpected EOF" failures on macOS
(#3137, #3605, #7242, #7702).
The problem appears to be that under some circumstances, macOS
discards the output written to the slave side of the
pseudoterminal. Hence the parent never sees the "sandbox initialized"
message from the child, even though it succeeded. The conditions are:
* The child finishes very quickly. That's why this bug is likely to
trigger in nix-env tests, since that uses a builtin builder. Adding
a short sleep before the child exits makes the problem go away.
* The parent has closed its duplicate of the slave file
descriptor. This shouldn't matter, since the child has a duplicate
as well, but it does. E.g. moving the close to the bottom of
startBuilder() makes the problem go away. However, that's not a
solution because it would make Nix hang if the child dies before
sending the "sandbox initialized" message.
* The system is under high load. E.g. "make installcheck -j16" makes
the issue pretty reproducible, while it's very rare under "make
installcheck -j1".
As a fix/workaround, we now open the pseudoterminal slave in the
child, rather than the parent. This removes the second condition
(i.e. the parent no longer needs to close the slave fd) and I haven't
been able to reproduce the "unexpected EOF" with this.
This allows having multiple separate lockfiles for a single
project, which can be useful for testing against different versions of
nixpkgs; it also allows tracking custom input overrides for remote
flakes without requiring local clones of these flakes.
For example, if I want to build Nix against my locally pinned nixpkgs,
and have a lock file tracking this override independently of future
updates to said nixpkgs:
nix flake lock --output-lock-file /tmp/nix-flake.lock --override-input nixpkgs flake:nixpkgs
nix build --reference-lock-file /tmp/nix-flake.lock
Co-Authored-By: Will Fancher <elvishjerricco@gmail.com>
The motivation is as stated in issue #7814: even though the the C++ API
is internal and unstable, people still want it to be well documented for
sake of learning, code review, and other purposes that aren't predicated
on it being stable.
Fixes#7814
Co-authored-by: Robert Hensing <roberth@users.noreply.github.com>