of the given derivation. Useful for getting a quick overview of how
something was built. E.g., to find out how the `baffle' program in
your user environment was built, you can do
$ nix-store -q --tree $(nix-store -qd $(which baffle))
Tree nesting depth is minimised (?) by topologically sorting paths
under the relation A < B iff A \in closure(B).
immediately add the result as a permanent GC root. This is the only
way to prevent a race with the garbage collector. For instance, the
old style
ln -s $(nix-store -r $(nix-instantiate foo.nix)) \
/nix/var/nix/gcroots/result
has two time windows in which the garbage collector can interfere
(by GC'ing the derivation and the output, respectively). On the
other hand,
nix-store --add-root /nix/var/nix/gcroots/result -r \
$(nix-instantiate --add-root /nix/var/nix/gcroots/drv \
foo.nix)
is safe.
* nix-build: use `--add-root' to prevent GC races.
closure of the referers relation rather than the references
relation, i.e., the set of all paths that directly or indirectly
refer to the given path. Note that contrary to the references
closure this set is not fixed; it can change as paths are added to
or removed from the store.
- Drop the store expression. So now a substitute is just a
command-line invocation (a program name + arguments). If you
register a substitute you are responsible for registering the
expression that built it (if any) as a root of the garbage
collector.
- Drop the substitutes-rev DB table.
chroot() environment.
* A operation `--validpath' to register path validity. Useful for
bootstrapping in a pure Nix environment.
* Safety checks: ensure that files involved in store operations are in
the store.