primops: Move functions to primops/arithmetic.cc

Moved builtins: add, bitAnd, bitOr, bitXor, ceil, div, floor, mul, sub

Change-Id: Ia144579ee219fab751281157a5a3d73a4aa9ee40
This commit is contained in:
Tom Hubrecht 2024-05-30 02:47:31 +02:00
parent 7f1ebde7b8
commit 00416ee50b
3 changed files with 307 additions and 197 deletions

View file

@ -86,6 +86,7 @@ libexpr_sources = files(
'flake/flake.cc', 'flake/flake.cc',
'flake/flakeref.cc', 'flake/flakeref.cc',
'flake/lockfile.cc', 'flake/lockfile.cc',
'primops/arithmetic.cc',
'primops/attrset.cc', 'primops/attrset.cc',
'primops/context.cc', 'primops/context.cc',
'primops/control.cc', 'primops/control.cc',

View file

@ -652,7 +652,6 @@ static RegisterPrimOp primop_genericClosure(PrimOp {
.fun = prim_genericClosure, .fun = prim_genericClosure,
}); });
static void prim_addErrorContext(EvalState & state, const PosIdx pos, Value * * args, Value & v) static void prim_addErrorContext(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{ {
try { try {
@ -674,45 +673,6 @@ static RegisterPrimOp primop_addErrorContext(PrimOp {
.fun = prim_addErrorContext, .fun = prim_addErrorContext,
}); });
static void prim_ceil(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
auto value = state.forceFloat(*args[0], args[0]->determinePos(pos),
"while evaluating the first argument passed to builtins.ceil");
v.mkInt(ceil(value));
}
static RegisterPrimOp primop_ceil({
.name = "__ceil",
.args = {"double"},
.doc = R"(
Converts an IEEE-754 double-precision floating-point number (*double*) to
the next higher integer.
If the datatype is neither an integer nor a "float", an evaluation error will be
thrown.
)",
.fun = prim_ceil,
});
static void prim_floor(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
auto value = state.forceFloat(*args[0], args[0]->determinePos(pos), "while evaluating the first argument passed to builtins.floor");
v.mkInt(floor(value));
}
static RegisterPrimOp primop_floor({
.name = "__floor",
.args = {"double"},
.doc = R"(
Converts an IEEE-754 double-precision floating-point number (*double*) to
the next lower integer.
If the datatype is neither an integer nor a "float", an evaluation error will be
thrown.
)",
.fun = prim_floor,
});
/* Try evaluating the argument. Success => {success=true; value=something;}, /* Try evaluating the argument. Success => {success=true; value=something;},
* else => {success=false; value=false;} */ * else => {success=false; value=false;} */
@ -2314,164 +2274,7 @@ static RegisterPrimOp primop_isList({
*************************************************************/ *************************************************************/
static void prim_add(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
state.forceValue(*args[1], pos);
if (args[0]->type() == nFloat || args[1]->type() == nFloat)
v.mkFloat(state.forceFloat(*args[0], pos, "while evaluating the first argument of the addition")
+ state.forceFloat(*args[1], pos, "while evaluating the second argument of the addition"));
else
v.mkInt( state.forceInt(*args[0], pos, "while evaluating the first argument of the addition")
+ state.forceInt(*args[1], pos, "while evaluating the second argument of the addition"));
}
static RegisterPrimOp primop_add({
.name = "__add",
.args = {"e1", "e2"},
.doc = R"(
Return the sum of the numbers *e1* and *e2*.
)",
.fun = prim_add,
});
static void prim_sub(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
state.forceValue(*args[1], pos);
if (args[0]->type() == nFloat || args[1]->type() == nFloat)
v.mkFloat(state.forceFloat(*args[0], pos, "while evaluating the first argument of the subtraction")
- state.forceFloat(*args[1], pos, "while evaluating the second argument of the subtraction"));
else
v.mkInt( state.forceInt(*args[0], pos, "while evaluating the first argument of the subtraction")
- state.forceInt(*args[1], pos, "while evaluating the second argument of the subtraction"));
}
static RegisterPrimOp primop_sub({
.name = "__sub",
.args = {"e1", "e2"},
.doc = R"(
Return the difference between the numbers *e1* and *e2*.
)",
.fun = prim_sub,
});
static void prim_mul(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
state.forceValue(*args[1], pos);
if (args[0]->type() == nFloat || args[1]->type() == nFloat)
v.mkFloat(state.forceFloat(*args[0], pos, "while evaluating the first of the multiplication")
* state.forceFloat(*args[1], pos, "while evaluating the second argument of the multiplication"));
else
v.mkInt( state.forceInt(*args[0], pos, "while evaluating the first argument of the multiplication")
* state.forceInt(*args[1], pos, "while evaluating the second argument of the multiplication"));
}
static RegisterPrimOp primop_mul({
.name = "__mul",
.args = {"e1", "e2"},
.doc = R"(
Return the product of the numbers *e1* and *e2*.
)",
.fun = prim_mul,
});
static void prim_div(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
state.forceValue(*args[1], pos);
NixFloat f2 = state.forceFloat(*args[1], pos, "while evaluating the second operand of the division");
if (f2 == 0)
state.error<EvalError>("division by zero").atPos(pos).debugThrow();
if (args[0]->type() == nFloat || args[1]->type() == nFloat) {
v.mkFloat(state.forceFloat(*args[0], pos, "while evaluating the first operand of the division") / f2);
} else {
NixInt i1 = state.forceInt(*args[0], pos, "while evaluating the first operand of the division");
NixInt i2 = state.forceInt(*args[1], pos, "while evaluating the second operand of the division");
/* Avoid division overflow as it might raise SIGFPE. */
if (i1 == std::numeric_limits<NixInt>::min() && i2 == -1)
state.error<EvalError>("overflow in integer division").atPos(pos).debugThrow();
v.mkInt(i1 / i2);
}
}
static RegisterPrimOp primop_div({
.name = "__div",
.args = {"e1", "e2"},
.doc = R"(
Return the quotient of the numbers *e1* and *e2*.
)",
.fun = prim_div,
});
static void prim_bitAnd(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
v.mkInt(state.forceInt(*args[0], pos, "while evaluating the first argument passed to builtins.bitAnd")
& state.forceInt(*args[1], pos, "while evaluating the second argument passed to builtins.bitAnd"));
}
static RegisterPrimOp primop_bitAnd({
.name = "__bitAnd",
.args = {"e1", "e2"},
.doc = R"(
Return the bitwise AND of the integers *e1* and *e2*.
)",
.fun = prim_bitAnd,
});
static void prim_bitOr(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
v.mkInt(state.forceInt(*args[0], pos, "while evaluating the first argument passed to builtins.bitOr")
| state.forceInt(*args[1], pos, "while evaluating the second argument passed to builtins.bitOr"));
}
static RegisterPrimOp primop_bitOr({
.name = "__bitOr",
.args = {"e1", "e2"},
.doc = R"(
Return the bitwise OR of the integers *e1* and *e2*.
)",
.fun = prim_bitOr,
});
static void prim_bitXor(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
v.mkInt(state.forceInt(*args[0], pos, "while evaluating the first argument passed to builtins.bitXor")
^ state.forceInt(*args[1], pos, "while evaluating the second argument passed to builtins.bitXor"));
}
static RegisterPrimOp primop_bitXor({
.name = "__bitXor",
.args = {"e1", "e2"},
.doc = R"(
Return the bitwise XOR of the integers *e1* and *e2*.
)",
.fun = prim_bitXor,
});
void prim_lessThan(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
state.forceValue(*args[1], pos);
// pos is exact here, no need for a message.
CompareValues comp(state, noPos, "");
v.mkBool(comp(args[0], args[1]));
}
static RegisterPrimOp primop_lessThan({
.name = "__lessThan",
.args = {"e1", "e2"},
.doc = R"(
Return `true` if the number *e1* is less than the number *e2*, and
`false` otherwise. Evaluation aborts if either *e1* or *e2* does not
evaluate to a number.
)",
.fun = prim_lessThan,
});
/************************************************************* /*************************************************************

View file

@ -0,0 +1,306 @@
#include "primops.hh"
namespace nix {
/**
* builtins.add
*/
static void prim_add(EvalState & state, const PosIdx pos, Value ** args, Value & v)
{
state.forceValue(*args[0], pos);
state.forceValue(*args[1], pos);
if (args[0]->type() == nFloat || args[1]->type() == nFloat) {
v.mkFloat(
state.forceFloat(*args[0], pos, "while evaluating the first argument of the addition")
+ state.forceFloat(
*args[1], pos, "while evaluating the second argument of the addition"
)
);
} else {
v.mkInt(
state.forceInt(*args[0], pos, "while evaluating the first argument of the addition")
+ state.forceInt(*args[1], pos, "while evaluating the second argument of the addition")
);
}
}
static RegisterPrimOp primop_add({
.name = "__add",
.args = {"e1", "e2"},
.doc = R"(
Return the sum of the numbers *e1* and *e2*.
Return a float if either *e1* or *e2* is a float, otherwise
return an integer.
)",
.fun = prim_add,
});
/**
* builtins.bitAnd
*/
static void prim_bitAnd(EvalState & state, const PosIdx pos, Value ** args, Value & v)
{
v.mkInt(
state.forceInt(
*args[0], pos, "while evaluating the first argument passed to builtins.bitAnd"
)
& state.forceInt(
*args[1], pos, "while evaluating the second argument passed to builtins.bitAnd"
)
);
}
static RegisterPrimOp primop_bitAnd({
.name = "__bitAnd",
.args = {"e1", "e2"},
.doc = R"(
Return the bitwise AND of the integers *e1* and *e2*.
)",
.fun = prim_bitAnd,
});
/**
* builtins.bitOr
*/
static void prim_bitOr(EvalState & state, const PosIdx pos, Value ** args, Value & v)
{
v.mkInt(
state.forceInt(
*args[0], pos, "while evaluating the first argument passed to builtins.bitOr"
)
| state.forceInt(
*args[1], pos, "while evaluating the second argument passed to builtins.bitOr"
)
);
}
static RegisterPrimOp primop_bitOr({
.name = "__bitOr",
.args = {"e1", "e2"},
.doc = R"(
Return the bitwise OR of the integers *e1* and *e2*.
)",
.fun = prim_bitOr,
});
/**
* builtins.bitXor
*/
static void prim_bitXor(EvalState & state, const PosIdx pos, Value ** args, Value & v)
{
v.mkInt(
state.forceInt(
*args[0], pos, "while evaluating the first argument passed to builtins.bitXor"
)
^ state.forceInt(
*args[1], pos, "while evaluating the second argument passed to builtins.bitXor"
)
);
}
static RegisterPrimOp primop_bitXor({
.name = "__bitXor",
.args = {"e1", "e2"},
.doc = R"(
Return the bitwise XOR of the integers *e1* and *e2*.
)",
.fun = prim_bitXor,
});
/**
* builtins.ceil
*/
static void prim_ceil(EvalState & state, const PosIdx pos, Value ** args, Value & v)
{
auto value = state.forceFloat(
*args[0],
args[0]->determinePos(pos),
"while evaluating the first argument passed to builtins.ceil"
);
v.mkInt(ceil(value));
}
static RegisterPrimOp primop_ceil({
.name = "__ceil",
.args = {"double"},
.doc = R"(
Converts an IEEE-754 double-precision floating-point number (*double*) to
the next higher integer.
If the datatype is neither an integer nor a "float", an evaluation error will be
thrown.
)",
.fun = prim_ceil,
});
/**
* builtins.div
*/
static void prim_div(EvalState & state, const PosIdx pos, Value ** args, Value & v)
{
state.forceValue(*args[0], pos);
state.forceValue(*args[1], pos);
NixFloat f2 =
state.forceFloat(*args[1], pos, "while evaluating the second operand of the division");
if (f2 == 0) {
state.error<EvalError>("division by zero").atPos(pos).debugThrow();
}
if (args[0]->type() == nFloat || args[1]->type() == nFloat) {
v.mkFloat(
state.forceFloat(*args[0], pos, "while evaluating the first operand of the division")
/ f2
);
} else {
NixInt i1 =
state.forceInt(*args[0], pos, "while evaluating the first operand of the division");
NixInt i2 =
state.forceInt(*args[1], pos, "while evaluating the second operand of the division");
/* Avoid division overflow as it might raise SIGFPE. */
if (i1 == std::numeric_limits<NixInt>::min() && i2 == -1) {
state.error<EvalError>("overflow in integer division").atPos(pos).debugThrow();
}
v.mkInt(i1 / i2);
}
}
static RegisterPrimOp primop_div({
.name = "__div",
.args = {"e1", "e2"},
.doc = R"(
Return the quotient of the numbers *e1* and *e2*.
)",
.fun = prim_div,
});
/**
* builtins.floor
*/
static void prim_floor(EvalState & state, const PosIdx pos, Value ** args, Value & v)
{
auto value = state.forceFloat(
*args[0],
args[0]->determinePos(pos),
"while evaluating the first argument passed to builtins.floor"
);
v.mkInt(floor(value));
}
static RegisterPrimOp primop_floor({
.name = "__floor",
.args = {"double"},
.doc = R"(
Converts an IEEE-754 double-precision floating-point number (*double*) to
the next lower integer.
If the datatype is neither an integer nor a "float", an evaluation error will be
thrown.
)",
.fun = prim_floor,
});
/**
* builtins.lessThan
*/
void prim_lessThan(EvalState & state, const PosIdx pos, Value ** args, Value & v)
{
state.forceValue(*args[0], pos);
state.forceValue(*args[1], pos);
// pos is exact here, no need for a message.
CompareValues comp(state, noPos, "");
v.mkBool(comp(args[0], args[1]));
}
static RegisterPrimOp primop_lessThan({
.name = "__lessThan",
.args = {"e1", "e2"},
.doc = R"(
Return `true` if the number *e1* is less than the number *e2*, and
`false` otherwise. Evaluation aborts if either *e1* or *e2* does not
evaluate to a number.
)",
.fun = prim_lessThan,
});
/**
* builtins.mul
*/
static void prim_mul(EvalState & state, const PosIdx pos, Value ** args, Value & v)
{
state.forceValue(*args[0], pos);
state.forceValue(*args[1], pos);
if (args[0]->type() == nFloat || args[1]->type() == nFloat) {
v.mkFloat(
state.forceFloat(*args[0], pos, "while evaluating the first of the multiplication")
* state.forceFloat(
*args[1], pos, "while evaluating the second argument of the multiplication"
)
);
} else {
v.mkInt(
state.forceInt(
*args[0], pos, "while evaluating the first argument of the multiplication"
)
* state.forceInt(
*args[1], pos, "while evaluating the second argument of the multiplication"
)
);
}
}
static RegisterPrimOp primop_mul({
.name = "__mul",
.args = {"e1", "e2"},
.doc = R"(
Return the product of the numbers *e1* and *e2*.
)",
.fun = prim_mul,
});
/**
* builtins.sub
*/
static void prim_sub(EvalState & state, const PosIdx pos, Value ** args, Value & v)
{
state.forceValue(*args[0], pos);
state.forceValue(*args[1], pos);
if (args[0]->type() == nFloat || args[1]->type() == nFloat) {
v.mkFloat(
state.forceFloat(
*args[0], pos, "while evaluating the first argument of the subtraction"
)
- state.forceFloat(
*args[1], pos, "while evaluating the second argument of the subtraction"
)
);
} else {
v.mkInt(
state.forceInt(*args[0], pos, "while evaluating the first argument of the subtraction")
- state.forceInt(
*args[1], pos, "while evaluating the second argument of the subtraction"
)
);
}
}
static RegisterPrimOp primop_sub({
.name = "__sub",
.args = {"e1", "e2"},
.doc = R"(
Return the difference between the numbers *e1* and *e2*.
)",
.fun = prim_sub,
});
}