2006-03-06 11:21:15 +00:00
|
|
|
#include "misc.hh"
|
2004-08-04 10:59:20 +00:00
|
|
|
#include "eval.hh"
|
2003-10-31 17:09:31 +00:00
|
|
|
#include "globals.hh"
|
2006-11-30 17:43:04 +00:00
|
|
|
#include "store-api.hh"
|
2006-09-04 21:06:23 +00:00
|
|
|
#include "util.hh"
|
2006-12-12 23:05:01 +00:00
|
|
|
#include "archive.hh"
|
2006-08-24 14:34:29 +00:00
|
|
|
#include "expr-to-xml.hh"
|
2006-09-04 21:06:23 +00:00
|
|
|
#include "nixexpr-ast.hh"
|
2008-01-20 20:44:03 +00:00
|
|
|
#include "parser.hh"
|
2008-07-01 10:10:32 +00:00
|
|
|
#include "names.hh"
|
2006-09-04 21:06:23 +00:00
|
|
|
|
2007-01-15 08:54:51 +00:00
|
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/stat.h>
|
|
|
|
#include <unistd.h>
|
|
|
|
|
2006-09-04 21:06:23 +00:00
|
|
|
#include <algorithm>
|
|
|
|
|
|
|
|
|
|
|
|
namespace nix {
|
2003-10-31 17:09:31 +00:00
|
|
|
|
|
|
|
|
2010-03-29 14:37:56 +00:00
|
|
|
#if 0
|
2007-01-29 15:11:32 +00:00
|
|
|
/*************************************************************
|
|
|
|
* Constants
|
|
|
|
*************************************************************/
|
|
|
|
|
|
|
|
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_builtins(EvalState & state, const ATermVector & args)
|
2006-08-23 14:39:11 +00:00
|
|
|
{
|
|
|
|
/* Return an attribute set containing all primops. This allows
|
|
|
|
Nix expressions to test for new primops and take appropriate
|
|
|
|
action if they're not available. For instance, rather than
|
|
|
|
calling a primop `foo' directly, they could say `if builtins ?
|
|
|
|
foo then builtins.foo ... else ...'. */
|
|
|
|
|
2007-01-13 14:21:49 +00:00
|
|
|
ATermMap builtins(state.primOps.size());
|
2006-08-23 14:39:11 +00:00
|
|
|
|
|
|
|
for (ATermMap::const_iterator i = state.primOps.begin();
|
|
|
|
i != state.primOps.end(); ++i)
|
|
|
|
{
|
|
|
|
string name = aterm2String(i->key);
|
|
|
|
if (string(name, 0, 2) == "__")
|
|
|
|
name = string(name, 2);
|
|
|
|
/* !!! should use makePrimOp here, I guess. */
|
|
|
|
builtins.set(toATerm(name), makeAttrRHS(makeVar(i->key), makeNoPos()));
|
|
|
|
}
|
|
|
|
|
|
|
|
return makeAttrs(builtins);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
/* Boolean constructors. */
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_true(EvalState & state, const ATermVector & args)
|
2007-01-29 15:11:32 +00:00
|
|
|
{
|
|
|
|
return eTrue;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_false(EvalState & state, const ATermVector & args)
|
2007-01-29 15:11:32 +00:00
|
|
|
{
|
|
|
|
return eFalse;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Return the null value. */
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_null(EvalState & state, const ATermVector & args)
|
2007-01-29 15:11:32 +00:00
|
|
|
{
|
|
|
|
return makeNull();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Return a string constant representing the current platform. Note!
|
|
|
|
that differs between platforms, so Nix expressions using
|
|
|
|
`__currentSystem' can evaluate to different values on different
|
|
|
|
platforms. */
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_currentSystem(EvalState & state, const ATermVector & args)
|
2007-01-29 15:11:32 +00:00
|
|
|
{
|
|
|
|
return makeStr(thisSystem);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_currentTime(EvalState & state, const ATermVector & args)
|
2007-01-29 15:11:32 +00:00
|
|
|
{
|
|
|
|
return ATmake("Int(<int>)", time(0));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*************************************************************
|
|
|
|
* Miscellaneous
|
|
|
|
*************************************************************/
|
|
|
|
|
|
|
|
|
2004-08-04 10:59:20 +00:00
|
|
|
/* Load and evaluate an expression from path specified by the
|
|
|
|
argument. */
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_import(EvalState & state, const ATermVector & args)
|
2003-10-31 17:09:31 +00:00
|
|
|
{
|
2006-10-16 15:55:34 +00:00
|
|
|
PathSet context;
|
|
|
|
Path path = coerceToPath(state, args[0], context);
|
2006-11-03 16:17:39 +00:00
|
|
|
|
|
|
|
for (PathSet::iterator i = context.begin(); i != context.end(); ++i) {
|
|
|
|
assert(isStorePath(*i));
|
2006-11-30 17:43:04 +00:00
|
|
|
if (!store->isValidPath(*i))
|
2006-11-03 16:17:39 +00:00
|
|
|
throw EvalError(format("cannot import `%1%', since path `%2%' is not valid")
|
|
|
|
% path % *i);
|
|
|
|
if (isDerivation(*i))
|
2006-11-30 18:02:04 +00:00
|
|
|
store->buildDerivations(singleton<PathSet>(*i));
|
2006-11-03 16:17:39 +00:00
|
|
|
}
|
2006-09-24 17:48:41 +00:00
|
|
|
|
2005-05-02 14:44:58 +00:00
|
|
|
return evalFile(state, path);
|
2003-10-31 17:09:31 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
/* Determine whether the argument is the null value. */
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_isNull(EvalState & state, const ATermVector & args)
|
2007-01-29 15:11:32 +00:00
|
|
|
{
|
|
|
|
return makeBool(matchNull(evalExpr(state, args[0])));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-05-16 16:17:04 +00:00
|
|
|
/* Determine whether the argument is a function. */
|
|
|
|
static Expr prim_isFunction(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
|
|
|
Expr e = evalExpr(state, args[0]);
|
2008-08-14 10:04:22 +00:00
|
|
|
Pattern pat;
|
|
|
|
ATerm body, pos;
|
|
|
|
return makeBool(matchFunction(e, pat, body, pos));
|
2007-05-16 16:17:04 +00:00
|
|
|
}
|
|
|
|
|
2009-02-05 19:35:40 +00:00
|
|
|
/* Determine whether the argument is an Int. */
|
|
|
|
static Expr prim_isInt(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
return makeBool(matchInt(evalExpr(state, args[0]), i));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Determine whether the argument is an String. */
|
|
|
|
static Expr prim_isString(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
|
|
|
string s;
|
|
|
|
PathSet l;
|
|
|
|
return makeBool(matchStr(evalExpr(state, args[0]), s, l));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Determine whether the argument is an Bool. */
|
|
|
|
static Expr prim_isBool(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
|
|
|
ATermBool b;
|
|
|
|
return makeBool(matchBool(evalExpr(state, args[0]), b));
|
|
|
|
}
|
2007-05-16 16:17:04 +00:00
|
|
|
|
2008-07-11 13:29:04 +00:00
|
|
|
static Expr prim_genericClosure(EvalState & state, const ATermVector & args)
|
2007-01-29 15:11:32 +00:00
|
|
|
{
|
|
|
|
startNest(nest, lvlDebug, "finding dependencies");
|
|
|
|
|
|
|
|
Expr attrs = evalExpr(state, args[0]);
|
|
|
|
|
|
|
|
/* Get the start set. */
|
|
|
|
Expr startSet = queryAttr(attrs, "startSet");
|
|
|
|
if (!startSet) throw EvalError("attribute `startSet' required");
|
|
|
|
ATermList startSet2 = evalList(state, startSet);
|
|
|
|
|
2008-07-11 13:29:04 +00:00
|
|
|
set<Expr> workSet; // !!! gc roots
|
|
|
|
for (ATermIterator i(startSet2); i; ++i) workSet.insert(*i);
|
2007-01-29 15:11:32 +00:00
|
|
|
|
2008-07-11 13:29:04 +00:00
|
|
|
/* Get the operator. */
|
|
|
|
Expr op = queryAttr(attrs, "operator");
|
|
|
|
if (!op) throw EvalError("attribute `operator' required");
|
2007-01-29 15:11:32 +00:00
|
|
|
|
2008-07-11 13:29:04 +00:00
|
|
|
/* Construct the closure by applying the operator to element of
|
|
|
|
`workSet', adding the result to `workSet', continuing until
|
|
|
|
no new elements are found. */
|
|
|
|
ATermList res = ATempty;
|
|
|
|
set<Expr> doneKeys; // !!! gc roots
|
2007-01-29 15:11:32 +00:00
|
|
|
while (!workSet.empty()) {
|
2008-07-11 13:29:04 +00:00
|
|
|
Expr e = *(workSet.begin());
|
|
|
|
workSet.erase(e);
|
2007-01-29 15:11:32 +00:00
|
|
|
|
2008-07-11 13:29:04 +00:00
|
|
|
e = strictEvalExpr(state, e);
|
2007-01-29 15:11:32 +00:00
|
|
|
|
2008-07-11 13:29:04 +00:00
|
|
|
Expr key = queryAttr(e, "key");
|
|
|
|
if (!key) throw EvalError("attribute `key' required");
|
2007-01-29 15:11:32 +00:00
|
|
|
|
2008-07-11 13:29:04 +00:00
|
|
|
if (doneKeys.find(key) != doneKeys.end()) continue;
|
|
|
|
doneKeys.insert(key);
|
|
|
|
res = ATinsert(res, e);
|
|
|
|
|
|
|
|
/* Call the `operator' function with `e' as argument. */
|
|
|
|
ATermList res = evalList(state, makeCall(op, e));
|
2007-01-29 15:11:32 +00:00
|
|
|
|
2008-07-11 13:29:04 +00:00
|
|
|
/* Try to find the dependencies relative to the `path'. */
|
|
|
|
for (ATermIterator i(res); i; ++i)
|
|
|
|
workSet.insert(evalExpr(state, *i));
|
2007-01-29 15:11:32 +00:00
|
|
|
}
|
|
|
|
|
2008-07-11 13:29:04 +00:00
|
|
|
return makeList(res);
|
2007-01-29 15:11:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_abort(EvalState & state, const ATermVector & args)
|
2007-01-29 15:11:32 +00:00
|
|
|
{
|
|
|
|
PathSet context;
|
|
|
|
throw Abort(format("evaluation aborted with the following error message: `%1%'") %
|
|
|
|
evalString(state, args[0], context));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-04-16 15:03:19 +00:00
|
|
|
static Expr prim_throw(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
|
|
|
PathSet context;
|
2009-06-30 13:28:29 +00:00
|
|
|
throw ThrownError(format("user-thrown exception: %1%") %
|
2007-04-16 15:03:19 +00:00
|
|
|
evalString(state, args[0], context));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2009-01-27 14:36:44 +00:00
|
|
|
static Expr prim_addErrorContext(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
|
|
|
PathSet context;
|
|
|
|
try {
|
|
|
|
return evalExpr(state, args[1]);
|
|
|
|
} catch (Error & e) {
|
|
|
|
e.addPrefix(format("%1%\n") %
|
|
|
|
evalString(state, args[0], context));
|
|
|
|
throw;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2009-08-25 16:06:46 +00:00
|
|
|
/* Try evaluating the argument. Success => {success=true; value=something;},
|
|
|
|
* else => {success=false; value=false;} */
|
|
|
|
static Expr prim_tryEval(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
|
|
|
ATermMap res = ATermMap();
|
|
|
|
try {
|
|
|
|
Expr val = evalExpr(state, args[0]);
|
|
|
|
res.set(toATerm("value"), makeAttrRHS(val, makeNoPos()));
|
|
|
|
res.set(toATerm("success"), makeAttrRHS(eTrue, makeNoPos()));
|
2009-09-23 19:19:26 +00:00
|
|
|
} catch (AssertionError & e) {
|
|
|
|
printMsg(lvlDebug, format("tryEval caught an error: %1%: %2%") % e.prefix() % e.msg());
|
2009-08-25 16:06:46 +00:00
|
|
|
res.set(toATerm("value"), makeAttrRHS(eFalse, makeNoPos()));
|
|
|
|
res.set(toATerm("success"), makeAttrRHS(eFalse, makeNoPos()));
|
|
|
|
}
|
|
|
|
return makeAttrs(res);
|
|
|
|
}
|
|
|
|
|
2009-01-27 14:36:44 +00:00
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
/* Return an environment variable. Use with care. */
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_getEnv(EvalState & state, const ATermVector & args)
|
2007-01-29 15:11:32 +00:00
|
|
|
{
|
|
|
|
string name = evalStringNoCtx(state, args[0]);
|
|
|
|
return makeStr(getEnv(name));
|
|
|
|
}
|
|
|
|
|
2007-10-26 18:25:50 +00:00
|
|
|
|
|
|
|
/* Evaluate the first expression, and print its abstract syntax tree
|
|
|
|
on standard error. Then return the second expression. Useful for
|
|
|
|
debugging.
|
2007-08-18 22:12:00 +00:00
|
|
|
*/
|
|
|
|
static Expr prim_trace(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
2007-10-26 18:25:50 +00:00
|
|
|
Expr e = evalExpr(state, args[0]);
|
2009-10-22 08:10:12 +00:00
|
|
|
string s;
|
|
|
|
PathSet context;
|
|
|
|
if (matchStr(e, s, context))
|
|
|
|
printMsg(lvlError, format("trace: %1%") % s);
|
|
|
|
else
|
|
|
|
printMsg(lvlError, format("trace: %1%") % e);
|
2007-08-18 22:12:00 +00:00
|
|
|
return evalExpr(state, args[1]);
|
|
|
|
}
|
2007-01-29 15:11:32 +00:00
|
|
|
|
2007-10-26 18:25:50 +00:00
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
/*************************************************************
|
|
|
|
* Derivations
|
|
|
|
*************************************************************/
|
|
|
|
|
|
|
|
|
2008-12-03 15:06:30 +00:00
|
|
|
static bool isFixedOutput(const Derivation & drv)
|
|
|
|
{
|
|
|
|
return drv.outputs.size() == 1 &&
|
|
|
|
drv.outputs.begin()->first == "out" &&
|
|
|
|
drv.outputs.begin()->second.hash != "";
|
|
|
|
}
|
|
|
|
|
|
|
|
|
* Removed the `id' attribute hack.
* Formalise the notion of fixed-output derivations, i.e., derivations
for which a cryptographic hash of the output is known in advance.
Changes to such derivations should not propagate upwards through the
dependency graph. Previously this was done by specifying the hash
component of the output path through the `id' attribute, but this is
insecure since you can lie about it (i.e., you can specify any hash
and then produce a completely different output). Now the
responsibility for checking the output is moved from the builder to
Nix itself.
A fixed-output derivation can be created by specifying the
`outputHash' and `outputHashAlgo' attributes, the latter taking
values `md5', `sha1', and `sha256', and the former specifying the
actual hash in hexadecimal or in base-32 (auto-detected by looking
at the length of the attribute value). MD5 is included for
compatibility but should be considered deprecated.
* Removed the `drvPath' pseudo-attribute in derivation results. It's
no longer necessary.
* Cleaned up the support for multiple output paths in derivation store
expressions. Each output now has a unique identifier (e.g., `out',
`devel', `docs'). Previously there was no way to tell output paths
apart at the store expression level.
* `nix-hash' now has a flag `--base32' to specify that the hash should
be printed in base-32 notation.
* `fetchurl' accepts parameters `sha256' and `sha1' in addition to
`md5'.
* `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a
flag to specify the hash.)
2005-01-17 16:55:19 +00:00
|
|
|
/* Returns the hash of a derivation modulo fixed-output
|
|
|
|
subderivations. A fixed-output derivation is a derivation with one
|
|
|
|
output (`out') for which an expected hash and hash algorithm are
|
|
|
|
specified (using the `outputHash' and `outputHashAlgo'
|
|
|
|
attributes). We don't want changes to such derivations to
|
|
|
|
propagate upwards through the dependency graph, changing output
|
|
|
|
paths everywhere.
|
|
|
|
|
|
|
|
For instance, if we change the url in a call to the `fetchurl'
|
|
|
|
function, we do not want to rebuild everything depending on it
|
|
|
|
(after all, (the hash of) the file being downloaded is unchanged).
|
|
|
|
So the *output paths* should not change. On the other hand, the
|
2008-12-03 15:06:30 +00:00
|
|
|
*derivation paths* should change to reflect the new dependency
|
|
|
|
graph.
|
* Removed the `id' attribute hack.
* Formalise the notion of fixed-output derivations, i.e., derivations
for which a cryptographic hash of the output is known in advance.
Changes to such derivations should not propagate upwards through the
dependency graph. Previously this was done by specifying the hash
component of the output path through the `id' attribute, but this is
insecure since you can lie about it (i.e., you can specify any hash
and then produce a completely different output). Now the
responsibility for checking the output is moved from the builder to
Nix itself.
A fixed-output derivation can be created by specifying the
`outputHash' and `outputHashAlgo' attributes, the latter taking
values `md5', `sha1', and `sha256', and the former specifying the
actual hash in hexadecimal or in base-32 (auto-detected by looking
at the length of the attribute value). MD5 is included for
compatibility but should be considered deprecated.
* Removed the `drvPath' pseudo-attribute in derivation results. It's
no longer necessary.
* Cleaned up the support for multiple output paths in derivation store
expressions. Each output now has a unique identifier (e.g., `out',
`devel', `docs'). Previously there was no way to tell output paths
apart at the store expression level.
* `nix-hash' now has a flag `--base32' to specify that the hash should
be printed in base-32 notation.
* `fetchurl' accepts parameters `sha256' and `sha1' in addition to
`md5'.
* `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a
flag to specify the hash.)
2005-01-17 16:55:19 +00:00
|
|
|
|
|
|
|
That's what this function does: it returns a hash which is just the
|
2008-12-03 15:06:30 +00:00
|
|
|
hash of the derivation ATerm, except that any input derivation
|
* Removed the `id' attribute hack.
* Formalise the notion of fixed-output derivations, i.e., derivations
for which a cryptographic hash of the output is known in advance.
Changes to such derivations should not propagate upwards through the
dependency graph. Previously this was done by specifying the hash
component of the output path through the `id' attribute, but this is
insecure since you can lie about it (i.e., you can specify any hash
and then produce a completely different output). Now the
responsibility for checking the output is moved from the builder to
Nix itself.
A fixed-output derivation can be created by specifying the
`outputHash' and `outputHashAlgo' attributes, the latter taking
values `md5', `sha1', and `sha256', and the former specifying the
actual hash in hexadecimal or in base-32 (auto-detected by looking
at the length of the attribute value). MD5 is included for
compatibility but should be considered deprecated.
* Removed the `drvPath' pseudo-attribute in derivation results. It's
no longer necessary.
* Cleaned up the support for multiple output paths in derivation store
expressions. Each output now has a unique identifier (e.g., `out',
`devel', `docs'). Previously there was no way to tell output paths
apart at the store expression level.
* `nix-hash' now has a flag `--base32' to specify that the hash should
be printed in base-32 notation.
* `fetchurl' accepts parameters `sha256' and `sha1' in addition to
`md5'.
* `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a
flag to specify the hash.)
2005-01-17 16:55:19 +00:00
|
|
|
paths have been replaced by the result of a recursive call to this
|
2008-12-03 15:06:30 +00:00
|
|
|
function, and that for fixed-output derivations we return a hash of
|
|
|
|
its output path. */
|
2005-01-19 11:16:11 +00:00
|
|
|
static Hash hashDerivationModulo(EvalState & state, Derivation drv)
|
2003-10-31 17:09:31 +00:00
|
|
|
{
|
2005-01-19 11:16:11 +00:00
|
|
|
/* Return a fixed hash for fixed-output derivations. */
|
2008-12-03 15:06:30 +00:00
|
|
|
if (isFixedOutput(drv)) {
|
2005-01-19 11:16:11 +00:00
|
|
|
DerivationOutputs::const_iterator i = drv.outputs.begin();
|
2008-12-03 15:06:30 +00:00
|
|
|
return hashString(htSHA256, "fixed:out:"
|
|
|
|
+ i->second.hashAlgo + ":"
|
|
|
|
+ i->second.hash + ":"
|
|
|
|
+ i->second.path);
|
2005-01-19 11:16:11 +00:00
|
|
|
}
|
* Removed the `id' attribute hack.
* Formalise the notion of fixed-output derivations, i.e., derivations
for which a cryptographic hash of the output is known in advance.
Changes to such derivations should not propagate upwards through the
dependency graph. Previously this was done by specifying the hash
component of the output path through the `id' attribute, but this is
insecure since you can lie about it (i.e., you can specify any hash
and then produce a completely different output). Now the
responsibility for checking the output is moved from the builder to
Nix itself.
A fixed-output derivation can be created by specifying the
`outputHash' and `outputHashAlgo' attributes, the latter taking
values `md5', `sha1', and `sha256', and the former specifying the
actual hash in hexadecimal or in base-32 (auto-detected by looking
at the length of the attribute value). MD5 is included for
compatibility but should be considered deprecated.
* Removed the `drvPath' pseudo-attribute in derivation results. It's
no longer necessary.
* Cleaned up the support for multiple output paths in derivation store
expressions. Each output now has a unique identifier (e.g., `out',
`devel', `docs'). Previously there was no way to tell output paths
apart at the store expression level.
* `nix-hash' now has a flag `--base32' to specify that the hash should
be printed in base-32 notation.
* `fetchurl' accepts parameters `sha256' and `sha1' in addition to
`md5'.
* `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a
flag to specify the hash.)
2005-01-17 16:55:19 +00:00
|
|
|
|
2005-01-19 11:16:11 +00:00
|
|
|
/* For other derivations, replace the inputs paths with recursive
|
|
|
|
calls to this function.*/
|
2005-01-20 14:10:19 +00:00
|
|
|
DerivationInputs inputs2;
|
2008-12-03 15:51:17 +00:00
|
|
|
foreach (DerivationInputs::const_iterator, i, drv.inputDrvs) {
|
2005-01-20 14:10:19 +00:00
|
|
|
Hash h = state.drvHashes[i->first];
|
2005-01-19 11:16:11 +00:00
|
|
|
if (h.type == htUnknown) {
|
2005-01-20 14:10:19 +00:00
|
|
|
Derivation drv2 = derivationFromPath(i->first);
|
2005-01-19 11:16:11 +00:00
|
|
|
h = hashDerivationModulo(state, drv2);
|
2005-01-20 14:10:19 +00:00
|
|
|
state.drvHashes[i->first] = h;
|
2003-10-31 17:09:31 +00:00
|
|
|
}
|
2005-01-20 14:10:19 +00:00
|
|
|
inputs2[printHash(h)] = i->second;
|
2003-10-31 17:09:31 +00:00
|
|
|
}
|
2005-01-19 11:16:11 +00:00
|
|
|
drv.inputDrvs = inputs2;
|
* Removed the `id' attribute hack.
* Formalise the notion of fixed-output derivations, i.e., derivations
for which a cryptographic hash of the output is known in advance.
Changes to such derivations should not propagate upwards through the
dependency graph. Previously this was done by specifying the hash
component of the output path through the `id' attribute, but this is
insecure since you can lie about it (i.e., you can specify any hash
and then produce a completely different output). Now the
responsibility for checking the output is moved from the builder to
Nix itself.
A fixed-output derivation can be created by specifying the
`outputHash' and `outputHashAlgo' attributes, the latter taking
values `md5', `sha1', and `sha256', and the former specifying the
actual hash in hexadecimal or in base-32 (auto-detected by looking
at the length of the attribute value). MD5 is included for
compatibility but should be considered deprecated.
* Removed the `drvPath' pseudo-attribute in derivation results. It's
no longer necessary.
* Cleaned up the support for multiple output paths in derivation store
expressions. Each output now has a unique identifier (e.g., `out',
`devel', `docs'). Previously there was no way to tell output paths
apart at the store expression level.
* `nix-hash' now has a flag `--base32' to specify that the hash should
be printed in base-32 notation.
* `fetchurl' accepts parameters `sha256' and `sha1' in addition to
`md5'.
* `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a
flag to specify the hash.)
2005-01-17 16:55:19 +00:00
|
|
|
|
2005-01-19 11:16:11 +00:00
|
|
|
return hashTerm(unparseDerivation(drv));
|
2003-10-31 17:09:31 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2004-08-04 10:59:20 +00:00
|
|
|
/* Construct (as a unobservable side effect) a Nix derivation
|
|
|
|
expression that performs the derivation described by the argument
|
|
|
|
set. Returns the original set extended with the following
|
|
|
|
attributes: `outPath' containing the primary output path of the
|
|
|
|
derivation; `drvPath' containing the path of the Nix expression;
|
|
|
|
and `type' set to `derivation' to indicate that this is a
|
|
|
|
derivation. */
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_derivationStrict(EvalState & state, const ATermVector & args)
|
2003-10-31 17:09:31 +00:00
|
|
|
{
|
2003-11-09 10:35:45 +00:00
|
|
|
startNest(nest, lvlVomit, "evaluating derivation");
|
2003-10-31 17:09:31 +00:00
|
|
|
|
2007-01-13 14:21:49 +00:00
|
|
|
ATermMap attrs;
|
2005-05-07 21:48:49 +00:00
|
|
|
queryAllAttrs(evalExpr(state, args[0]), attrs, true);
|
2003-10-31 17:09:31 +00:00
|
|
|
|
2006-03-24 14:02:44 +00:00
|
|
|
/* Figure out the name already (for stack backtraces). */
|
2006-10-23 16:45:19 +00:00
|
|
|
ATerm posDrvName;
|
2006-05-04 12:21:08 +00:00
|
|
|
Expr eDrvName = attrs.get(toATerm("name"));
|
2006-03-24 14:02:44 +00:00
|
|
|
if (!eDrvName)
|
2006-07-19 15:36:15 +00:00
|
|
|
throw EvalError("required attribute `name' missing");
|
2006-03-24 14:02:44 +00:00
|
|
|
if (!matchAttrRHS(eDrvName, eDrvName, posDrvName)) abort();
|
2006-10-23 16:45:19 +00:00
|
|
|
string drvName;
|
|
|
|
try {
|
|
|
|
drvName = evalStringNoCtx(state, eDrvName);
|
|
|
|
} catch (Error & e) {
|
|
|
|
e.addPrefix(format("while evaluating the derivation attribute `name' at %1%:\n")
|
|
|
|
% showPos(posDrvName));
|
|
|
|
throw;
|
|
|
|
}
|
2006-03-24 14:02:44 +00:00
|
|
|
|
2003-10-31 17:09:31 +00:00
|
|
|
/* Build the derivation expression by processing the attributes. */
|
2005-01-19 11:16:11 +00:00
|
|
|
Derivation drv;
|
* Removed the `id' attribute hack.
* Formalise the notion of fixed-output derivations, i.e., derivations
for which a cryptographic hash of the output is known in advance.
Changes to such derivations should not propagate upwards through the
dependency graph. Previously this was done by specifying the hash
component of the output path through the `id' attribute, but this is
insecure since you can lie about it (i.e., you can specify any hash
and then produce a completely different output). Now the
responsibility for checking the output is moved from the builder to
Nix itself.
A fixed-output derivation can be created by specifying the
`outputHash' and `outputHashAlgo' attributes, the latter taking
values `md5', `sha1', and `sha256', and the former specifying the
actual hash in hexadecimal or in base-32 (auto-detected by looking
at the length of the attribute value). MD5 is included for
compatibility but should be considered deprecated.
* Removed the `drvPath' pseudo-attribute in derivation results. It's
no longer necessary.
* Cleaned up the support for multiple output paths in derivation store
expressions. Each output now has a unique identifier (e.g., `out',
`devel', `docs'). Previously there was no way to tell output paths
apart at the store expression level.
* `nix-hash' now has a flag `--base32' to specify that the hash should
be printed in base-32 notation.
* `fetchurl' accepts parameters `sha256' and `sha1' in addition to
`md5'.
* `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a
flag to specify the hash.)
2005-01-17 16:55:19 +00:00
|
|
|
|
2006-10-16 15:55:34 +00:00
|
|
|
PathSet context;
|
|
|
|
|
2008-12-03 15:06:30 +00:00
|
|
|
string outputHash, outputHashAlgo;
|
2005-02-22 21:14:41 +00:00
|
|
|
bool outputHashRecursive = false;
|
2003-10-31 17:09:31 +00:00
|
|
|
|
2006-05-04 12:21:08 +00:00
|
|
|
for (ATermMap::const_iterator i = attrs.begin(); i != attrs.end(); ++i) {
|
|
|
|
string key = aterm2String(i->key);
|
2004-04-05 22:27:41 +00:00
|
|
|
ATerm value;
|
|
|
|
Expr pos;
|
2006-05-04 12:21:08 +00:00
|
|
|
ATerm rhs = i->value;
|
2004-10-26 22:54:26 +00:00
|
|
|
if (!matchAttrRHS(rhs, value, pos)) abort();
|
2003-11-09 10:35:45 +00:00
|
|
|
startNest(nest, lvlVomit, format("processing attribute `%1%'") % key);
|
2003-10-31 17:09:31 +00:00
|
|
|
|
2004-04-02 10:49:37 +00:00
|
|
|
try {
|
2006-08-28 13:31:06 +00:00
|
|
|
|
|
|
|
/* The `args' attribute is special: it supplies the
|
|
|
|
command-line arguments to the builder. */
|
|
|
|
if (key == "args") {
|
|
|
|
ATermList es;
|
|
|
|
value = evalExpr(state, value);
|
2006-08-29 15:40:49 +00:00
|
|
|
if (!matchList(value, es)) {
|
|
|
|
static bool haveWarned = false;
|
|
|
|
warnOnce(haveWarned, "the `args' attribute should evaluate to a list");
|
|
|
|
es = flattenList(state, value);
|
|
|
|
}
|
2006-08-28 13:31:06 +00:00
|
|
|
for (ATermIterator i(es); i; ++i) {
|
2006-10-16 15:55:34 +00:00
|
|
|
string s = coerceToString(state, *i, context, true);
|
2006-08-28 13:31:06 +00:00
|
|
|
drv.args.push_back(s);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* All other attributes are passed to the builder through
|
|
|
|
the environment. */
|
|
|
|
else {
|
2006-10-16 15:55:34 +00:00
|
|
|
string s = coerceToString(state, value, context, true);
|
2006-08-28 13:31:06 +00:00
|
|
|
drv.env[key] = s;
|
|
|
|
if (key == "builder") drv.builder = s;
|
|
|
|
else if (key == "system") drv.platform = s;
|
|
|
|
else if (key == "name") drvName = s;
|
|
|
|
else if (key == "outputHash") outputHash = s;
|
|
|
|
else if (key == "outputHashAlgo") outputHashAlgo = s;
|
|
|
|
else if (key == "outputHashMode") {
|
|
|
|
if (s == "recursive") outputHashRecursive = true;
|
|
|
|
else if (s == "flat") outputHashRecursive = false;
|
|
|
|
else throw EvalError(format("invalid value `%1%' for `outputHashMode' attribute") % s);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2004-04-02 10:49:37 +00:00
|
|
|
} catch (Error & e) {
|
2006-10-23 16:45:19 +00:00
|
|
|
e.addPrefix(format("while evaluating the derivation attribute `%1%' at %2%:\n")
|
2006-03-08 14:11:19 +00:00
|
|
|
% key % showPos(pos));
|
2006-03-24 14:02:44 +00:00
|
|
|
e.addPrefix(format("while instantiating the derivation named `%1%' at %2%:\n")
|
|
|
|
% drvName % showPos(posDrvName));
|
2006-03-08 14:11:19 +00:00
|
|
|
throw;
|
2004-04-02 10:49:37 +00:00
|
|
|
}
|
2004-03-28 20:34:22 +00:00
|
|
|
|
2003-10-31 17:09:31 +00:00
|
|
|
}
|
|
|
|
|
2006-10-16 15:55:34 +00:00
|
|
|
/* Everything in the context of the strings in the derivation
|
|
|
|
attributes should be added as dependencies of the resulting
|
|
|
|
derivation. */
|
2009-03-18 17:36:42 +00:00
|
|
|
foreach (PathSet::iterator, i, context) {
|
2008-12-04 10:40:41 +00:00
|
|
|
Path path = *i;
|
2009-03-18 17:36:42 +00:00
|
|
|
|
|
|
|
/* Paths marked with `=' denote that the path of a derivation
|
|
|
|
is explicitly passed to the builder. Since that allows the
|
|
|
|
builder to gain access to every path in the dependency
|
|
|
|
graph of the derivation (including all outputs), all paths
|
|
|
|
in the graph must be added to this derivation's list of
|
|
|
|
inputs to ensure that they are available when the builder
|
|
|
|
runs. */
|
2008-12-04 10:40:41 +00:00
|
|
|
if (path.at(0) == '=') {
|
|
|
|
path = string(path, 1);
|
2009-03-18 17:36:42 +00:00
|
|
|
PathSet refs; computeFSClosure(path, refs);
|
|
|
|
foreach (PathSet::iterator, j, refs) {
|
|
|
|
drv.inputSrcs.insert(*j);
|
|
|
|
if (isDerivation(*j))
|
|
|
|
drv.inputDrvs[*j] = singleton<StringSet>("out");
|
|
|
|
}
|
2008-12-04 10:40:41 +00:00
|
|
|
}
|
2009-10-21 15:05:30 +00:00
|
|
|
|
|
|
|
/* See prim_unsafeDiscardOutputDependency. */
|
|
|
|
bool useDrvAsSrc = false;
|
|
|
|
if (path.at(0) == '~') {
|
|
|
|
path = string(path, 1);
|
|
|
|
useDrvAsSrc = true;
|
|
|
|
}
|
|
|
|
|
2008-12-04 10:40:41 +00:00
|
|
|
assert(isStorePath(path));
|
2009-10-21 15:05:30 +00:00
|
|
|
|
|
|
|
debug(format("derivation uses `%1%'") % path);
|
|
|
|
if (!useDrvAsSrc && isDerivation(path))
|
2008-12-04 10:40:41 +00:00
|
|
|
drv.inputDrvs[path] = singleton<StringSet>("out");
|
2006-10-16 15:55:34 +00:00
|
|
|
else
|
2008-12-04 10:40:41 +00:00
|
|
|
drv.inputSrcs.insert(path);
|
2006-10-16 15:55:34 +00:00
|
|
|
}
|
|
|
|
|
2003-10-31 17:09:31 +00:00
|
|
|
/* Do we have all required attributes? */
|
2005-01-19 11:16:11 +00:00
|
|
|
if (drv.builder == "")
|
2006-07-19 15:36:15 +00:00
|
|
|
throw EvalError("required attribute `builder' missing");
|
2005-01-19 11:16:11 +00:00
|
|
|
if (drv.platform == "")
|
2006-07-19 15:36:15 +00:00
|
|
|
throw EvalError("required attribute `system' missing");
|
2004-08-24 11:46:05 +00:00
|
|
|
|
* Removed the `id' attribute hack.
* Formalise the notion of fixed-output derivations, i.e., derivations
for which a cryptographic hash of the output is known in advance.
Changes to such derivations should not propagate upwards through the
dependency graph. Previously this was done by specifying the hash
component of the output path through the `id' attribute, but this is
insecure since you can lie about it (i.e., you can specify any hash
and then produce a completely different output). Now the
responsibility for checking the output is moved from the builder to
Nix itself.
A fixed-output derivation can be created by specifying the
`outputHash' and `outputHashAlgo' attributes, the latter taking
values `md5', `sha1', and `sha256', and the former specifying the
actual hash in hexadecimal or in base-32 (auto-detected by looking
at the length of the attribute value). MD5 is included for
compatibility but should be considered deprecated.
* Removed the `drvPath' pseudo-attribute in derivation results. It's
no longer necessary.
* Cleaned up the support for multiple output paths in derivation store
expressions. Each output now has a unique identifier (e.g., `out',
`devel', `docs'). Previously there was no way to tell output paths
apart at the store expression level.
* `nix-hash' now has a flag `--base32' to specify that the hash should
be printed in base-32 notation.
* `fetchurl' accepts parameters `sha256' and `sha1' in addition to
`md5'.
* `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a
flag to specify the hash.)
2005-01-17 16:55:19 +00:00
|
|
|
/* If an output hash was given, check it. */
|
2008-12-03 15:06:30 +00:00
|
|
|
Path outPath;
|
* Removed the `id' attribute hack.
* Formalise the notion of fixed-output derivations, i.e., derivations
for which a cryptographic hash of the output is known in advance.
Changes to such derivations should not propagate upwards through the
dependency graph. Previously this was done by specifying the hash
component of the output path through the `id' attribute, but this is
insecure since you can lie about it (i.e., you can specify any hash
and then produce a completely different output). Now the
responsibility for checking the output is moved from the builder to
Nix itself.
A fixed-output derivation can be created by specifying the
`outputHash' and `outputHashAlgo' attributes, the latter taking
values `md5', `sha1', and `sha256', and the former specifying the
actual hash in hexadecimal or in base-32 (auto-detected by looking
at the length of the attribute value). MD5 is included for
compatibility but should be considered deprecated.
* Removed the `drvPath' pseudo-attribute in derivation results. It's
no longer necessary.
* Cleaned up the support for multiple output paths in derivation store
expressions. Each output now has a unique identifier (e.g., `out',
`devel', `docs'). Previously there was no way to tell output paths
apart at the store expression level.
* `nix-hash' now has a flag `--base32' to specify that the hash should
be printed in base-32 notation.
* `fetchurl' accepts parameters `sha256' and `sha1' in addition to
`md5'.
* `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a
flag to specify the hash.)
2005-01-17 16:55:19 +00:00
|
|
|
if (outputHash == "")
|
|
|
|
outputHashAlgo = "";
|
|
|
|
else {
|
|
|
|
HashType ht = parseHashType(outputHashAlgo);
|
|
|
|
if (ht == htUnknown)
|
2006-07-19 15:36:15 +00:00
|
|
|
throw EvalError(format("unknown hash algorithm `%1%'") % outputHashAlgo);
|
2006-09-20 16:15:32 +00:00
|
|
|
Hash h(ht);
|
|
|
|
if (outputHash.size() == h.hashSize * 2)
|
* Removed the `id' attribute hack.
* Formalise the notion of fixed-output derivations, i.e., derivations
for which a cryptographic hash of the output is known in advance.
Changes to such derivations should not propagate upwards through the
dependency graph. Previously this was done by specifying the hash
component of the output path through the `id' attribute, but this is
insecure since you can lie about it (i.e., you can specify any hash
and then produce a completely different output). Now the
responsibility for checking the output is moved from the builder to
Nix itself.
A fixed-output derivation can be created by specifying the
`outputHash' and `outputHashAlgo' attributes, the latter taking
values `md5', `sha1', and `sha256', and the former specifying the
actual hash in hexadecimal or in base-32 (auto-detected by looking
at the length of the attribute value). MD5 is included for
compatibility but should be considered deprecated.
* Removed the `drvPath' pseudo-attribute in derivation results. It's
no longer necessary.
* Cleaned up the support for multiple output paths in derivation store
expressions. Each output now has a unique identifier (e.g., `out',
`devel', `docs'). Previously there was no way to tell output paths
apart at the store expression level.
* `nix-hash' now has a flag `--base32' to specify that the hash should
be printed in base-32 notation.
* `fetchurl' accepts parameters `sha256' and `sha1' in addition to
`md5'.
* `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a
flag to specify the hash.)
2005-01-17 16:55:19 +00:00
|
|
|
/* hexadecimal representation */
|
|
|
|
h = parseHash(ht, outputHash);
|
2006-09-20 16:15:32 +00:00
|
|
|
else if (outputHash.size() == hashLength32(h))
|
* Removed the `id' attribute hack.
* Formalise the notion of fixed-output derivations, i.e., derivations
for which a cryptographic hash of the output is known in advance.
Changes to such derivations should not propagate upwards through the
dependency graph. Previously this was done by specifying the hash
component of the output path through the `id' attribute, but this is
insecure since you can lie about it (i.e., you can specify any hash
and then produce a completely different output). Now the
responsibility for checking the output is moved from the builder to
Nix itself.
A fixed-output derivation can be created by specifying the
`outputHash' and `outputHashAlgo' attributes, the latter taking
values `md5', `sha1', and `sha256', and the former specifying the
actual hash in hexadecimal or in base-32 (auto-detected by looking
at the length of the attribute value). MD5 is included for
compatibility but should be considered deprecated.
* Removed the `drvPath' pseudo-attribute in derivation results. It's
no longer necessary.
* Cleaned up the support for multiple output paths in derivation store
expressions. Each output now has a unique identifier (e.g., `out',
`devel', `docs'). Previously there was no way to tell output paths
apart at the store expression level.
* `nix-hash' now has a flag `--base32' to specify that the hash should
be printed in base-32 notation.
* `fetchurl' accepts parameters `sha256' and `sha1' in addition to
`md5'.
* `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a
flag to specify the hash.)
2005-01-17 16:55:19 +00:00
|
|
|
/* base-32 representation */
|
|
|
|
h = parseHash32(ht, outputHash);
|
2006-09-20 16:15:32 +00:00
|
|
|
else
|
|
|
|
throw Error(format("hash `%1%' has wrong length for hash type `%2%'")
|
|
|
|
% outputHash % outputHashAlgo);
|
* Removed the `id' attribute hack.
* Formalise the notion of fixed-output derivations, i.e., derivations
for which a cryptographic hash of the output is known in advance.
Changes to such derivations should not propagate upwards through the
dependency graph. Previously this was done by specifying the hash
component of the output path through the `id' attribute, but this is
insecure since you can lie about it (i.e., you can specify any hash
and then produce a completely different output). Now the
responsibility for checking the output is moved from the builder to
Nix itself.
A fixed-output derivation can be created by specifying the
`outputHash' and `outputHashAlgo' attributes, the latter taking
values `md5', `sha1', and `sha256', and the former specifying the
actual hash in hexadecimal or in base-32 (auto-detected by looking
at the length of the attribute value). MD5 is included for
compatibility but should be considered deprecated.
* Removed the `drvPath' pseudo-attribute in derivation results. It's
no longer necessary.
* Cleaned up the support for multiple output paths in derivation store
expressions. Each output now has a unique identifier (e.g., `out',
`devel', `docs'). Previously there was no way to tell output paths
apart at the store expression level.
* `nix-hash' now has a flag `--base32' to specify that the hash should
be printed in base-32 notation.
* `fetchurl' accepts parameters `sha256' and `sha1' in addition to
`md5'.
* `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a
flag to specify the hash.)
2005-01-17 16:55:19 +00:00
|
|
|
string s = outputHash;
|
|
|
|
outputHash = printHash(h);
|
2008-12-03 16:10:17 +00:00
|
|
|
outPath = makeFixedOutputPath(outputHashRecursive, ht, h, drvName);
|
2005-02-22 21:14:41 +00:00
|
|
|
if (outputHashRecursive) outputHashAlgo = "r:" + outputHashAlgo;
|
* Removed the `id' attribute hack.
* Formalise the notion of fixed-output derivations, i.e., derivations
for which a cryptographic hash of the output is known in advance.
Changes to such derivations should not propagate upwards through the
dependency graph. Previously this was done by specifying the hash
component of the output path through the `id' attribute, but this is
insecure since you can lie about it (i.e., you can specify any hash
and then produce a completely different output). Now the
responsibility for checking the output is moved from the builder to
Nix itself.
A fixed-output derivation can be created by specifying the
`outputHash' and `outputHashAlgo' attributes, the latter taking
values `md5', `sha1', and `sha256', and the former specifying the
actual hash in hexadecimal or in base-32 (auto-detected by looking
at the length of the attribute value). MD5 is included for
compatibility but should be considered deprecated.
* Removed the `drvPath' pseudo-attribute in derivation results. It's
no longer necessary.
* Cleaned up the support for multiple output paths in derivation store
expressions. Each output now has a unique identifier (e.g., `out',
`devel', `docs'). Previously there was no way to tell output paths
apart at the store expression level.
* `nix-hash' now has a flag `--base32' to specify that the hash should
be printed in base-32 notation.
* `fetchurl' accepts parameters `sha256' and `sha1' in addition to
`md5'.
* `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a
flag to specify the hash.)
2005-01-17 16:55:19 +00:00
|
|
|
}
|
|
|
|
|
2006-09-21 18:52:05 +00:00
|
|
|
/* Check whether the derivation name is valid. */
|
2005-04-07 14:01:51 +00:00
|
|
|
checkStoreName(drvName);
|
2005-01-20 15:25:01 +00:00
|
|
|
if (isDerivation(drvName))
|
2006-07-19 15:36:15 +00:00
|
|
|
throw EvalError(format("derivation names are not allowed to end in `%1%'")
|
2005-01-20 15:25:01 +00:00
|
|
|
% drvExtension);
|
|
|
|
|
2005-01-14 13:51:38 +00:00
|
|
|
/* Construct the "masked" derivation store expression, which is
|
* Removed the `id' attribute hack.
* Formalise the notion of fixed-output derivations, i.e., derivations
for which a cryptographic hash of the output is known in advance.
Changes to such derivations should not propagate upwards through the
dependency graph. Previously this was done by specifying the hash
component of the output path through the `id' attribute, but this is
insecure since you can lie about it (i.e., you can specify any hash
and then produce a completely different output). Now the
responsibility for checking the output is moved from the builder to
Nix itself.
A fixed-output derivation can be created by specifying the
`outputHash' and `outputHashAlgo' attributes, the latter taking
values `md5', `sha1', and `sha256', and the former specifying the
actual hash in hexadecimal or in base-32 (auto-detected by looking
at the length of the attribute value). MD5 is included for
compatibility but should be considered deprecated.
* Removed the `drvPath' pseudo-attribute in derivation results. It's
no longer necessary.
* Cleaned up the support for multiple output paths in derivation store
expressions. Each output now has a unique identifier (e.g., `out',
`devel', `docs'). Previously there was no way to tell output paths
apart at the store expression level.
* `nix-hash' now has a flag `--base32' to specify that the hash should
be printed in base-32 notation.
* `fetchurl' accepts parameters `sha256' and `sha1' in addition to
`md5'.
* `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a
flag to specify the hash.)
2005-01-17 16:55:19 +00:00
|
|
|
the final one except that in the list of outputs, the output
|
|
|
|
paths are empty, and the corresponding environment variables
|
|
|
|
have an empty value. This ensures that changes in the set of
|
|
|
|
output names do get reflected in the hash. */
|
2005-01-19 11:16:11 +00:00
|
|
|
drv.env["out"] = "";
|
2008-12-03 15:06:30 +00:00
|
|
|
drv.outputs["out"] = DerivationOutput("", outputHashAlgo, outputHash);
|
2003-10-31 17:09:31 +00:00
|
|
|
|
* Removed the `id' attribute hack.
* Formalise the notion of fixed-output derivations, i.e., derivations
for which a cryptographic hash of the output is known in advance.
Changes to such derivations should not propagate upwards through the
dependency graph. Previously this was done by specifying the hash
component of the output path through the `id' attribute, but this is
insecure since you can lie about it (i.e., you can specify any hash
and then produce a completely different output). Now the
responsibility for checking the output is moved from the builder to
Nix itself.
A fixed-output derivation can be created by specifying the
`outputHash' and `outputHashAlgo' attributes, the latter taking
values `md5', `sha1', and `sha256', and the former specifying the
actual hash in hexadecimal or in base-32 (auto-detected by looking
at the length of the attribute value). MD5 is included for
compatibility but should be considered deprecated.
* Removed the `drvPath' pseudo-attribute in derivation results. It's
no longer necessary.
* Cleaned up the support for multiple output paths in derivation store
expressions. Each output now has a unique identifier (e.g., `out',
`devel', `docs'). Previously there was no way to tell output paths
apart at the store expression level.
* `nix-hash' now has a flag `--base32' to specify that the hash should
be printed in base-32 notation.
* `fetchurl' accepts parameters `sha256' and `sha1' in addition to
`md5'.
* `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a
flag to specify the hash.)
2005-01-17 16:55:19 +00:00
|
|
|
/* Use the masked derivation expression to compute the output
|
|
|
|
path. */
|
2008-12-03 15:06:30 +00:00
|
|
|
if (outPath == "")
|
|
|
|
outPath = makeStorePath("output:out", hashDerivationModulo(state, drv), drvName);
|
2005-01-14 13:51:38 +00:00
|
|
|
|
|
|
|
/* Construct the final derivation store expression. */
|
2005-01-19 11:16:11 +00:00
|
|
|
drv.env["out"] = outPath;
|
|
|
|
drv.outputs["out"] =
|
* Removed the `id' attribute hack.
* Formalise the notion of fixed-output derivations, i.e., derivations
for which a cryptographic hash of the output is known in advance.
Changes to such derivations should not propagate upwards through the
dependency graph. Previously this was done by specifying the hash
component of the output path through the `id' attribute, but this is
insecure since you can lie about it (i.e., you can specify any hash
and then produce a completely different output). Now the
responsibility for checking the output is moved from the builder to
Nix itself.
A fixed-output derivation can be created by specifying the
`outputHash' and `outputHashAlgo' attributes, the latter taking
values `md5', `sha1', and `sha256', and the former specifying the
actual hash in hexadecimal or in base-32 (auto-detected by looking
at the length of the attribute value). MD5 is included for
compatibility but should be considered deprecated.
* Removed the `drvPath' pseudo-attribute in derivation results. It's
no longer necessary.
* Cleaned up the support for multiple output paths in derivation store
expressions. Each output now has a unique identifier (e.g., `out',
`devel', `docs'). Previously there was no way to tell output paths
apart at the store expression level.
* `nix-hash' now has a flag `--base32' to specify that the hash should
be printed in base-32 notation.
* `fetchurl' accepts parameters `sha256' and `sha1' in addition to
`md5'.
* `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a
flag to specify the hash.)
2005-01-17 16:55:19 +00:00
|
|
|
DerivationOutput(outPath, outputHashAlgo, outputHash);
|
2003-10-31 17:09:31 +00:00
|
|
|
|
|
|
|
/* Write the resulting term into the Nix store directory. */
|
2005-01-19 14:36:00 +00:00
|
|
|
Path drvPath = writeDerivation(drv, drvName);
|
2003-10-31 17:09:31 +00:00
|
|
|
|
2003-11-09 10:35:45 +00:00
|
|
|
printMsg(lvlChatty, format("instantiated `%1%' -> `%2%'")
|
2003-10-31 17:09:31 +00:00
|
|
|
% drvName % drvPath);
|
|
|
|
|
2005-01-18 11:15:50 +00:00
|
|
|
/* Optimisation, but required in read-only mode! because in that
|
|
|
|
case we don't actually write store expressions, so we can't
|
|
|
|
read them later. */
|
2005-01-19 11:16:11 +00:00
|
|
|
state.drvHashes[drvPath] = hashDerivationModulo(state, drv);
|
2005-01-18 11:15:50 +00:00
|
|
|
|
* Removed the `id' attribute hack.
* Formalise the notion of fixed-output derivations, i.e., derivations
for which a cryptographic hash of the output is known in advance.
Changes to such derivations should not propagate upwards through the
dependency graph. Previously this was done by specifying the hash
component of the output path through the `id' attribute, but this is
insecure since you can lie about it (i.e., you can specify any hash
and then produce a completely different output). Now the
responsibility for checking the output is moved from the builder to
Nix itself.
A fixed-output derivation can be created by specifying the
`outputHash' and `outputHashAlgo' attributes, the latter taking
values `md5', `sha1', and `sha256', and the former specifying the
actual hash in hexadecimal or in base-32 (auto-detected by looking
at the length of the attribute value). MD5 is included for
compatibility but should be considered deprecated.
* Removed the `drvPath' pseudo-attribute in derivation results. It's
no longer necessary.
* Cleaned up the support for multiple output paths in derivation store
expressions. Each output now has a unique identifier (e.g., `out',
`devel', `docs'). Previously there was no way to tell output paths
apart at the store expression level.
* `nix-hash' now has a flag `--base32' to specify that the hash should
be printed in base-32 notation.
* `fetchurl' accepts parameters `sha256' and `sha1' in addition to
`md5'.
* `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a
flag to specify the hash.)
2005-01-17 16:55:19 +00:00
|
|
|
/* !!! assumes a single output */
|
2006-05-04 12:21:08 +00:00
|
|
|
ATermMap outAttrs(2);
|
|
|
|
outAttrs.set(toATerm("outPath"),
|
2006-10-16 15:55:34 +00:00
|
|
|
makeAttrRHS(makeStr(outPath, singleton<PathSet>(drvPath)), makeNoPos()));
|
2006-05-04 12:21:08 +00:00
|
|
|
outAttrs.set(toATerm("drvPath"),
|
2009-03-18 17:36:42 +00:00
|
|
|
makeAttrRHS(makeStr(drvPath, singleton<PathSet>("=" + drvPath)), makeNoPos()));
|
2005-05-07 21:48:49 +00:00
|
|
|
|
|
|
|
return makeAttrs(outAttrs);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_derivationLazy(EvalState & state, const ATermVector & args)
|
2005-05-07 21:48:49 +00:00
|
|
|
{
|
|
|
|
Expr eAttrs = evalExpr(state, args[0]);
|
2007-01-13 14:21:49 +00:00
|
|
|
ATermMap attrs;
|
2005-05-07 21:48:49 +00:00
|
|
|
queryAllAttrs(eAttrs, attrs, true);
|
|
|
|
|
2006-05-04 12:21:08 +00:00
|
|
|
attrs.set(toATerm("type"),
|
2006-10-16 15:55:34 +00:00
|
|
|
makeAttrRHS(makeStr("derivation"), makeNoPos()));
|
2003-10-31 17:09:31 +00:00
|
|
|
|
2005-05-07 21:48:49 +00:00
|
|
|
Expr drvStrict = makeCall(makeVar(toATerm("derivation!")), eAttrs);
|
|
|
|
|
2006-05-04 12:21:08 +00:00
|
|
|
attrs.set(toATerm("outPath"),
|
|
|
|
makeAttrRHS(makeSelect(drvStrict, toATerm("outPath")), makeNoPos()));
|
|
|
|
attrs.set(toATerm("drvPath"),
|
|
|
|
makeAttrRHS(makeSelect(drvStrict, toATerm("drvPath")), makeNoPos()));
|
2005-05-07 21:48:49 +00:00
|
|
|
|
2003-10-31 17:09:31 +00:00
|
|
|
return makeAttrs(attrs);
|
|
|
|
}
|
2003-11-02 16:31:35 +00:00
|
|
|
|
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
/*************************************************************
|
|
|
|
* Paths
|
|
|
|
*************************************************************/
|
|
|
|
|
|
|
|
|
|
|
|
/* Convert the argument to a path. !!! obsolete? */
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_toPath(EvalState & state, const ATermVector & args)
|
2003-11-02 16:31:35 +00:00
|
|
|
{
|
2006-10-16 15:55:34 +00:00
|
|
|
PathSet context;
|
2007-01-29 15:11:32 +00:00
|
|
|
string path = coerceToPath(state, args[0], context);
|
|
|
|
return makeStr(canonPath(path), context);
|
2003-11-02 16:31:35 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2008-11-19 23:26:19 +00:00
|
|
|
/* Allow a valid store path to be used in an expression. This is
|
|
|
|
useful in some generated expressions such as in nix-push, which
|
|
|
|
generates a call to a function with an already existing store path
|
|
|
|
as argument. You don't want to use `toPath' here because it copies
|
|
|
|
the path to the Nix store, which yields a copy like
|
|
|
|
/nix/store/newhash-oldhash-oldname. In the past, `toPath' had
|
|
|
|
special case behaviour for store paths, but that created weird
|
|
|
|
corner cases. */
|
|
|
|
static Expr prim_storePath(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
|
|
|
PathSet context;
|
|
|
|
Path path = canonPath(coerceToPath(state, args[0], context));
|
|
|
|
if (!isInStore(path))
|
|
|
|
throw EvalError(format("path `%1%' is not in the Nix store") % path);
|
2008-12-04 10:40:41 +00:00
|
|
|
Path path2 = toStorePath(path);
|
|
|
|
if (!store->isValidPath(path2))
|
|
|
|
throw EvalError(format("store path `%1%' is not valid") % path2);
|
|
|
|
context.insert(path2);
|
2008-11-19 23:26:19 +00:00
|
|
|
return makeStr(path, context);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_pathExists(EvalState & state, const ATermVector & args)
|
2005-08-14 14:00:39 +00:00
|
|
|
{
|
2006-10-16 15:55:34 +00:00
|
|
|
PathSet context;
|
2007-01-29 15:11:32 +00:00
|
|
|
Path path = coerceToPath(state, args[0], context);
|
|
|
|
if (!context.empty())
|
|
|
|
throw EvalError(format("string `%1%' cannot refer to other paths") % path);
|
|
|
|
return makeBool(pathExists(path));
|
2006-03-10 16:20:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
/* Return the base name of the given string, i.e., everything
|
|
|
|
following the last slash. */
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_baseNameOf(EvalState & state, const ATermVector & args)
|
2003-11-02 16:31:35 +00:00
|
|
|
{
|
2006-10-16 15:55:34 +00:00
|
|
|
PathSet context;
|
2007-01-29 15:11:32 +00:00
|
|
|
return makeStr(baseNameOf(coerceToString(state, args[0], context)), context);
|
2003-11-02 16:31:35 +00:00
|
|
|
}
|
2003-11-05 16:27:40 +00:00
|
|
|
|
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
/* Return the directory of the given path, i.e., everything before the
|
|
|
|
last slash. Return either a path or a string depending on the type
|
|
|
|
of the argument. */
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_dirOf(EvalState & state, const ATermVector & args)
|
2006-09-24 18:23:32 +00:00
|
|
|
{
|
2006-10-16 15:55:34 +00:00
|
|
|
PathSet context;
|
2007-01-29 15:11:32 +00:00
|
|
|
Expr e = evalExpr(state, args[0]); ATerm dummy;
|
|
|
|
bool isPath = matchPath(e, dummy);
|
|
|
|
Path dir = dirOf(coerceToPath(state, e, context));
|
|
|
|
return isPath ? makePath(toATerm(dir)) : makeStr(dir, context);
|
2006-09-24 18:23:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-11-21 13:49:59 +00:00
|
|
|
/* Return the contents of a file as a string. */
|
|
|
|
static Expr prim_readFile(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
|
|
|
PathSet context;
|
|
|
|
Path path = coerceToPath(state, args[0], context);
|
|
|
|
if (!context.empty())
|
|
|
|
throw EvalError(format("string `%1%' cannot refer to other paths") % path);
|
|
|
|
return makeStr(readFile(path));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
/*************************************************************
|
|
|
|
* Creating files
|
|
|
|
*************************************************************/
|
|
|
|
|
|
|
|
|
2006-09-01 12:07:31 +00:00
|
|
|
/* Convert the argument (which can be any Nix expression) to an XML
|
|
|
|
representation returned in a string. Not all Nix expressions can
|
|
|
|
be sensibly or completely represented (e.g., functions). */
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_toXML(EvalState & state, const ATermVector & args)
|
2006-08-24 14:34:29 +00:00
|
|
|
{
|
2006-09-04 21:06:23 +00:00
|
|
|
std::ostringstream out;
|
2006-10-16 15:55:34 +00:00
|
|
|
PathSet context;
|
2006-10-03 15:38:59 +00:00
|
|
|
printTermAsXML(strictEvalExpr(state, args[0]), out, context);
|
2006-10-16 15:55:34 +00:00
|
|
|
return makeStr(out.str(), context);
|
2006-08-24 14:34:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-09-01 12:07:31 +00:00
|
|
|
/* Store a string in the Nix store as a source file that can be used
|
|
|
|
as an input by derivations. */
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_toFile(EvalState & state, const ATermVector & args)
|
2006-09-01 12:07:31 +00:00
|
|
|
{
|
2006-10-16 15:55:34 +00:00
|
|
|
PathSet context;
|
|
|
|
string name = evalStringNoCtx(state, args[0]);
|
|
|
|
string contents = evalString(state, args[1], context);
|
2006-10-03 14:55:54 +00:00
|
|
|
|
|
|
|
PathSet refs;
|
|
|
|
|
2006-10-19 17:39:02 +00:00
|
|
|
for (PathSet::iterator i = context.begin(); i != context.end(); ++i) {
|
2008-12-04 10:45:47 +00:00
|
|
|
Path path = *i;
|
|
|
|
if (path.at(0) == '=') path = string(path, 1);
|
|
|
|
if (isDerivation(path))
|
2006-10-19 17:43:58 +00:00
|
|
|
throw EvalError(format("in `toFile': the file `%1%' cannot refer to derivation outputs") % name);
|
2008-12-04 10:45:47 +00:00
|
|
|
refs.insert(path);
|
2006-10-03 14:55:54 +00:00
|
|
|
}
|
|
|
|
|
2006-12-01 21:00:39 +00:00
|
|
|
Path storePath = readOnlyMode
|
2007-01-29 15:51:37 +00:00
|
|
|
? computeStorePathForText(name, contents, refs)
|
2006-12-01 21:00:39 +00:00
|
|
|
: store->addTextToStore(name, contents, refs);
|
2006-10-03 14:55:54 +00:00
|
|
|
|
2006-10-16 15:55:34 +00:00
|
|
|
/* Note: we don't need to add `context' to the context of the
|
|
|
|
result, since `storePath' itself has references to the paths
|
|
|
|
used in args[1]. */
|
|
|
|
|
|
|
|
return makeStr(storePath, singleton<PathSet>(storePath));
|
2006-09-01 12:07:31 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
struct FilterFromExpr : PathFilter
|
2004-02-04 16:03:29 +00:00
|
|
|
{
|
2007-01-29 15:11:32 +00:00
|
|
|
EvalState & state;
|
|
|
|
Expr filter;
|
|
|
|
|
|
|
|
FilterFromExpr(EvalState & state, Expr filter)
|
|
|
|
: state(state), filter(filter)
|
|
|
|
{
|
|
|
|
}
|
2004-02-04 16:03:29 +00:00
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
bool operator () (const Path & path)
|
|
|
|
{
|
|
|
|
struct stat st;
|
|
|
|
if (lstat(path.c_str(), &st))
|
|
|
|
throw SysError(format("getting attributes of path `%1%'") % path);
|
2004-02-04 16:03:29 +00:00
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
Expr call =
|
|
|
|
makeCall(
|
|
|
|
makeCall(filter, makeStr(path)),
|
|
|
|
makeStr(
|
|
|
|
S_ISREG(st.st_mode) ? "regular" :
|
|
|
|
S_ISDIR(st.st_mode) ? "directory" :
|
|
|
|
S_ISLNK(st.st_mode) ? "symlink" :
|
|
|
|
"unknown" /* not supported, will fail! */
|
|
|
|
));
|
|
|
|
|
|
|
|
return evalBool(state, call);
|
|
|
|
}
|
|
|
|
};
|
2004-02-04 16:03:29 +00:00
|
|
|
|
|
|
|
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_filterSource(EvalState & state, const ATermVector & args)
|
2003-11-05 16:27:40 +00:00
|
|
|
{
|
2007-01-29 15:11:32 +00:00
|
|
|
PathSet context;
|
|
|
|
Path path = coerceToPath(state, args[1], context);
|
|
|
|
if (!context.empty())
|
|
|
|
throw EvalError(format("string `%1%' cannot refer to other paths") % path);
|
2003-11-05 16:27:40 +00:00
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
FilterFromExpr filter(state, args[0]);
|
2004-08-04 10:59:20 +00:00
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
Path dstPath = readOnlyMode
|
2008-12-03 16:10:17 +00:00
|
|
|
? computeStorePathForPath(path, true, htSHA256, filter).first
|
|
|
|
: store->addToStore(path, true, htSHA256, filter);
|
2004-08-04 10:59:20 +00:00
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
return makeStr(dstPath, singleton<PathSet>(dstPath));
|
2006-09-22 14:55:19 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
/*************************************************************
|
|
|
|
* Attribute sets
|
|
|
|
*************************************************************/
|
* A primitive operation `dependencyClosure' to do automatic dependency
determination (e.g., finding the header files dependencies of a C
file) in Nix low-level builds automatically.
For instance, in the function `compileC' in make/lib/default.nix, we
find the header file dependencies of C file `main' as follows:
localIncludes =
dependencyClosure {
scanner = file:
import (findIncludes {
inherit file;
});
startSet = [main];
};
The function works by "growing" the set of dependencies, starting
with the set `startSet', and calling the function `scanner' for each
file to get its dependencies (which should yield a list of strings
representing relative paths). For instance, when `scanner' is
called on a file `foo.c' that includes the line
#include "../bar/fnord.h"
then `scanner' should yield ["../bar/fnord.h"]. This list of
dependencies is absolutised relative to the including file and added
to the set of dependencies. The process continues until no more
dependencies are found (hence its a closure).
`dependencyClosure' yields a list that contains in alternation a
dependency, and its relative path to the directory of the start
file, e.g.,
[ /bla/bla/foo.c
"foo.c"
/bla/bar/fnord.h
"../bar/fnord.h"
]
These relative paths are necessary for the builder that compiles
foo.c to reconstruct the relative directory structure expected by
foo.c.
The advantage of `dependencyClosure' over the old approach (using
the impure `__currentTime') is that it's completely pure, and more
efficient because it only rescans for dependencies (i.e., by
building the derivations yielded by `scanner') if sources have
actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
|
|
|
|
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
/* Return the names of the attributes in an attribute set as a sorted
|
|
|
|
list of strings. */
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_attrNames(EvalState & state, const ATermVector & args)
|
* A primitive operation `dependencyClosure' to do automatic dependency
determination (e.g., finding the header files dependencies of a C
file) in Nix low-level builds automatically.
For instance, in the function `compileC' in make/lib/default.nix, we
find the header file dependencies of C file `main' as follows:
localIncludes =
dependencyClosure {
scanner = file:
import (findIncludes {
inherit file;
});
startSet = [main];
};
The function works by "growing" the set of dependencies, starting
with the set `startSet', and calling the function `scanner' for each
file to get its dependencies (which should yield a list of strings
representing relative paths). For instance, when `scanner' is
called on a file `foo.c' that includes the line
#include "../bar/fnord.h"
then `scanner' should yield ["../bar/fnord.h"]. This list of
dependencies is absolutised relative to the including file and added
to the set of dependencies. The process continues until no more
dependencies are found (hence its a closure).
`dependencyClosure' yields a list that contains in alternation a
dependency, and its relative path to the directory of the start
file, e.g.,
[ /bla/bla/foo.c
"foo.c"
/bla/bar/fnord.h
"../bar/fnord.h"
]
These relative paths are necessary for the builder that compiles
foo.c to reconstruct the relative directory structure expected by
foo.c.
The advantage of `dependencyClosure' over the old approach (using
the impure `__currentTime') is that it's completely pure, and more
efficient because it only rescans for dependencies (i.e., by
building the derivations yielded by `scanner') if sources have
actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
|
|
|
{
|
2007-01-29 15:11:32 +00:00
|
|
|
ATermMap attrs;
|
|
|
|
queryAllAttrs(evalExpr(state, args[0]), attrs);
|
* A primitive operation `dependencyClosure' to do automatic dependency
determination (e.g., finding the header files dependencies of a C
file) in Nix low-level builds automatically.
For instance, in the function `compileC' in make/lib/default.nix, we
find the header file dependencies of C file `main' as follows:
localIncludes =
dependencyClosure {
scanner = file:
import (findIncludes {
inherit file;
});
startSet = [main];
};
The function works by "growing" the set of dependencies, starting
with the set `startSet', and calling the function `scanner' for each
file to get its dependencies (which should yield a list of strings
representing relative paths). For instance, when `scanner' is
called on a file `foo.c' that includes the line
#include "../bar/fnord.h"
then `scanner' should yield ["../bar/fnord.h"]. This list of
dependencies is absolutised relative to the including file and added
to the set of dependencies. The process continues until no more
dependencies are found (hence its a closure).
`dependencyClosure' yields a list that contains in alternation a
dependency, and its relative path to the directory of the start
file, e.g.,
[ /bla/bla/foo.c
"foo.c"
/bla/bar/fnord.h
"../bar/fnord.h"
]
These relative paths are necessary for the builder that compiles
foo.c to reconstruct the relative directory structure expected by
foo.c.
The advantage of `dependencyClosure' over the old approach (using
the impure `__currentTime') is that it's completely pure, and more
efficient because it only rescans for dependencies (i.e., by
building the derivations yielded by `scanner') if sources have
actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
StringSet names;
|
|
|
|
for (ATermMap::const_iterator i = attrs.begin(); i != attrs.end(); ++i)
|
|
|
|
names.insert(aterm2String(i->key));
|
* A primitive operation `dependencyClosure' to do automatic dependency
determination (e.g., finding the header files dependencies of a C
file) in Nix low-level builds automatically.
For instance, in the function `compileC' in make/lib/default.nix, we
find the header file dependencies of C file `main' as follows:
localIncludes =
dependencyClosure {
scanner = file:
import (findIncludes {
inherit file;
});
startSet = [main];
};
The function works by "growing" the set of dependencies, starting
with the set `startSet', and calling the function `scanner' for each
file to get its dependencies (which should yield a list of strings
representing relative paths). For instance, when `scanner' is
called on a file `foo.c' that includes the line
#include "../bar/fnord.h"
then `scanner' should yield ["../bar/fnord.h"]. This list of
dependencies is absolutised relative to the including file and added
to the set of dependencies. The process continues until no more
dependencies are found (hence its a closure).
`dependencyClosure' yields a list that contains in alternation a
dependency, and its relative path to the directory of the start
file, e.g.,
[ /bla/bla/foo.c
"foo.c"
/bla/bar/fnord.h
"../bar/fnord.h"
]
These relative paths are necessary for the builder that compiles
foo.c to reconstruct the relative directory structure expected by
foo.c.
The advantage of `dependencyClosure' over the old approach (using
the impure `__currentTime') is that it's completely pure, and more
efficient because it only rescans for dependencies (i.e., by
building the derivations yielded by `scanner') if sources have
actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
ATermList list = ATempty;
|
|
|
|
for (StringSet::const_reverse_iterator i = names.rbegin();
|
|
|
|
i != names.rend(); ++i)
|
|
|
|
list = ATinsert(list, makeStr(*i, PathSet()));
|
* A primitive operation `dependencyClosure' to do automatic dependency
determination (e.g., finding the header files dependencies of a C
file) in Nix low-level builds automatically.
For instance, in the function `compileC' in make/lib/default.nix, we
find the header file dependencies of C file `main' as follows:
localIncludes =
dependencyClosure {
scanner = file:
import (findIncludes {
inherit file;
});
startSet = [main];
};
The function works by "growing" the set of dependencies, starting
with the set `startSet', and calling the function `scanner' for each
file to get its dependencies (which should yield a list of strings
representing relative paths). For instance, when `scanner' is
called on a file `foo.c' that includes the line
#include "../bar/fnord.h"
then `scanner' should yield ["../bar/fnord.h"]. This list of
dependencies is absolutised relative to the including file and added
to the set of dependencies. The process continues until no more
dependencies are found (hence its a closure).
`dependencyClosure' yields a list that contains in alternation a
dependency, and its relative path to the directory of the start
file, e.g.,
[ /bla/bla/foo.c
"foo.c"
/bla/bar/fnord.h
"../bar/fnord.h"
]
These relative paths are necessary for the builder that compiles
foo.c to reconstruct the relative directory structure expected by
foo.c.
The advantage of `dependencyClosure' over the old approach (using
the impure `__currentTime') is that it's completely pure, and more
efficient because it only rescans for dependencies (i.e., by
building the derivations yielded by `scanner') if sources have
actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
return makeList(list);
|
* A primitive operation `dependencyClosure' to do automatic dependency
determination (e.g., finding the header files dependencies of a C
file) in Nix low-level builds automatically.
For instance, in the function `compileC' in make/lib/default.nix, we
find the header file dependencies of C file `main' as follows:
localIncludes =
dependencyClosure {
scanner = file:
import (findIncludes {
inherit file;
});
startSet = [main];
};
The function works by "growing" the set of dependencies, starting
with the set `startSet', and calling the function `scanner' for each
file to get its dependencies (which should yield a list of strings
representing relative paths). For instance, when `scanner' is
called on a file `foo.c' that includes the line
#include "../bar/fnord.h"
then `scanner' should yield ["../bar/fnord.h"]. This list of
dependencies is absolutised relative to the including file and added
to the set of dependencies. The process continues until no more
dependencies are found (hence its a closure).
`dependencyClosure' yields a list that contains in alternation a
dependency, and its relative path to the directory of the start
file, e.g.,
[ /bla/bla/foo.c
"foo.c"
/bla/bar/fnord.h
"../bar/fnord.h"
]
These relative paths are necessary for the builder that compiles
foo.c to reconstruct the relative directory structure expected by
foo.c.
The advantage of `dependencyClosure' over the old approach (using
the impure `__currentTime') is that it's completely pure, and more
efficient because it only rescans for dependencies (i.e., by
building the derivations yielded by `scanner') if sources have
actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
/* Dynamic version of the `.' operator. */
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_getAttr(EvalState & state, const ATermVector & args)
|
* A primitive operation `dependencyClosure' to do automatic dependency
determination (e.g., finding the header files dependencies of a C
file) in Nix low-level builds automatically.
For instance, in the function `compileC' in make/lib/default.nix, we
find the header file dependencies of C file `main' as follows:
localIncludes =
dependencyClosure {
scanner = file:
import (findIncludes {
inherit file;
});
startSet = [main];
};
The function works by "growing" the set of dependencies, starting
with the set `startSet', and calling the function `scanner' for each
file to get its dependencies (which should yield a list of strings
representing relative paths). For instance, when `scanner' is
called on a file `foo.c' that includes the line
#include "../bar/fnord.h"
then `scanner' should yield ["../bar/fnord.h"]. This list of
dependencies is absolutised relative to the including file and added
to the set of dependencies. The process continues until no more
dependencies are found (hence its a closure).
`dependencyClosure' yields a list that contains in alternation a
dependency, and its relative path to the directory of the start
file, e.g.,
[ /bla/bla/foo.c
"foo.c"
/bla/bar/fnord.h
"../bar/fnord.h"
]
These relative paths are necessary for the builder that compiles
foo.c to reconstruct the relative directory structure expected by
foo.c.
The advantage of `dependencyClosure' over the old approach (using
the impure `__currentTime') is that it's completely pure, and more
efficient because it only rescans for dependencies (i.e., by
building the derivations yielded by `scanner') if sources have
actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
|
|
|
{
|
2007-01-29 15:11:32 +00:00
|
|
|
string attr = evalStringNoCtx(state, args[0]);
|
|
|
|
return evalExpr(state, makeSelect(args[1], toATerm(attr)));
|
|
|
|
}
|
* A primitive operation `dependencyClosure' to do automatic dependency
determination (e.g., finding the header files dependencies of a C
file) in Nix low-level builds automatically.
For instance, in the function `compileC' in make/lib/default.nix, we
find the header file dependencies of C file `main' as follows:
localIncludes =
dependencyClosure {
scanner = file:
import (findIncludes {
inherit file;
});
startSet = [main];
};
The function works by "growing" the set of dependencies, starting
with the set `startSet', and calling the function `scanner' for each
file to get its dependencies (which should yield a list of strings
representing relative paths). For instance, when `scanner' is
called on a file `foo.c' that includes the line
#include "../bar/fnord.h"
then `scanner' should yield ["../bar/fnord.h"]. This list of
dependencies is absolutised relative to the including file and added
to the set of dependencies. The process continues until no more
dependencies are found (hence its a closure).
`dependencyClosure' yields a list that contains in alternation a
dependency, and its relative path to the directory of the start
file, e.g.,
[ /bla/bla/foo.c
"foo.c"
/bla/bar/fnord.h
"../bar/fnord.h"
]
These relative paths are necessary for the builder that compiles
foo.c to reconstruct the relative directory structure expected by
foo.c.
The advantage of `dependencyClosure' over the old approach (using
the impure `__currentTime') is that it's completely pure, and more
efficient because it only rescans for dependencies (i.e., by
building the derivations yielded by `scanner') if sources have
actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
|
|
|
|
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
/* Dynamic version of the `?' operator. */
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_hasAttr(EvalState & state, const ATermVector & args)
|
2007-01-29 15:11:32 +00:00
|
|
|
{
|
|
|
|
string attr = evalStringNoCtx(state, args[0]);
|
|
|
|
return evalExpr(state, makeOpHasAttr(args[1], toATerm(attr)));
|
|
|
|
}
|
* A primitive operation `dependencyClosure' to do automatic dependency
determination (e.g., finding the header files dependencies of a C
file) in Nix low-level builds automatically.
For instance, in the function `compileC' in make/lib/default.nix, we
find the header file dependencies of C file `main' as follows:
localIncludes =
dependencyClosure {
scanner = file:
import (findIncludes {
inherit file;
});
startSet = [main];
};
The function works by "growing" the set of dependencies, starting
with the set `startSet', and calling the function `scanner' for each
file to get its dependencies (which should yield a list of strings
representing relative paths). For instance, when `scanner' is
called on a file `foo.c' that includes the line
#include "../bar/fnord.h"
then `scanner' should yield ["../bar/fnord.h"]. This list of
dependencies is absolutised relative to the including file and added
to the set of dependencies. The process continues until no more
dependencies are found (hence its a closure).
`dependencyClosure' yields a list that contains in alternation a
dependency, and its relative path to the directory of the start
file, e.g.,
[ /bla/bla/foo.c
"foo.c"
/bla/bar/fnord.h
"../bar/fnord.h"
]
These relative paths are necessary for the builder that compiles
foo.c to reconstruct the relative directory structure expected by
foo.c.
The advantage of `dependencyClosure' over the old approach (using
the impure `__currentTime') is that it's completely pure, and more
efficient because it only rescans for dependencies (i.e., by
building the derivations yielded by `scanner') if sources have
actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
|
|
|
|
2005-08-14 14:00:39 +00:00
|
|
|
|
2007-10-09 12:51:25 +00:00
|
|
|
/* Builds an attribute set from a list specifying (name, value)
|
|
|
|
pairs. To be precise, a list [{name = "name1"; value = value1;}
|
|
|
|
... {name = "nameN"; value = valueN;}] is transformed to {name1 =
|
|
|
|
value1; ... nameN = valueN;}. */
|
2007-08-18 22:12:00 +00:00
|
|
|
static Expr prim_listToAttrs(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
2007-10-09 12:51:25 +00:00
|
|
|
try {
|
|
|
|
ATermMap res = ATermMap();
|
|
|
|
ATermList list;
|
|
|
|
list = evalList(state, args[0]);
|
|
|
|
for (ATermIterator i(list); i; ++i){
|
|
|
|
// *i should now contain a pointer to the list item expression
|
|
|
|
ATermList attrs;
|
|
|
|
Expr evaledExpr = evalExpr(state, *i);
|
|
|
|
if (matchAttrs(evaledExpr, attrs)){
|
|
|
|
Expr e = evalExpr(state, makeSelect(evaledExpr, toATerm("name")));
|
|
|
|
string attr = evalStringNoCtx(state,e);
|
|
|
|
Expr r = makeSelect(evaledExpr, toATerm("value"));
|
|
|
|
res.set(toATerm(attr), makeAttrRHS(r, makeNoPos()));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
throw TypeError(format("list element in `listToAttrs' is %s, expected a set { name = \"<name>\"; value = <value>; }")
|
|
|
|
% showType(evaledExpr));
|
|
|
|
}
|
|
|
|
|
|
|
|
return makeAttrs(res);
|
|
|
|
|
|
|
|
} catch (Error & e) {
|
|
|
|
e.addPrefix(format("in `listToAttrs':\n"));
|
|
|
|
throw;
|
|
|
|
}
|
2007-08-18 22:12:00 +00:00
|
|
|
}
|
|
|
|
|
2007-10-31 18:01:56 +00:00
|
|
|
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_removeAttrs(EvalState & state, const ATermVector & args)
|
2007-01-29 15:11:32 +00:00
|
|
|
{
|
|
|
|
ATermMap attrs;
|
|
|
|
queryAllAttrs(evalExpr(state, args[0]), attrs, true);
|
2005-08-14 14:00:39 +00:00
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
ATermList list = evalList(state, args[1]);
|
2005-08-14 14:00:39 +00:00
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
for (ATermIterator i(list); i; ++i)
|
|
|
|
/* It's not an error for *i not to exist. */
|
|
|
|
attrs.remove(toATerm(evalStringNoCtx(state, *i)));
|
2005-08-14 14:00:39 +00:00
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
return makeAttrs(attrs);
|
|
|
|
}
|
* A primitive operation `dependencyClosure' to do automatic dependency
determination (e.g., finding the header files dependencies of a C
file) in Nix low-level builds automatically.
For instance, in the function `compileC' in make/lib/default.nix, we
find the header file dependencies of C file `main' as follows:
localIncludes =
dependencyClosure {
scanner = file:
import (findIncludes {
inherit file;
});
startSet = [main];
};
The function works by "growing" the set of dependencies, starting
with the set `startSet', and calling the function `scanner' for each
file to get its dependencies (which should yield a list of strings
representing relative paths). For instance, when `scanner' is
called on a file `foo.c' that includes the line
#include "../bar/fnord.h"
then `scanner' should yield ["../bar/fnord.h"]. This list of
dependencies is absolutised relative to the including file and added
to the set of dependencies. The process continues until no more
dependencies are found (hence its a closure).
`dependencyClosure' yields a list that contains in alternation a
dependency, and its relative path to the directory of the start
file, e.g.,
[ /bla/bla/foo.c
"foo.c"
/bla/bar/fnord.h
"../bar/fnord.h"
]
These relative paths are necessary for the builder that compiles
foo.c to reconstruct the relative directory structure expected by
foo.c.
The advantage of `dependencyClosure' over the old approach (using
the impure `__currentTime') is that it's completely pure, and more
efficient because it only rescans for dependencies (i.e., by
building the derivations yielded by `scanner') if sources have
actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
|
|
|
|
2007-10-31 18:01:56 +00:00
|
|
|
|
2008-07-01 10:10:32 +00:00
|
|
|
/* Determine whether the argument is an attribute set. */
|
2007-08-18 22:12:00 +00:00
|
|
|
static Expr prim_isAttrs(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
|
|
|
ATermList list;
|
|
|
|
return makeBool(matchAttrs(evalExpr(state, args[0]), list));
|
|
|
|
}
|
* A primitive operation `dependencyClosure' to do automatic dependency
determination (e.g., finding the header files dependencies of a C
file) in Nix low-level builds automatically.
For instance, in the function `compileC' in make/lib/default.nix, we
find the header file dependencies of C file `main' as follows:
localIncludes =
dependencyClosure {
scanner = file:
import (findIncludes {
inherit file;
});
startSet = [main];
};
The function works by "growing" the set of dependencies, starting
with the set `startSet', and calling the function `scanner' for each
file to get its dependencies (which should yield a list of strings
representing relative paths). For instance, when `scanner' is
called on a file `foo.c' that includes the line
#include "../bar/fnord.h"
then `scanner' should yield ["../bar/fnord.h"]. This list of
dependencies is absolutised relative to the including file and added
to the set of dependencies. The process continues until no more
dependencies are found (hence its a closure).
`dependencyClosure' yields a list that contains in alternation a
dependency, and its relative path to the directory of the start
file, e.g.,
[ /bla/bla/foo.c
"foo.c"
/bla/bar/fnord.h
"../bar/fnord.h"
]
These relative paths are necessary for the builder that compiles
foo.c to reconstruct the relative directory structure expected by
foo.c.
The advantage of `dependencyClosure' over the old approach (using
the impure `__currentTime') is that it's completely pure, and more
efficient because it only rescans for dependencies (i.e., by
building the derivations yielded by `scanner') if sources have
actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
|
|
|
|
2007-10-31 18:01:56 +00:00
|
|
|
|
* Two primops: builtins.intersectAttrs and builtins.functionArgs.
intersectAttrs returns the (right-biased) intersection between two
attribute sets, e.g. every attribute from the second set that also
exists in the first. functionArgs returns the set of attributes
expected by a function.
The main goal of these is to allow the elimination of most of
all-packages.nix. Most package instantiations in all-packages.nix
have this form:
foo = import ./foo.nix {
inherit a b c;
};
With intersectAttrs and functionArgs, this can be written as:
foo = callPackage (import ./foo.nix) { };
where
callPackage = f: args:
f ((builtins.intersectAttrs (builtins.functionArgs f) pkgs) // args);
I.e., foo.nix is called with all attributes from "pkgs" that it
actually needs (e.g., pkgs.a, pkgs.b and pkgs.c). (callPackage can
do any other generic package-level stuff we might want, such as
applying makeOverridable.) Of course, the automatically supplied
arguments can be overriden if needed, e.g.
foo = callPackage (import ./foo.nix) {
c = c_version_2;
};
but for the vast majority of packages, this won't be needed.
The advantages are to reduce the amount of typing needed to add a
dependency (from three sites to two), and to reduce the number of
trivial commits to all-packages.nix. For the former, there have
been two previous attempts:
- Use "args: with args;" in the package's function definition.
This however obscures the actual expected arguments of a
function, which is very bad.
- Use "{ arg1, arg2, ... }:" in the package's function definition
(i.e. use the ellipis "..." to allow arbitrary additional
arguments), and then call the function with all of "pkgs" as an
argument. But this inhibits error detection if you call it with
an misspelled (or obsolete) argument.
2009-09-15 13:01:46 +00:00
|
|
|
/* Return the right-biased intersection of two attribute sets as1 and
|
|
|
|
as2, i.e. a set that contains every attribute from as2 that is also
|
|
|
|
a member of as1. */
|
|
|
|
static Expr prim_intersectAttrs(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
|
|
|
ATermMap as1, as2;
|
|
|
|
queryAllAttrs(evalExpr(state, args[0]), as1, true);
|
|
|
|
queryAllAttrs(evalExpr(state, args[1]), as2, true);
|
|
|
|
|
|
|
|
ATermMap res;
|
|
|
|
foreach (ATermMap::const_iterator, i, as2)
|
|
|
|
if (as1[i->key]) res.set(i->key, i->value);
|
|
|
|
|
|
|
|
return makeAttrs(res);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void attrsInPattern(ATermMap & map, Pattern pat)
|
|
|
|
{
|
|
|
|
ATerm name;
|
|
|
|
ATermList formals;
|
|
|
|
ATermBool ellipsis;
|
2010-03-25 12:19:41 +00:00
|
|
|
if (matchAttrsPat(pat, formals, ellipsis, name)) {
|
* Two primops: builtins.intersectAttrs and builtins.functionArgs.
intersectAttrs returns the (right-biased) intersection between two
attribute sets, e.g. every attribute from the second set that also
exists in the first. functionArgs returns the set of attributes
expected by a function.
The main goal of these is to allow the elimination of most of
all-packages.nix. Most package instantiations in all-packages.nix
have this form:
foo = import ./foo.nix {
inherit a b c;
};
With intersectAttrs and functionArgs, this can be written as:
foo = callPackage (import ./foo.nix) { };
where
callPackage = f: args:
f ((builtins.intersectAttrs (builtins.functionArgs f) pkgs) // args);
I.e., foo.nix is called with all attributes from "pkgs" that it
actually needs (e.g., pkgs.a, pkgs.b and pkgs.c). (callPackage can
do any other generic package-level stuff we might want, such as
applying makeOverridable.) Of course, the automatically supplied
arguments can be overriden if needed, e.g.
foo = callPackage (import ./foo.nix) {
c = c_version_2;
};
but for the vast majority of packages, this won't be needed.
The advantages are to reduce the amount of typing needed to add a
dependency (from three sites to two), and to reduce the number of
trivial commits to all-packages.nix. For the former, there have
been two previous attempts:
- Use "args: with args;" in the package's function definition.
This however obscures the actual expected arguments of a
function, which is very bad.
- Use "{ arg1, arg2, ... }:" in the package's function definition
(i.e. use the ellipis "..." to allow arbitrary additional
arguments), and then call the function with all of "pkgs" as an
argument. But this inhibits error detection if you call it with
an misspelled (or obsolete) argument.
2009-09-15 13:01:46 +00:00
|
|
|
for (ATermIterator i(formals); i; ++i) {
|
|
|
|
ATerm def;
|
|
|
|
if (!matchFormal(*i, name, def)) abort();
|
|
|
|
map.set(name, makeAttrRHS(makeBool(def != constNoDefaultValue), makeNoPos()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Return a set containing the names of the formal arguments expected
|
|
|
|
by the function `f'. The value of each attribute is a Boolean
|
|
|
|
denoting whether has a default value. For instance,
|
|
|
|
|
|
|
|
functionArgs ({ x, y ? 123}: ...)
|
|
|
|
=> { x = false; y = true; }
|
|
|
|
|
|
|
|
"Formal argument" here refers to the attributes pattern-matched by
|
|
|
|
the function. Plain lambdas are not included, e.g.
|
|
|
|
|
|
|
|
functionArgs (x: ...)
|
|
|
|
=> { }
|
|
|
|
*/
|
|
|
|
static Expr prim_functionArgs(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
|
|
|
Expr f = evalExpr(state, args[0]);
|
|
|
|
ATerm pat, body, pos;
|
|
|
|
if (!matchFunction(f, pat, body, pos))
|
|
|
|
throw TypeError("`functionArgs' required a function");
|
|
|
|
|
|
|
|
ATermMap as;
|
|
|
|
attrsInPattern(as, pat);
|
|
|
|
|
|
|
|
return makeAttrs(as);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
/*************************************************************
|
|
|
|
* Lists
|
|
|
|
*************************************************************/
|
* A primitive operation `dependencyClosure' to do automatic dependency
determination (e.g., finding the header files dependencies of a C
file) in Nix low-level builds automatically.
For instance, in the function `compileC' in make/lib/default.nix, we
find the header file dependencies of C file `main' as follows:
localIncludes =
dependencyClosure {
scanner = file:
import (findIncludes {
inherit file;
});
startSet = [main];
};
The function works by "growing" the set of dependencies, starting
with the set `startSet', and calling the function `scanner' for each
file to get its dependencies (which should yield a list of strings
representing relative paths). For instance, when `scanner' is
called on a file `foo.c' that includes the line
#include "../bar/fnord.h"
then `scanner' should yield ["../bar/fnord.h"]. This list of
dependencies is absolutised relative to the including file and added
to the set of dependencies. The process continues until no more
dependencies are found (hence its a closure).
`dependencyClosure' yields a list that contains in alternation a
dependency, and its relative path to the directory of the start
file, e.g.,
[ /bla/bla/foo.c
"foo.c"
/bla/bar/fnord.h
"../bar/fnord.h"
]
These relative paths are necessary for the builder that compiles
foo.c to reconstruct the relative directory structure expected by
foo.c.
The advantage of `dependencyClosure' over the old approach (using
the impure `__currentTime') is that it's completely pure, and more
efficient because it only rescans for dependencies (i.e., by
building the derivations yielded by `scanner') if sources have
actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
|
|
|
|
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
/* Determine whether the argument is a list. */
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_isList(EvalState & state, const ATermVector & args)
|
2006-08-23 15:46:00 +00:00
|
|
|
{
|
2007-01-29 15:11:32 +00:00
|
|
|
ATermList list;
|
|
|
|
return makeBool(matchList(evalExpr(state, args[0]), list));
|
2006-08-23 15:46:00 +00:00
|
|
|
}
|
2010-03-29 14:37:56 +00:00
|
|
|
#endif
|
2006-08-23 15:46:00 +00:00
|
|
|
|
|
|
|
|
2006-09-22 14:46:36 +00:00
|
|
|
/* Return the first element of a list. */
|
2010-03-29 14:37:56 +00:00
|
|
|
static void prim_head(EvalState & state, Value * * args, Value & v)
|
2006-09-22 14:46:36 +00:00
|
|
|
{
|
2010-03-29 14:37:56 +00:00
|
|
|
state.forceList(*args[0]);
|
|
|
|
if (args[0]->list.length == 0)
|
2006-09-22 14:46:36 +00:00
|
|
|
throw Error("`head' called on an empty list");
|
2010-03-29 14:37:56 +00:00
|
|
|
state.forceValue(args[0]->list.elems[0]);
|
|
|
|
v = args[0]->list.elems[0];
|
2006-09-22 14:46:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2010-03-29 14:37:56 +00:00
|
|
|
#if 0
|
2006-09-22 14:46:36 +00:00
|
|
|
/* Return a list consisting of everything but the the first element of
|
|
|
|
a list. */
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_tail(EvalState & state, const ATermVector & args)
|
2006-09-22 14:46:36 +00:00
|
|
|
{
|
|
|
|
ATermList list = evalList(state, args[0]);
|
|
|
|
if (ATisEmpty(list))
|
|
|
|
throw Error("`tail' called on an empty list");
|
|
|
|
return makeList(ATgetNext(list));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2004-08-04 10:59:20 +00:00
|
|
|
/* Apply a function to every element of a list. */
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_map(EvalState & state, const ATermVector & args)
|
2004-08-04 10:59:20 +00:00
|
|
|
{
|
2004-08-04 11:27:53 +00:00
|
|
|
Expr fun = evalExpr(state, args[0]);
|
2005-07-25 15:05:34 +00:00
|
|
|
ATermList list = evalList(state, args[1]);
|
2004-08-04 11:27:53 +00:00
|
|
|
|
2005-07-25 15:05:34 +00:00
|
|
|
ATermList res = ATempty;
|
|
|
|
for (ATermIterator i(list); i; ++i)
|
|
|
|
res = ATinsert(res, makeCall(fun, *i));
|
2004-08-04 11:27:53 +00:00
|
|
|
|
2005-07-25 15:05:34 +00:00
|
|
|
return makeList(ATreverse(res));
|
2004-08-04 10:59:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2008-07-11 13:29:04 +00:00
|
|
|
/* Return the length of a list. This is an O(1) time operation. */
|
|
|
|
static Expr prim_length(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
|
|
|
ATermList list = evalList(state, args[0]);
|
|
|
|
return makeInt(ATgetLength(list));
|
|
|
|
}
|
2010-03-29 14:37:56 +00:00
|
|
|
#endif
|
2008-07-11 13:29:04 +00:00
|
|
|
|
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
/*************************************************************
|
|
|
|
* Integer arithmetic
|
|
|
|
*************************************************************/
|
2005-08-14 14:00:39 +00:00
|
|
|
|
|
|
|
|
2010-03-29 14:37:56 +00:00
|
|
|
static void prim_add(EvalState & state, Value * * args, Value & v)
|
2006-09-22 15:29:21 +00:00
|
|
|
{
|
2010-03-29 14:37:56 +00:00
|
|
|
mkInt(v, state.forceInt(*args[0]) + state.forceInt(*args[1]));
|
2006-09-22 15:29:21 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2010-03-29 14:37:56 +00:00
|
|
|
#if 0
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_sub(EvalState & state, const ATermVector & args)
|
2007-01-29 14:23:09 +00:00
|
|
|
{
|
|
|
|
int i1 = evalInt(state, args[0]);
|
|
|
|
int i2 = evalInt(state, args[1]);
|
|
|
|
return makeInt(i1 - i2);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2008-07-11 13:29:04 +00:00
|
|
|
static Expr prim_mul(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
|
|
|
int i1 = evalInt(state, args[0]);
|
|
|
|
int i2 = evalInt(state, args[1]);
|
|
|
|
return makeInt(i1 * i2);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static Expr prim_div(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
|
|
|
int i1 = evalInt(state, args[0]);
|
|
|
|
int i2 = evalInt(state, args[1]);
|
|
|
|
if (i2 == 0) throw EvalError("division by zero");
|
|
|
|
return makeInt(i1 / i2);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-01-29 15:15:37 +00:00
|
|
|
static Expr prim_lessThan(EvalState & state, const ATermVector & args)
|
2006-09-24 15:21:48 +00:00
|
|
|
{
|
|
|
|
int i1 = evalInt(state, args[0]);
|
|
|
|
int i2 = evalInt(state, args[1]);
|
|
|
|
return makeBool(i1 < i2);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-01-29 14:23:09 +00:00
|
|
|
/*************************************************************
|
|
|
|
* String manipulation
|
|
|
|
*************************************************************/
|
|
|
|
|
|
|
|
|
2007-01-29 15:15:37 +00:00
|
|
|
/* Convert the argument to a string. Paths are *not* copied to the
|
|
|
|
store, so `toString /foo/bar' yields `"/foo/bar"', not
|
|
|
|
`"/nix/store/whatever..."'. */
|
|
|
|
static Expr prim_toString(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
|
|
|
PathSet context;
|
|
|
|
string s = coerceToString(state, args[0], context, true, false);
|
|
|
|
return makeStr(s, context);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-12-31 00:08:09 +00:00
|
|
|
/* `substring start len str' returns the substring of `str' starting
|
|
|
|
at character position `min(start, stringLength str)' inclusive and
|
2007-01-29 14:23:09 +00:00
|
|
|
ending at `min(start + len, stringLength str)'. `start' must be
|
|
|
|
non-negative. */
|
|
|
|
static Expr prim_substring(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
|
|
|
int start = evalInt(state, args[0]);
|
|
|
|
int len = evalInt(state, args[1]);
|
|
|
|
PathSet context;
|
|
|
|
string s = coerceToString(state, args[2], context);
|
|
|
|
|
|
|
|
if (start < 0) throw EvalError("negative start position in `substring'");
|
|
|
|
|
|
|
|
return makeStr(string(s, start, len), context);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static Expr prim_stringLength(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
|
|
|
PathSet context;
|
|
|
|
string s = coerceToString(state, args[0], context);
|
|
|
|
return makeInt(s.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2008-01-04 14:22:49 +00:00
|
|
|
static Expr prim_unsafeDiscardStringContext(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
|
|
|
PathSet context;
|
|
|
|
string s = coerceToString(state, args[0], context);
|
|
|
|
return makeStr(s, PathSet());
|
|
|
|
}
|
|
|
|
|
2008-01-20 20:44:03 +00:00
|
|
|
|
2009-10-21 15:05:30 +00:00
|
|
|
/* Sometimes we want to pass a derivation path (i.e. pkg.drvPath) to a
|
|
|
|
builder without causing the derivation to be built (for instance,
|
|
|
|
in the derivation that builds NARs in nix-push, when doing
|
|
|
|
source-only deployment). This primop marks the string context so
|
|
|
|
that builtins.derivation adds the path to drv.inputSrcs rather than
|
|
|
|
drv.inputDrvs. */
|
|
|
|
static Expr prim_unsafeDiscardOutputDependency(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
|
|
|
PathSet context;
|
|
|
|
string s = coerceToString(state, args[0], context);
|
|
|
|
|
|
|
|
PathSet context2;
|
|
|
|
foreach (PathSet::iterator, i, context) {
|
|
|
|
Path p = *i;
|
|
|
|
if (p.at(0) == '=') p = "~" + string(p, 1);
|
|
|
|
context2.insert(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
return makeStr(s, context2);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2008-07-01 10:10:32 +00:00
|
|
|
/* Expression serialization/deserialization */
|
|
|
|
|
|
|
|
|
|
|
|
static Expr prim_exprToString(EvalState & state, const ATermVector & args)
|
2008-01-15 04:32:08 +00:00
|
|
|
{
|
2008-07-01 10:10:32 +00:00
|
|
|
/* !!! this disregards context */
|
|
|
|
return makeStr(atPrint(evalExpr(state, args[0])));
|
2008-01-15 04:32:08 +00:00
|
|
|
}
|
|
|
|
|
2008-07-01 10:10:32 +00:00
|
|
|
|
|
|
|
static Expr prim_stringToExpr(EvalState & state, const ATermVector & args)
|
2008-01-15 04:32:08 +00:00
|
|
|
{
|
2008-07-01 10:10:32 +00:00
|
|
|
/* !!! this can introduce arbitrary garbage terms in the
|
|
|
|
evaluator! */;
|
|
|
|
string s;
|
|
|
|
PathSet l;
|
|
|
|
if (!matchStr(evalExpr(state, args[0]), s, l))
|
|
|
|
throw EvalError("stringToExpr needs string argument!");
|
|
|
|
return ATreadFromString(s.c_str());
|
2008-01-15 04:32:08 +00:00
|
|
|
}
|
2008-01-04 14:22:49 +00:00
|
|
|
|
2008-07-01 10:10:32 +00:00
|
|
|
|
|
|
|
/*************************************************************
|
|
|
|
* Versions
|
|
|
|
*************************************************************/
|
|
|
|
|
|
|
|
|
|
|
|
static Expr prim_parseDrvName(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
|
|
|
string name = evalStringNoCtx(state, args[0]);
|
|
|
|
DrvName parsed(name);
|
|
|
|
ATermMap attrs(2);
|
|
|
|
attrs.set(toATerm("name"), makeAttrRHS(makeStr(parsed.name), makeNoPos()));
|
|
|
|
attrs.set(toATerm("version"), makeAttrRHS(makeStr(parsed.version), makeNoPos()));
|
|
|
|
return makeAttrs(attrs);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static Expr prim_compareVersions(EvalState & state, const ATermVector & args)
|
|
|
|
{
|
|
|
|
string version1 = evalStringNoCtx(state, args[0]);
|
|
|
|
string version2 = evalStringNoCtx(state, args[1]);
|
|
|
|
int d = compareVersions(version1, version2);
|
|
|
|
return makeInt(d);
|
|
|
|
}
|
2010-03-29 14:37:56 +00:00
|
|
|
#endif
|
2008-07-01 10:10:32 +00:00
|
|
|
|
|
|
|
|
2007-01-29 15:15:37 +00:00
|
|
|
/*************************************************************
|
|
|
|
* Primop registration
|
|
|
|
*************************************************************/
|
|
|
|
|
|
|
|
|
2010-03-29 14:37:56 +00:00
|
|
|
void EvalState::createBaseEnv()
|
2004-08-04 10:59:20 +00:00
|
|
|
{
|
2010-03-29 14:37:56 +00:00
|
|
|
baseEnv.up = 0;
|
|
|
|
|
|
|
|
{ Value & v = baseEnv.bindings[toATerm("builtins")];
|
|
|
|
v.type = tAttrs;
|
|
|
|
v.attrs = new Bindings;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Add global constants such as `true' to the base environment. */
|
|
|
|
{ Value & v = baseEnv.bindings[toATerm("true")];
|
|
|
|
mkBool(v, true);
|
|
|
|
}
|
|
|
|
{ Value & v = baseEnv.bindings[toATerm("false")];
|
|
|
|
mkBool(v, false);
|
|
|
|
}
|
|
|
|
{ Value & v = baseEnv.bindings[toATerm("null")];
|
|
|
|
v.type = tNull;
|
|
|
|
}
|
|
|
|
{ Value & v = (*baseEnv.bindings[toATerm("builtins")].attrs)[toATerm("currentSystem")];
|
|
|
|
mkString(v, thisSystem.c_str()); // !!! copy string
|
|
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
2007-01-29 15:11:32 +00:00
|
|
|
// Constants
|
2007-01-29 15:15:37 +00:00
|
|
|
addPrimOp("__currentSystem", 0, prim_currentSystem);
|
|
|
|
addPrimOp("__currentTime", 0, prim_currentTime);
|
2004-08-04 10:59:20 +00:00
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
// Miscellaneous
|
2007-01-29 15:15:37 +00:00
|
|
|
addPrimOp("import", 1, prim_import);
|
|
|
|
addPrimOp("isNull", 1, prim_isNull);
|
2007-05-16 16:17:04 +00:00
|
|
|
addPrimOp("__isFunction", 1, prim_isFunction);
|
2009-02-05 19:35:40 +00:00
|
|
|
addPrimOp("__isString", 1, prim_isString);
|
|
|
|
addPrimOp("__isInt", 1, prim_isInt);
|
|
|
|
addPrimOp("__isBool", 1, prim_isBool);
|
2008-07-11 13:29:04 +00:00
|
|
|
addPrimOp("__genericClosure", 1, prim_genericClosure);
|
2007-01-29 15:15:37 +00:00
|
|
|
addPrimOp("abort", 1, prim_abort);
|
2007-04-16 15:03:19 +00:00
|
|
|
addPrimOp("throw", 1, prim_throw);
|
2009-01-27 14:36:44 +00:00
|
|
|
addPrimOp("__addErrorContext", 2, prim_addErrorContext);
|
2009-08-25 16:06:46 +00:00
|
|
|
addPrimOp("__tryEval", 1, prim_tryEval);
|
2007-01-29 15:15:37 +00:00
|
|
|
addPrimOp("__getEnv", 1, prim_getEnv);
|
2007-08-18 22:12:00 +00:00
|
|
|
addPrimOp("__trace", 2, prim_trace);
|
2008-01-15 04:32:08 +00:00
|
|
|
|
|
|
|
// Expr <-> String
|
2008-07-01 10:10:32 +00:00
|
|
|
addPrimOp("__exprToString", 1, prim_exprToString);
|
|
|
|
addPrimOp("__stringToExpr", 1, prim_stringToExpr);
|
2004-08-04 11:27:53 +00:00
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
// Derivations
|
2007-01-29 15:15:37 +00:00
|
|
|
addPrimOp("derivation!", 1, prim_derivationStrict);
|
|
|
|
addPrimOp("derivation", 1, prim_derivationLazy);
|
2007-01-29 15:11:32 +00:00
|
|
|
|
|
|
|
// Paths
|
2007-01-29 15:15:37 +00:00
|
|
|
addPrimOp("__toPath", 1, prim_toPath);
|
2008-11-19 23:26:19 +00:00
|
|
|
addPrimOp("__storePath", 1, prim_storePath);
|
2007-01-29 15:15:37 +00:00
|
|
|
addPrimOp("__pathExists", 1, prim_pathExists);
|
|
|
|
addPrimOp("baseNameOf", 1, prim_baseNameOf);
|
|
|
|
addPrimOp("dirOf", 1, prim_dirOf);
|
2007-11-21 13:49:59 +00:00
|
|
|
addPrimOp("__readFile", 1, prim_readFile);
|
2007-01-29 15:11:32 +00:00
|
|
|
|
|
|
|
// Creating files
|
2007-01-29 15:15:37 +00:00
|
|
|
addPrimOp("__toXML", 1, prim_toXML);
|
|
|
|
addPrimOp("__toFile", 2, prim_toFile);
|
|
|
|
addPrimOp("__filterSource", 2, prim_filterSource);
|
2007-01-29 15:11:32 +00:00
|
|
|
|
|
|
|
// Attribute sets
|
2007-01-29 15:15:37 +00:00
|
|
|
addPrimOp("__attrNames", 1, prim_attrNames);
|
|
|
|
addPrimOp("__getAttr", 2, prim_getAttr);
|
|
|
|
addPrimOp("__hasAttr", 2, prim_hasAttr);
|
2007-08-18 22:12:00 +00:00
|
|
|
addPrimOp("__isAttrs", 1, prim_isAttrs);
|
2007-01-29 15:15:37 +00:00
|
|
|
addPrimOp("removeAttrs", 2, prim_removeAttrs);
|
2007-08-18 22:12:00 +00:00
|
|
|
addPrimOp("__listToAttrs", 1, prim_listToAttrs);
|
* Two primops: builtins.intersectAttrs and builtins.functionArgs.
intersectAttrs returns the (right-biased) intersection between two
attribute sets, e.g. every attribute from the second set that also
exists in the first. functionArgs returns the set of attributes
expected by a function.
The main goal of these is to allow the elimination of most of
all-packages.nix. Most package instantiations in all-packages.nix
have this form:
foo = import ./foo.nix {
inherit a b c;
};
With intersectAttrs and functionArgs, this can be written as:
foo = callPackage (import ./foo.nix) { };
where
callPackage = f: args:
f ((builtins.intersectAttrs (builtins.functionArgs f) pkgs) // args);
I.e., foo.nix is called with all attributes from "pkgs" that it
actually needs (e.g., pkgs.a, pkgs.b and pkgs.c). (callPackage can
do any other generic package-level stuff we might want, such as
applying makeOverridable.) Of course, the automatically supplied
arguments can be overriden if needed, e.g.
foo = callPackage (import ./foo.nix) {
c = c_version_2;
};
but for the vast majority of packages, this won't be needed.
The advantages are to reduce the amount of typing needed to add a
dependency (from three sites to two), and to reduce the number of
trivial commits to all-packages.nix. For the former, there have
been two previous attempts:
- Use "args: with args;" in the package's function definition.
This however obscures the actual expected arguments of a
function, which is very bad.
- Use "{ arg1, arg2, ... }:" in the package's function definition
(i.e. use the ellipis "..." to allow arbitrary additional
arguments), and then call the function with all of "pkgs" as an
argument. But this inhibits error detection if you call it with
an misspelled (or obsolete) argument.
2009-09-15 13:01:46 +00:00
|
|
|
addPrimOp("__intersectAttrs", 2, prim_intersectAttrs);
|
|
|
|
addPrimOp("__functionArgs", 1, prim_functionArgs);
|
2007-01-29 15:11:32 +00:00
|
|
|
|
|
|
|
// Lists
|
2007-01-29 15:15:37 +00:00
|
|
|
addPrimOp("__isList", 1, prim_isList);
|
2010-03-29 14:37:56 +00:00
|
|
|
#endif
|
2007-01-29 15:15:37 +00:00
|
|
|
addPrimOp("__head", 1, prim_head);
|
2010-03-29 14:37:56 +00:00
|
|
|
#if 0
|
2007-01-29 15:15:37 +00:00
|
|
|
addPrimOp("__tail", 1, prim_tail);
|
|
|
|
addPrimOp("map", 2, prim_map);
|
2008-07-11 13:29:04 +00:00
|
|
|
addPrimOp("__length", 1, prim_length);
|
2010-03-29 14:37:56 +00:00
|
|
|
#endif
|
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
// Integer arithmetic
|
2007-01-29 15:15:37 +00:00
|
|
|
addPrimOp("__add", 2, prim_add);
|
2010-03-29 14:37:56 +00:00
|
|
|
#if 0
|
2007-01-29 15:15:37 +00:00
|
|
|
addPrimOp("__sub", 2, prim_sub);
|
2008-07-11 13:29:04 +00:00
|
|
|
addPrimOp("__mul", 2, prim_mul);
|
|
|
|
addPrimOp("__div", 2, prim_div);
|
2007-01-29 15:15:37 +00:00
|
|
|
addPrimOp("__lessThan", 2, prim_lessThan);
|
2007-01-29 14:23:09 +00:00
|
|
|
|
2007-01-29 15:11:32 +00:00
|
|
|
// String manipulation
|
2007-01-29 15:15:37 +00:00
|
|
|
addPrimOp("toString", 1, prim_toString);
|
2007-01-29 14:23:09 +00:00
|
|
|
addPrimOp("__substring", 3, prim_substring);
|
|
|
|
addPrimOp("__stringLength", 1, prim_stringLength);
|
2008-01-04 14:22:49 +00:00
|
|
|
addPrimOp("__unsafeDiscardStringContext", 1, prim_unsafeDiscardStringContext);
|
2009-10-21 15:05:30 +00:00
|
|
|
addPrimOp("__unsafeDiscardOutputDependency", 1, prim_unsafeDiscardOutputDependency);
|
2008-07-01 10:10:32 +00:00
|
|
|
|
|
|
|
// Versions
|
|
|
|
addPrimOp("__parseDrvName", 1, prim_parseDrvName);
|
|
|
|
addPrimOp("__compareVersions", 2, prim_compareVersions);
|
2010-03-29 14:37:56 +00:00
|
|
|
#endif
|
2004-08-04 10:59:20 +00:00
|
|
|
}
|
2006-09-04 21:06:23 +00:00
|
|
|
|
2007-01-29 14:23:09 +00:00
|
|
|
|
2006-09-04 21:06:23 +00:00
|
|
|
}
|