* Make the `derivation' primitive much more lazy. The expression
`derivation attrs' now evaluates to (essentially)
attrs // {
type = "derivation";
outPath = derivation! attrs;
drvPath = derivation! attrs;
}
where `derivation!' is a primop that does the actual derivation
instantiation (i.e., it does what `derivation' used to do). The
advantage is that it allows commands such as `nix-env -qa' and
`nix-env -i' to be much faster since they no longer need to
instantiate all derivations, just the `name' attribute. (However,
`nix-env' doesn't yet take advantage of this since it still always
evaluates the `outPath' and `drvPath' attributes).
Also, this allows derivations to cyclically reference each other,
for example,
webServer = derivation {
...
hostName = "svn.cs.uu.nl";
services = [svnService];
};
svnService = derivation {
...
hostName = webServer.hostName;
};
Previously, this would yield a black hole (infinite recursion).
derivations. This is mostly to simplify the implementation of
nix-prefetch-{url, svn}, which now work properly in setuid
installations.
* Enforce valid store names in `nix-store --add / --add-fixed'.
continue building when one fails unless `--keep-going' is
specified.
* When `--keep-going' is specified, print out the set of failing
derivations at the end (otherwise it can be hard to find out which
failed).
multiple times is also a top-level goal, then the second and later
instantiations would never be created because there would be a
stable pointer to the first one that would keep it alive in the
WeakGoalMap.
* Some tracing code for debugging this kind of problem.
of the given derivation. Useful for getting a quick overview of how
something was built. E.g., to find out how the `baffle' program in
your user environment was built, you can do
$ nix-store -q --tree $(nix-store -qd $(which baffle))
Tree nesting depth is minimised (?) by topologically sorting paths
under the relation A < B iff A \in closure(B).
environment elements from one user environment to another, e.g.,
$ nix-env -i --from-profile /nix/var/nix/profiles/other-profile aterm
copies the `aterm' component installed in the `other-profile' to the
user's current profile.
user environment, e.g.,
$ nix-env -i /nix/store/z58v41v21xd3ywrqk1vmvdwlagjx7f10-aterm-2.3.1.drv
or
$ nix-env -i /nix/store/hsyj5pbn0d9iz7q0aj0fga7cpaadvp1l-aterm-2.3.1
This is useful because it allows Nix expressions to be bypassed
entirely. For instance, if only a nix-pull manifest is provided,
plus the top-level path of some component, it can be installed
without having to supply the Nix expression (e.g., for obfuscation,
or to be independent of Nix expression language changes or context
dependencies).
install derivations from a Nix expression specified on the command
line. This is particularly useful for disambiguation if there are
multiple derivations with the same name. For instance, in Nixpkgs,
to install the Firefox wrapper rather than the plain Firefox
component:
$ nix-env -f .../i686-linux.nix -i -E 'x: x.firefoxWrapper'
The Nix expressions should be functions to which the default Nix
expression (in this case, `i686-linux.nix') is passed, hence `x:
...'.
This might also be a nice way to deal with high-level (user-level)
variability, e.g.,
$ nix-env -f ./server.nix -i -E 'x: x {port = 8080; ssl = false;}'
to derivations in user environments. Nice for developers (since it
prevents build-time-only dependencies from being GC'ed, in
conjunction with `gc-keep-outputs'). Turned off by default.
* Set the references for the user environment manifest properly.
* Don't copy the manifest (this was accidental).
* Don't store derivation paths in the manifest (maybe this should be
made optional). This cleans up the semantics of nix-env, which were
weird.
* Hash on the output paths of activated components, not on derivation
paths. This is because we don't know the derivation path of already
installed components anymore, and it allows the installation of
components by store path (skipping Nix expressions entirely).
* Query options `--out-path' and `--drv-path' to show the output and
derivation paths of components, respectively (the latter replaces
the `--expr' query).
* Removed some dead code (successor stuff) from nix-push.
* Updated terminology in the tests (store expr -> drv path).
* Check that the deriver is set properly in the tests.
for finding build-time dependencies (possibly after a build). E.g.,
$ nix-store -qb aterm $(nix-store -qd $(which strc))
/nix/store/jw7c7s65n1gwhxpn35j9rgcci6ilzxym-aterm-2.3.1
* Arguments to nix-store can be files within store objects, e.g.,
/nix/store/jw7c...-aterm-2.3.1/bin/baffle.
* Idem for garbage collector roots.
This was necessary becase root finding must be done after
acquisition of the global GC lock.
This makes `nix-collect-garbage' obsolete; it is now just a wrapper
around `nix-store --gc'.
* Automatically remove stale GC roots (i.e., indirect GC roots that
point to non-existent paths).
get rid of GC roots. Nix-build places a symlink `result' in the
current directory. Previously, removing that symlink would not
remove the store path being linked to as a GC root. Now, the GC
root created by nix-build is actually a symlink in
`/nix/var/nix/gcroots/auto' to `result'. So if that symlink is
removed the GC root automatically becomes invalid (since it can no
longer be resolved). The root itself is not automatically removed -
the garbage collector should delete dangling roots.
immediately add the result as a permanent GC root. This is the only
way to prevent a race with the garbage collector. For instance, the
old style
ln -s $(nix-store -r $(nix-instantiate foo.nix)) \
/nix/var/nix/gcroots/result
has two time windows in which the garbage collector can interfere
(by GC'ing the derivation and the output, respectively). On the
other hand,
nix-store --add-root /nix/var/nix/gcroots/result -r \
$(nix-instantiate --add-root /nix/var/nix/gcroots/drv \
foo.nix)
is safe.
* nix-build: use `--add-root' to prevent GC races.
being created after the garbage collector has read the temproots
directory. This blocks the creation of new processes, but the
garbage collector could periodically release the GC lock to allow
them to run.
that they are deleted in an order that maintains the closure
invariant.
* Presence of a path in a temporary roots file does not imply that all
paths in its closure are also present, so add the closure.
roots to a per-process temporary file in /nix/var/nix/temproots
while holding a write lock on that file. The garbage collector
acquires read locks on all those files, thus blocking further
progress in other Nix processes, and reads the sets of temporary
roots.
though). In particular it's now much easier to register a GC root.
Just place a symlink to whatever store path it is that you want to
keep in /nix/var/nix/gcroots.
This simplifies garbage collection and `nix-store --query
--requisites' since we no longer need to treat derivations
specially.
* Better maintaining of the invariants, e.g., setReferences() can only
be called on a valid/substitutable path.
closure of the referers relation rather than the references
relation, i.e., the set of all paths that directly or indirectly
refer to the given path. Note that contrary to the references
closure this set is not fixed; it can change as paths are added to
or removed from the store.
promise :-) This allows derivations to specify on *what* output
paths of input derivations they are dependent. This helps to
prevent unnecessary downloads. For instance, a build might be
dependent on the `devel' and `lib' outputs of some library
component, but not the `docs' output.
graph. That is, `nix-store --query --references PATH' shows the set
of paths referenced by PATH, and `nix-store --query --referers PATH'
shows the set of paths referencing PATH.
`derivations.cc', etc.
* Store the SHA-256 content hash of store paths in the database after
they have been built/added. This is so that we can check whether
the store has been messed with (a la `rpm --verify').
* When registering path validity, verify that the closure property
holds.
representation of closures as ATerms in the Nix store. Instead, the
file system pointer graph is now stored in the Nix database. This
has many advantages:
- It greatly simplifies the implementation (we can drop the notion
of `successors', and so on).
- It makes registering roots for the garbage collector much easier.
Instead of specifying the closure expression as a root, you can
simply specify the store path that must be retained as a root.
This could not be done previously, since there was no way to find
the closure store expression containing a given store path.
- Better traceability: it is now possible to query what paths are
referenced by a path, and what paths refer to a path.