lix/src/libstore/misc.cc

470 lines
17 KiB
C++
Raw Normal View History

#include "derivations.hh"
#include "parsed-derivations.hh"
#include "globals.hh"
#include "local-store.hh"
#include "store-api.hh"
#include "thread-pool.hh"
2020-07-27 20:45:34 +00:00
#include "topo-sort.hh"
#include "callback.hh"
#include "closure.hh"
#include "filetransfer.hh"
namespace nix {
void Store::computeFSClosure(const StorePathSet & startPaths,
StorePathSet & paths_, bool flipDirection, bool includeOutputs, bool includeDerivers)
{
std::function<std::set<StorePath>(const StorePath & path, std::future<ref<const ValidPathInfo>> &)> queryDeps;
if (flipDirection)
queryDeps = [&](const StorePath& path,
std::future<ref<const ValidPathInfo>> & fut) {
StorePathSet res;
StorePathSet referrers;
queryReferrers(path, referrers);
for (auto& ref : referrers)
if (ref != path)
res.insert(ref);
if (includeOutputs)
for (auto& i : queryValidDerivers(path))
res.insert(i);
if (includeDerivers && path.isDerivation())
for (auto& [_, maybeOutPath] : queryPartialDerivationOutputMap(path))
if (maybeOutPath && isValidPath(*maybeOutPath))
res.insert(*maybeOutPath);
return res;
};
else
queryDeps = [&](const StorePath& path,
std::future<ref<const ValidPathInfo>> & fut) {
StorePathSet res;
auto info = fut.get();
for (auto& ref : info->references)
if (ref != path)
res.insert(ref);
if (includeOutputs && path.isDerivation())
for (auto& [_, maybeOutPath] : queryPartialDerivationOutputMap(path))
if (maybeOutPath && isValidPath(*maybeOutPath))
res.insert(*maybeOutPath);
if (includeDerivers && info->deriver && isValidPath(*info->deriver))
res.insert(*info->deriver);
return res;
};
computeClosure<StorePath>(
startPaths, paths_,
[&](const StorePath& path,
std::function<void(std::promise<std::set<StorePath>>&)>
processEdges) {
std::promise<std::set<StorePath>> promise;
std::function<void(std::future<ref<const ValidPathInfo>>)>
getDependencies =
[&](std::future<ref<const ValidPathInfo>> fut) {
try {
promise.set_value(queryDeps(path, fut));
} catch (...) {
promise.set_exception(std::current_exception());
}
};
queryPathInfo(path, getDependencies);
processEdges(promise);
});
}
void Store::computeFSClosure(const StorePath & startPath,
StorePathSet & paths_, bool flipDirection, bool includeOutputs, bool includeDerivers)
{
StorePathSet paths;
paths.insert(startPath);
computeFSClosure(paths, paths_, flipDirection, includeOutputs, includeDerivers);
}
const ContentAddress * getDerivationCA(const BasicDerivation & drv)
{
auto out = drv.outputs.find("out");
if (out == drv.outputs.end())
return nullptr;
if (auto dof = std::get_if<DerivationOutput::CAFixed>(&out->second.raw)) {
return &dof->ca;
}
return nullptr;
}
2021-04-05 13:48:18 +00:00
void Store::queryMissing(const std::vector<DerivedPath> & targets,
StorePathSet & willBuild_, StorePathSet & willSubstitute_, StorePathSet & unknown_,
2020-07-30 11:10:49 +00:00
uint64_t & downloadSize_, uint64_t & narSize_)
{
Activity act(*logger, lvlDebug, actUnknown, "querying info about missing paths");
downloadSize_ = narSize_ = 0;
// FIXME: make async.
ThreadPool pool(fileTransferSettings.httpConnections);
download-from-binary-cache: parallelise fetching of NAR info files Getting substitute information using the binary cache substituter has non-trivial latency overhead. A package or NixOS system configuration can have hundreds of dependencies, and in the worst case (when the local info cache is empty) we have to do a separate HTTP request for each of these. If the ping time to the server is t, getting N info files will take tN seconds; e.g., with a ping time of 0.1s to nixos.org, sequentially downloading 1000 info files (a typical NixOS config) will take at least 100 seconds. To fix this problem, the binary cache substituter can now perform requests in parallel. This required changing the substituter interface to support a function querySubstitutablePathInfos() that queries multiple paths at the same time, and rewriting queryMissing() to take advantage of parallelism. (Due to local caching, parallelising queryMissing() is sufficient for most use cases, since it's almost always called before building a derivation and thus fills the local info cache.) For example, parallelism speeds up querying all 1056 paths in a particular NixOS system configuration from 116s to 2.6s. It works so well because the eccentricity of the top-level derivation in the dependency graph is only 9. So we only need 10 round-trips (when using an unlimited number of parallel connections) to get everything. Currently we do a maximum of 150 parallel connections to the server. Thus it's important that the binary cache server (e.g. nixos.org) has a high connection limit. Alternatively we could use HTTP pipelining, but WWW::Curl doesn't support it and libcurl has a hard-coded limit of 5 requests per pipeline.
2012-07-06 23:08:20 +00:00
struct State
{
std::unordered_set<std::string> done;
StorePathSet & unknown, & willSubstitute, & willBuild;
2020-07-30 11:10:49 +00:00
uint64_t & downloadSize;
uint64_t & narSize;
};
download-from-binary-cache: parallelise fetching of NAR info files Getting substitute information using the binary cache substituter has non-trivial latency overhead. A package or NixOS system configuration can have hundreds of dependencies, and in the worst case (when the local info cache is empty) we have to do a separate HTTP request for each of these. If the ping time to the server is t, getting N info files will take tN seconds; e.g., with a ping time of 0.1s to nixos.org, sequentially downloading 1000 info files (a typical NixOS config) will take at least 100 seconds. To fix this problem, the binary cache substituter can now perform requests in parallel. This required changing the substituter interface to support a function querySubstitutablePathInfos() that queries multiple paths at the same time, and rewriting queryMissing() to take advantage of parallelism. (Due to local caching, parallelising queryMissing() is sufficient for most use cases, since it's almost always called before building a derivation and thus fills the local info cache.) For example, parallelism speeds up querying all 1056 paths in a particular NixOS system configuration from 116s to 2.6s. It works so well because the eccentricity of the top-level derivation in the dependency graph is only 9. So we only need 10 round-trips (when using an unlimited number of parallel connections) to get everything. Currently we do a maximum of 150 parallel connections to the server. Thus it's important that the binary cache server (e.g. nixos.org) has a high connection limit. Alternatively we could use HTTP pipelining, but WWW::Curl doesn't support it and libcurl has a hard-coded limit of 5 requests per pipeline.
2012-07-06 23:08:20 +00:00
struct DrvState
{
size_t left;
bool done = false;
StorePathSet outPaths;
DrvState(size_t left) : left(left) { }
};
download-from-binary-cache: parallelise fetching of NAR info files Getting substitute information using the binary cache substituter has non-trivial latency overhead. A package or NixOS system configuration can have hundreds of dependencies, and in the worst case (when the local info cache is empty) we have to do a separate HTTP request for each of these. If the ping time to the server is t, getting N info files will take tN seconds; e.g., with a ping time of 0.1s to nixos.org, sequentially downloading 1000 info files (a typical NixOS config) will take at least 100 seconds. To fix this problem, the binary cache substituter can now perform requests in parallel. This required changing the substituter interface to support a function querySubstitutablePathInfos() that queries multiple paths at the same time, and rewriting queryMissing() to take advantage of parallelism. (Due to local caching, parallelising queryMissing() is sufficient for most use cases, since it's almost always called before building a derivation and thus fills the local info cache.) For example, parallelism speeds up querying all 1056 paths in a particular NixOS system configuration from 116s to 2.6s. It works so well because the eccentricity of the top-level derivation in the dependency graph is only 9. So we only need 10 round-trips (when using an unlimited number of parallel connections) to get everything. Currently we do a maximum of 150 parallel connections to the server. Thus it's important that the binary cache server (e.g. nixos.org) has a high connection limit. Alternatively we could use HTTP pipelining, but WWW::Curl doesn't support it and libcurl has a hard-coded limit of 5 requests per pipeline.
2012-07-06 23:08:20 +00:00
Sync<State> state_(State{{}, unknown_, willSubstitute_, willBuild_, downloadSize_, narSize_});
download-from-binary-cache: parallelise fetching of NAR info files Getting substitute information using the binary cache substituter has non-trivial latency overhead. A package or NixOS system configuration can have hundreds of dependencies, and in the worst case (when the local info cache is empty) we have to do a separate HTTP request for each of these. If the ping time to the server is t, getting N info files will take tN seconds; e.g., with a ping time of 0.1s to nixos.org, sequentially downloading 1000 info files (a typical NixOS config) will take at least 100 seconds. To fix this problem, the binary cache substituter can now perform requests in parallel. This required changing the substituter interface to support a function querySubstitutablePathInfos() that queries multiple paths at the same time, and rewriting queryMissing() to take advantage of parallelism. (Due to local caching, parallelising queryMissing() is sufficient for most use cases, since it's almost always called before building a derivation and thus fills the local info cache.) For example, parallelism speeds up querying all 1056 paths in a particular NixOS system configuration from 116s to 2.6s. It works so well because the eccentricity of the top-level derivation in the dependency graph is only 9. So we only need 10 round-trips (when using an unlimited number of parallel connections) to get everything. Currently we do a maximum of 150 parallel connections to the server. Thus it's important that the binary cache server (e.g. nixos.org) has a high connection limit. Alternatively we could use HTTP pipelining, but WWW::Curl doesn't support it and libcurl has a hard-coded limit of 5 requests per pipeline.
2012-07-06 23:08:20 +00:00
2021-04-05 13:48:18 +00:00
std::function<void(DerivedPath)> doPath;
download-from-binary-cache: parallelise fetching of NAR info files Getting substitute information using the binary cache substituter has non-trivial latency overhead. A package or NixOS system configuration can have hundreds of dependencies, and in the worst case (when the local info cache is empty) we have to do a separate HTTP request for each of these. If the ping time to the server is t, getting N info files will take tN seconds; e.g., with a ping time of 0.1s to nixos.org, sequentially downloading 1000 info files (a typical NixOS config) will take at least 100 seconds. To fix this problem, the binary cache substituter can now perform requests in parallel. This required changing the substituter interface to support a function querySubstitutablePathInfos() that queries multiple paths at the same time, and rewriting queryMissing() to take advantage of parallelism. (Due to local caching, parallelising queryMissing() is sufficient for most use cases, since it's almost always called before building a derivation and thus fills the local info cache.) For example, parallelism speeds up querying all 1056 paths in a particular NixOS system configuration from 116s to 2.6s. It works so well because the eccentricity of the top-level derivation in the dependency graph is only 9. So we only need 10 round-trips (when using an unlimited number of parallel connections) to get everything. Currently we do a maximum of 150 parallel connections to the server. Thus it's important that the binary cache server (e.g. nixos.org) has a high connection limit. Alternatively we could use HTTP pipelining, but WWW::Curl doesn't support it and libcurl has a hard-coded limit of 5 requests per pipeline.
2012-07-06 23:08:20 +00:00
std::function<void(ref<SingleDerivedPath>, const DerivedPathMap<StringSet>::ChildNode &)> enqueueDerivedPaths;
enqueueDerivedPaths = [&](ref<SingleDerivedPath> inputDrv, const DerivedPathMap<StringSet>::ChildNode & inputNode) {
if (!inputNode.value.empty())
pool.enqueue(std::bind(doPath, DerivedPath::Built { inputDrv, inputNode.value }));
for (const auto & [outputName, childNode] : inputNode.childMap)
enqueueDerivedPaths(
make_ref<SingleDerivedPath>(SingleDerivedPath::Built { inputDrv, outputName }),
childNode);
};
auto mustBuildDrv = [&](const StorePath & drvPath, const Derivation & drv) {
{
auto state(state_.lock());
state->willBuild.insert(drvPath);
}
for (const auto & [inputDrv, inputNode] : drv.inputDrvs.map) {
enqueueDerivedPaths(makeConstantStorePathRef(inputDrv), inputNode);
}
};
download-from-binary-cache: parallelise fetching of NAR info files Getting substitute information using the binary cache substituter has non-trivial latency overhead. A package or NixOS system configuration can have hundreds of dependencies, and in the worst case (when the local info cache is empty) we have to do a separate HTTP request for each of these. If the ping time to the server is t, getting N info files will take tN seconds; e.g., with a ping time of 0.1s to nixos.org, sequentially downloading 1000 info files (a typical NixOS config) will take at least 100 seconds. To fix this problem, the binary cache substituter can now perform requests in parallel. This required changing the substituter interface to support a function querySubstitutablePathInfos() that queries multiple paths at the same time, and rewriting queryMissing() to take advantage of parallelism. (Due to local caching, parallelising queryMissing() is sufficient for most use cases, since it's almost always called before building a derivation and thus fills the local info cache.) For example, parallelism speeds up querying all 1056 paths in a particular NixOS system configuration from 116s to 2.6s. It works so well because the eccentricity of the top-level derivation in the dependency graph is only 9. So we only need 10 round-trips (when using an unlimited number of parallel connections) to get everything. Currently we do a maximum of 150 parallel connections to the server. Thus it's important that the binary cache server (e.g. nixos.org) has a high connection limit. Alternatively we could use HTTP pipelining, but WWW::Curl doesn't support it and libcurl has a hard-coded limit of 5 requests per pipeline.
2012-07-06 23:08:20 +00:00
auto checkOutput = [&](
const StorePath & drvPath, ref<Derivation> drv, const StorePath & outPath, ref<Sync<DrvState>> drvState_)
{
if (drvState_->lock()->done) return;
download-from-binary-cache: parallelise fetching of NAR info files Getting substitute information using the binary cache substituter has non-trivial latency overhead. A package or NixOS system configuration can have hundreds of dependencies, and in the worst case (when the local info cache is empty) we have to do a separate HTTP request for each of these. If the ping time to the server is t, getting N info files will take tN seconds; e.g., with a ping time of 0.1s to nixos.org, sequentially downloading 1000 info files (a typical NixOS config) will take at least 100 seconds. To fix this problem, the binary cache substituter can now perform requests in parallel. This required changing the substituter interface to support a function querySubstitutablePathInfos() that queries multiple paths at the same time, and rewriting queryMissing() to take advantage of parallelism. (Due to local caching, parallelising queryMissing() is sufficient for most use cases, since it's almost always called before building a derivation and thus fills the local info cache.) For example, parallelism speeds up querying all 1056 paths in a particular NixOS system configuration from 116s to 2.6s. It works so well because the eccentricity of the top-level derivation in the dependency graph is only 9. So we only need 10 round-trips (when using an unlimited number of parallel connections) to get everything. Currently we do a maximum of 150 parallel connections to the server. Thus it's important that the binary cache server (e.g. nixos.org) has a high connection limit. Alternatively we could use HTTP pipelining, but WWW::Curl doesn't support it and libcurl has a hard-coded limit of 5 requests per pipeline.
2012-07-06 23:08:20 +00:00
SubstitutablePathInfos infos;
auto * cap = getDerivationCA(*drv);
querySubstitutablePathInfos({
{
outPath,
cap ? std::optional { *cap } : std::nullopt,
},
}, infos);
if (infos.empty()) {
drvState_->lock()->done = true;
mustBuildDrv(drvPath, *drv);
} else {
{
auto drvState(drvState_->lock());
if (drvState->done) return;
assert(drvState->left);
drvState->left--;
drvState->outPaths.insert(outPath);
if (!drvState->left) {
for (auto & path : drvState->outPaths)
2021-04-05 13:48:18 +00:00
pool.enqueue(std::bind(doPath, DerivedPath::Opaque { path } ));
download-from-binary-cache: parallelise fetching of NAR info files Getting substitute information using the binary cache substituter has non-trivial latency overhead. A package or NixOS system configuration can have hundreds of dependencies, and in the worst case (when the local info cache is empty) we have to do a separate HTTP request for each of these. If the ping time to the server is t, getting N info files will take tN seconds; e.g., with a ping time of 0.1s to nixos.org, sequentially downloading 1000 info files (a typical NixOS config) will take at least 100 seconds. To fix this problem, the binary cache substituter can now perform requests in parallel. This required changing the substituter interface to support a function querySubstitutablePathInfos() that queries multiple paths at the same time, and rewriting queryMissing() to take advantage of parallelism. (Due to local caching, parallelising queryMissing() is sufficient for most use cases, since it's almost always called before building a derivation and thus fills the local info cache.) For example, parallelism speeds up querying all 1056 paths in a particular NixOS system configuration from 116s to 2.6s. It works so well because the eccentricity of the top-level derivation in the dependency graph is only 9. So we only need 10 round-trips (when using an unlimited number of parallel connections) to get everything. Currently we do a maximum of 150 parallel connections to the server. Thus it's important that the binary cache server (e.g. nixos.org) has a high connection limit. Alternatively we could use HTTP pipelining, but WWW::Curl doesn't support it and libcurl has a hard-coded limit of 5 requests per pipeline.
2012-07-06 23:08:20 +00:00
}
}
download-from-binary-cache: parallelise fetching of NAR info files Getting substitute information using the binary cache substituter has non-trivial latency overhead. A package or NixOS system configuration can have hundreds of dependencies, and in the worst case (when the local info cache is empty) we have to do a separate HTTP request for each of these. If the ping time to the server is t, getting N info files will take tN seconds; e.g., with a ping time of 0.1s to nixos.org, sequentially downloading 1000 info files (a typical NixOS config) will take at least 100 seconds. To fix this problem, the binary cache substituter can now perform requests in parallel. This required changing the substituter interface to support a function querySubstitutablePathInfos() that queries multiple paths at the same time, and rewriting queryMissing() to take advantage of parallelism. (Due to local caching, parallelising queryMissing() is sufficient for most use cases, since it's almost always called before building a derivation and thus fills the local info cache.) For example, parallelism speeds up querying all 1056 paths in a particular NixOS system configuration from 116s to 2.6s. It works so well because the eccentricity of the top-level derivation in the dependency graph is only 9. So we only need 10 round-trips (when using an unlimited number of parallel connections) to get everything. Currently we do a maximum of 150 parallel connections to the server. Thus it's important that the binary cache server (e.g. nixos.org) has a high connection limit. Alternatively we could use HTTP pipelining, but WWW::Curl doesn't support it and libcurl has a hard-coded limit of 5 requests per pipeline.
2012-07-06 23:08:20 +00:00
}
};
download-from-binary-cache: parallelise fetching of NAR info files Getting substitute information using the binary cache substituter has non-trivial latency overhead. A package or NixOS system configuration can have hundreds of dependencies, and in the worst case (when the local info cache is empty) we have to do a separate HTTP request for each of these. If the ping time to the server is t, getting N info files will take tN seconds; e.g., with a ping time of 0.1s to nixos.org, sequentially downloading 1000 info files (a typical NixOS config) will take at least 100 seconds. To fix this problem, the binary cache substituter can now perform requests in parallel. This required changing the substituter interface to support a function querySubstitutablePathInfos() that queries multiple paths at the same time, and rewriting queryMissing() to take advantage of parallelism. (Due to local caching, parallelising queryMissing() is sufficient for most use cases, since it's almost always called before building a derivation and thus fills the local info cache.) For example, parallelism speeds up querying all 1056 paths in a particular NixOS system configuration from 116s to 2.6s. It works so well because the eccentricity of the top-level derivation in the dependency graph is only 9. So we only need 10 round-trips (when using an unlimited number of parallel connections) to get everything. Currently we do a maximum of 150 parallel connections to the server. Thus it's important that the binary cache server (e.g. nixos.org) has a high connection limit. Alternatively we could use HTTP pipelining, but WWW::Curl doesn't support it and libcurl has a hard-coded limit of 5 requests per pipeline.
2012-07-06 23:08:20 +00:00
2021-04-05 13:48:18 +00:00
doPath = [&](const DerivedPath & req) {
{
auto state(state_.lock());
if (!state->done.insert(req.to_string(*this)).second) return;
}
download-from-binary-cache: parallelise fetching of NAR info files Getting substitute information using the binary cache substituter has non-trivial latency overhead. A package or NixOS system configuration can have hundreds of dependencies, and in the worst case (when the local info cache is empty) we have to do a separate HTTP request for each of these. If the ping time to the server is t, getting N info files will take tN seconds; e.g., with a ping time of 0.1s to nixos.org, sequentially downloading 1000 info files (a typical NixOS config) will take at least 100 seconds. To fix this problem, the binary cache substituter can now perform requests in parallel. This required changing the substituter interface to support a function querySubstitutablePathInfos() that queries multiple paths at the same time, and rewriting queryMissing() to take advantage of parallelism. (Due to local caching, parallelising queryMissing() is sufficient for most use cases, since it's almost always called before building a derivation and thus fills the local info cache.) For example, parallelism speeds up querying all 1056 paths in a particular NixOS system configuration from 116s to 2.6s. It works so well because the eccentricity of the top-level derivation in the dependency graph is only 9. So we only need 10 round-trips (when using an unlimited number of parallel connections) to get everything. Currently we do a maximum of 150 parallel connections to the server. Thus it's important that the binary cache server (e.g. nixos.org) has a high connection limit. Alternatively we could use HTTP pipelining, but WWW::Curl doesn't support it and libcurl has a hard-coded limit of 5 requests per pipeline.
2012-07-06 23:08:20 +00:00
std::visit(overloaded {
[&](const DerivedPath::Built & bfd) {
auto drvPathP = std::get_if<DerivedPath::Opaque>(&*bfd.drvPath);
if (!drvPathP) {
// TODO make work in this case.
warn("Ignoring dynamic derivation %s while querying missing paths; not yet implemented", bfd.drvPath->to_string(*this));
return;
}
auto & drvPath = drvPathP->path;
if (!isValidPath(drvPath)) {
// FIXME: we could try to substitute the derivation.
auto state(state_.lock());
state->unknown.insert(drvPath);
return;
}
StorePathSet invalid;
2020-08-07 19:09:26 +00:00
/* true for regular derivations, and CA derivations for which we
have a trust mapping for all wanted outputs. */
auto knownOutputPaths = true;
for (auto & [outputName, pathOpt] : queryPartialDerivationOutputMap(drvPath)) {
2020-08-07 19:09:26 +00:00
if (!pathOpt) {
knownOutputPaths = false;
break;
}
if (bfd.outputs.contains(outputName) && !isValidPath(*pathOpt))
invalid.insert(*pathOpt);
2020-08-07 19:09:26 +00:00
}
if (knownOutputPaths && invalid.empty()) return;
auto drv = make_ref<Derivation>(derivationFromPath(drvPath));
ParsedDerivation parsedDrv(StorePath(drvPath), *drv);
if (!knownOutputPaths && settings.useSubstitutes && parsedDrv.substitutesAllowed()) {
experimentalFeatureSettings.require(Xp::CaDerivations);
// If there are unknown output paths, attempt to find if the
// paths are known to substituters through a realisation.
auto outputHashes = staticOutputHashes(*this, *drv);
knownOutputPaths = true;
for (auto [outputName, hash] : outputHashes) {
if (!bfd.outputs.contains(outputName))
continue;
bool found = false;
for (auto &sub : getDefaultSubstituters()) {
auto realisation = sub->queryRealisation({hash, outputName});
if (!realisation)
continue;
found = true;
if (!isValidPath(realisation->outPath))
invalid.insert(realisation->outPath);
break;
}
if (!found) {
// Some paths did not have a realisation, this must be built.
knownOutputPaths = false;
break;
}
}
}
2020-08-07 19:09:26 +00:00
if (knownOutputPaths && settings.useSubstitutes && parsedDrv.substitutesAllowed()) {
auto drvState = make_ref<Sync<DrvState>>(DrvState(invalid.size()));
for (auto & output : invalid)
pool.enqueue(std::bind(checkOutput, drvPath, drv, output, drvState));
download-from-binary-cache: parallelise fetching of NAR info files Getting substitute information using the binary cache substituter has non-trivial latency overhead. A package or NixOS system configuration can have hundreds of dependencies, and in the worst case (when the local info cache is empty) we have to do a separate HTTP request for each of these. If the ping time to the server is t, getting N info files will take tN seconds; e.g., with a ping time of 0.1s to nixos.org, sequentially downloading 1000 info files (a typical NixOS config) will take at least 100 seconds. To fix this problem, the binary cache substituter can now perform requests in parallel. This required changing the substituter interface to support a function querySubstitutablePathInfos() that queries multiple paths at the same time, and rewriting queryMissing() to take advantage of parallelism. (Due to local caching, parallelising queryMissing() is sufficient for most use cases, since it's almost always called before building a derivation and thus fills the local info cache.) For example, parallelism speeds up querying all 1056 paths in a particular NixOS system configuration from 116s to 2.6s. It works so well because the eccentricity of the top-level derivation in the dependency graph is only 9. So we only need 10 round-trips (when using an unlimited number of parallel connections) to get everything. Currently we do a maximum of 150 parallel connections to the server. Thus it's important that the binary cache server (e.g. nixos.org) has a high connection limit. Alternatively we could use HTTP pipelining, but WWW::Curl doesn't support it and libcurl has a hard-coded limit of 5 requests per pipeline.
2012-07-06 23:08:20 +00:00
} else
mustBuildDrv(drvPath, *drv);
},
[&](const DerivedPath::Opaque & bo) {
if (isValidPath(bo.path)) return;
SubstitutablePathInfos infos;
querySubstitutablePathInfos({{bo.path, std::nullopt}}, infos);
if (infos.empty()) {
auto state(state_.lock());
state->unknown.insert(bo.path);
return;
}
auto info = infos.find(bo.path);
assert(info != infos.end());
{
auto state(state_.lock());
state->willSubstitute.insert(bo.path);
state->downloadSize += info->second.downloadSize;
state->narSize += info->second.narSize;
}
for (auto & ref : info->second.references)
2021-04-05 13:48:18 +00:00
pool.enqueue(std::bind(doPath, DerivedPath::Opaque { ref }));
},
}, req.raw());
};
for (auto & path : targets)
pool.enqueue(std::bind(doPath, path));
pool.process();
}
StorePaths Store::topoSortPaths(const StorePathSet & paths)
2011-12-30 15:02:50 +00:00
{
2020-07-27 20:45:34 +00:00
return topoSort(paths,
{[&](const StorePath & path) {
try {
return queryPathInfo(path)->references;
2020-07-27 20:45:34 +00:00
} catch (InvalidPath &) {
2021-10-14 08:04:13 +00:00
return StorePathSet();
2020-07-27 20:45:34 +00:00
}
}},
{[&](const StorePath & path, const StorePath & parent) {
return BuildError(
"cycle detected in the references of '%s' from '%s'",
printStorePath(path),
printStorePath(parent));
}});
2011-12-30 15:02:50 +00:00
}
std::map<DrvOutput, StorePath> drvOutputReferences(
const std::set<Realisation> & inputRealisations,
const StorePathSet & pathReferences)
{
std::map<DrvOutput, StorePath> res;
2011-12-30 15:02:50 +00:00
for (const auto & input : inputRealisations) {
if (pathReferences.count(input.outPath)) {
res.insert({input.id, input.outPath});
}
}
return res;
}
2011-12-30 15:02:50 +00:00
std::map<DrvOutput, StorePath> drvOutputReferences(
Store & store,
const Derivation & drv,
const StorePath & outputPath,
Store * evalStore_)
{
auto & evalStore = evalStore_ ? *evalStore_ : store;
std::set<Realisation> inputRealisations;
std::function<void(const StorePath &, const DerivedPathMap<StringSet>::ChildNode &)> accumRealisations;
accumRealisations = [&](const StorePath & inputDrv, const DerivedPathMap<StringSet>::ChildNode & inputNode) {
if (!inputNode.value.empty()) {
auto outputHashes =
staticOutputHashes(evalStore, evalStore.readDerivation(inputDrv));
for (const auto & outputName : inputNode.value) {
auto outputHash = get(outputHashes, outputName);
if (!outputHash)
throw Error(
"output '%s' of derivation '%s' isn't realised", outputName,
store.printStorePath(inputDrv));
auto thisRealisation = store.queryRealisation(
DrvOutput{*outputHash, outputName});
if (!thisRealisation)
throw Error(
"output '%s' of derivation '%s' isnt built", outputName,
store.printStorePath(inputDrv));
inputRealisations.insert(*thisRealisation);
}
}
if (!inputNode.value.empty()) {
auto d = makeConstantStorePathRef(inputDrv);
for (const auto & [outputName, childNode] : inputNode.childMap) {
SingleDerivedPath next = SingleDerivedPath::Built { d, outputName };
accumRealisations(
// TODO deep resolutions for dynamic derivations, issue #8947, would go here.
resolveDerivedPath(store, next, evalStore_),
childNode);
}
}
};
for (const auto & [inputDrv, inputNode] : drv.inputDrvs.map)
accumRealisations(inputDrv, inputNode);
auto info = store.queryPathInfo(outputPath);
return drvOutputReferences(Realisation::closure(store, inputRealisations), info->references);
}
OutputPathMap resolveDerivedPath(Store & store, const DerivedPath::Built & bfd, Store * evalStore_)
{
auto drvPath = resolveDerivedPath(store, *bfd.drvPath, evalStore_);
auto outputsOpt_ = store.queryPartialDerivationOutputMap(drvPath, evalStore_);
auto outputsOpt = std::visit(overloaded {
[&](const OutputsSpec::All &) {
// Keep all outputs
return std::move(outputsOpt_);
},
[&](const OutputsSpec::Names & names) {
// Get just those mentioned by name
std::map<std::string, std::optional<StorePath>> outputsOpt;
for (auto & output : names) {
auto * pOutputPathOpt = get(outputsOpt_, output);
if (!pOutputPathOpt)
throw Error(
"the derivation '%s' doesn't have an output named '%s'",
bfd.drvPath->to_string(store), output);
outputsOpt.insert_or_assign(output, std::move(*pOutputPathOpt));
}
return outputsOpt;
},
}, bfd.outputs.raw);
OutputPathMap outputs;
for (auto & [outputName, outputPathOpt] : outputsOpt) {
if (!outputPathOpt)
throw MissingRealisation(bfd.drvPath->to_string(store), outputName);
auto & outputPath = *outputPathOpt;
outputs.insert_or_assign(outputName, outputPath);
}
return outputs;
}
StorePath resolveDerivedPath(Store & store, const SingleDerivedPath & req, Store * evalStore_)
{
auto & evalStore = evalStore_ ? *evalStore_ : store;
return std::visit(overloaded {
[&](const SingleDerivedPath::Opaque & bo) {
return bo.path;
},
[&](const SingleDerivedPath::Built & bfd) {
auto drvPath = resolveDerivedPath(store, *bfd.drvPath, evalStore_);
auto outputPaths = evalStore.queryPartialDerivationOutputMap(drvPath, evalStore_);
if (outputPaths.count(bfd.output) == 0)
throw Error("derivation '%s' does not have an output named '%s'",
store.printStorePath(drvPath), bfd.output);
auto & optPath = outputPaths.at(bfd.output);
if (!optPath)
throw MissingRealisation(bfd.drvPath->to_string(store), bfd.output);
return *optPath;
},
}, req.raw());
}
OutputPathMap resolveDerivedPath(Store & store, const DerivedPath::Built & bfd)
{
auto drvPath = resolveDerivedPath(store, *bfd.drvPath);
auto outputMap = store.queryDerivationOutputMap(drvPath);
auto outputsLeft = std::visit(overloaded {
[&](const OutputsSpec::All &) {
return StringSet {};
},
[&](const OutputsSpec::Names & names) {
return static_cast<StringSet>(names);
},
}, bfd.outputs.raw);
for (auto iter = outputMap.begin(); iter != outputMap.end();) {
auto & outputName = iter->first;
if (bfd.outputs.contains(outputName)) {
outputsLeft.erase(outputName);
++iter;
} else {
iter = outputMap.erase(iter);
}
}
if (!outputsLeft.empty())
throw Error("derivation '%s' does not have an outputs %s",
store.printStorePath(drvPath),
concatStringsSep(", ", quoteStrings(std::get<OutputsSpec::Names>(bfd.outputs.raw))));
return outputMap;
}
}