lix-releng-staging/src/libexpr/nixexpr.cc

439 lines
9.2 KiB
C++
Raw Normal View History

#include "nixexpr.hh"
#include "derivations.hh"
#include "util.hh"
#include <cstdlib>
namespace nix {
/* Displaying abstract syntax trees. */
std::ostream & operator << (std::ostream & str, Expr & e)
{
e.show(str);
return str;
}
2014-10-20 06:44:32 +00:00
static void showString(std::ostream & str, const string & s)
{
str << '"';
for (auto c : (string) s)
if (c == '"' || c == '\\' || c == '$') str << "\\" << c;
else if (c == '\n') str << "\\n";
else if (c == '\r') str << "\\r";
else if (c == '\t') str << "\\t";
else str << c;
str << '"';
}
static void showId(std::ostream & str, const string & s)
{
if (s.empty())
str << "\"\"";
else if (s == "if") // FIXME: handle other keywords
2014-10-20 06:44:32 +00:00
str << '"' << s << '"';
else {
char c = s[0];
if (!((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '_')) {
showString(str, s);
return;
}
for (auto c : s)
if (!((c >= 'a' && c <= 'z') ||
(c >= 'A' && c <= 'Z') ||
(c >= '0' && c <= '9') ||
c == '_' || c == '\'' || c == '-')) {
showString(str, s);
return;
}
str << s;
}
}
std::ostream & operator << (std::ostream & str, const Symbol & sym)
{
showId(str, *sym.s);
return str;
}
2010-04-12 22:03:27 +00:00
void Expr::show(std::ostream & str)
{
abort();
}
void ExprInt::show(std::ostream & str)
{
str << n;
}
void ExprFloat::show(std::ostream & str)
{
str << nf;
}
void ExprString::show(std::ostream & str)
{
2014-10-20 06:44:32 +00:00
showString(str, s);
}
void ExprPath::show(std::ostream & str)
{
str << s;
}
void ExprVar::show(std::ostream & str)
{
2013-10-08 12:24:53 +00:00
str << name;
}
void ExprSelect::show(std::ostream & str)
{
str << "(" << *e << ")." << showAttrPath(attrPath);
2014-10-20 06:44:32 +00:00
if (def) str << " or (" << *def << ")";
}
2010-04-12 21:21:24 +00:00
void ExprOpHasAttr::show(std::ostream & str)
{
2014-10-20 06:44:32 +00:00
str << "((" << *e << ") ? " << showAttrPath(attrPath) << ")";
2010-04-12 21:21:24 +00:00
}
void ExprAttrs::show(std::ostream & str)
{
if (recursive) str << "rec ";
str << "{ ";
2015-07-17 17:24:28 +00:00
for (auto & i : attrs)
if (i.second.inherited)
str << "inherit " << i.first << " " << "; ";
else
2015-07-17 17:24:28 +00:00
str << i.first << " = " << *i.second.e << "; ";
for (auto & i : dynamicAttrs)
str << "\"${" << *i.nameExpr << "}\" = " << *i.valueExpr << "; ";
str << "}";
}
void ExprList::show(std::ostream & str)
{
str << "[ ";
2015-07-17 17:24:28 +00:00
for (auto & i : elems)
str << "(" << *i << ") ";
str << "]";
}
void ExprLambda::show(std::ostream & str)
{
str << "(";
if (matchAttrs) {
str << "{ ";
bool first = true;
2015-07-17 17:24:28 +00:00
for (auto & i : formals->formals) {
if (first) first = false; else str << ", ";
2015-07-17 17:24:28 +00:00
str << i.name;
if (i.def) str << " ? " << *i.def;
}
2014-10-20 06:44:32 +00:00
if (formals->ellipsis) {
if (!first) str << ", ";
str << "...";
}
str << " }";
if (!arg.empty()) str << " @ ";
}
if (!arg.empty()) str << arg;
str << ": " << *body << ")";
}
void ExprLet::show(std::ostream & str)
{
2014-10-20 06:44:32 +00:00
str << "(let ";
2015-07-17 17:24:28 +00:00
for (auto & i : attrs->attrs)
if (i.second.inherited) {
str << "inherit " << i.first << "; ";
2014-10-20 06:44:32 +00:00
}
else
2015-07-17 17:24:28 +00:00
str << i.first << " = " << *i.second.e << "; ";
2014-10-20 06:44:32 +00:00
str << "in " << *body << ")";
}
void ExprWith::show(std::ostream & str)
{
2014-10-20 06:44:32 +00:00
str << "(with " << *attrs << "; " << *body << ")";
}
void ExprIf::show(std::ostream & str)
{
2014-10-20 06:44:32 +00:00
str << "(if " << *cond << " then " << *then << " else " << *else_ << ")";
}
2010-04-12 21:21:24 +00:00
void ExprAssert::show(std::ostream & str)
{
str << "assert " << *cond << "; " << *body;
}
2010-04-12 21:21:24 +00:00
void ExprOpNot::show(std::ostream & str)
{
2014-10-20 06:44:32 +00:00
str << "(! " << *e << ")";
2010-04-12 21:21:24 +00:00
}
void ExprConcatStrings::show(std::ostream & str)
{
bool first = true;
2014-10-20 06:44:32 +00:00
str << "(";
2015-07-17 17:24:28 +00:00
for (auto & i : *es) {
2010-04-12 21:21:24 +00:00
if (first) first = false; else str << " + ";
2015-07-17 17:24:28 +00:00
str << *i;
2010-04-12 21:21:24 +00:00
}
2014-10-20 06:44:32 +00:00
str << ")";
2010-04-12 21:21:24 +00:00
}
void ExprPos::show(std::ostream & str)
{
str << "__curPos";
}
2010-04-12 21:21:24 +00:00
std::ostream & operator << (std::ostream & str, const Pos & pos)
{
2014-04-04 19:14:11 +00:00
if (!pos)
2010-04-12 21:21:24 +00:00
str << "undefined position";
else
str << (format(ANSI_BOLD "%1%" ANSI_NORMAL ":%2%:%3%") % (string) pos.file % pos.line % pos.column).str();
2010-04-12 21:21:24 +00:00
return str;
}
string showAttrPath(const AttrPath & attrPath)
{
std::ostringstream out;
bool first = true;
2015-03-06 13:24:08 +00:00
for (auto & i : attrPath) {
if (!first) out << '.'; else first = false;
if (i.symbol.set())
out << i.symbol;
else
2015-03-06 13:24:08 +00:00
out << "\"${" << *i.expr << "}\"";
}
return out.str();
}
Pos noPos;
/* Computing levels/displacements for variables. */
void Expr::bindVars(const StaticEnv & env)
{
abort();
}
void ExprInt::bindVars(const StaticEnv & env)
{
}
void ExprFloat::bindVars(const StaticEnv & env)
{
}
void ExprString::bindVars(const StaticEnv & env)
{
}
void ExprPath::bindVars(const StaticEnv & env)
{
}
2013-10-08 12:24:53 +00:00
void ExprVar::bindVars(const StaticEnv & env)
{
/* Check whether the variable appears in the environment. If so,
set its level and displacement. */
const StaticEnv * curEnv;
unsigned int level;
int withLevel = -1;
for (curEnv = &env, level = 0; curEnv; curEnv = curEnv->up, level++) {
if (curEnv->isWith) {
if (withLevel == -1) withLevel = level;
} else {
StaticEnv::Vars::const_iterator i = curEnv->vars.find(name);
if (i != curEnv->vars.end()) {
fromWith = false;
this->level = level;
displ = i->second;
return;
}
}
}
/* Otherwise, the variable must be obtained from the nearest
enclosing `with'. If there is no `with', then we can issue an
"undefined variable" error now. */
if (withLevel == -1) throw UndefinedVarError(format("undefined variable '%1%' at %2%") % name % pos);
fromWith = true;
this->level = withLevel;
}
void ExprSelect::bindVars(const StaticEnv & env)
{
e->bindVars(env);
if (def) def->bindVars(env);
2015-07-17 17:24:28 +00:00
for (auto & i : attrPath)
if (!i.symbol.set())
i.expr->bindVars(env);
}
void ExprOpHasAttr::bindVars(const StaticEnv & env)
{
e->bindVars(env);
2015-07-17 17:24:28 +00:00
for (auto & i : attrPath)
if (!i.symbol.set())
i.expr->bindVars(env);
}
void ExprAttrs::bindVars(const StaticEnv & env)
{
const StaticEnv * dynamicEnv = &env;
StaticEnv newEnv(false, &env);
if (recursive) {
Dynamic attrs This adds new syntax for attribute names: * attrs."${name}" => getAttr name attrs * attrs ? "${name}" => isAttrs attrs && hasAttr attrs name * attrs."${name}" or def => if attrs ? "${name}" then attrs."${name}" else def * { "${name}" = value; } => listToAttrs [{ inherit name value; }] Of course, it's a bit more complicated than that. The attribute chains can be arbitrarily long and contain combinations of static and dynamic parts (e.g. attrs."${foo}".bar."${baz}" or qux), which is relatively straightforward for the getAttrs/hasAttrs cases but is more complex for the listToAttrs case due to rules about duplicate attribute definitions. For attribute sets with dynamic attribute names, duplicate static attributes are detected at parse time while duplicate dynamic attributes are detected when the attribute set is forced. So, for example, { a = null; a.b = null; "${"c"}" = true; } will be a parse-time error, while { a = {}; "${"a"}".b = null; c = true; } will be an eval-time error (technically that case could theoretically be detected at parse time, but the general case would require full evaluation). Moreover, duplicate dynamic attributes are not allowed even in cases where they would be with static attributes ({ a.b.d = true; a.b.c = false; } is legal, but { a."${"b"}".d = true; a."${"b"}".c = false; } is not). This restriction might be relaxed in the future in cases where the static variant would not be an error, but it is not obvious that that is desirable. Finally, recursive attribute sets with dynamic attributes have the static attributes in scope but not the dynamic ones. So rec { a = true; "${"b"}" = a; } is equivalent to { a = true; b = true; } but rec { "${"a"}" = true; b = a; } would be an error or use a from the surrounding scope if it exists. Note that the getAttr, getAttr or default, and hasAttr are all implemented purely in the parser as syntactic sugar, while attribute sets with dynamic attribute names required changes to the AST to be implemented cleanly. This is an alternative solution to and closes #167 Signed-off-by: Shea Levy <shea@shealevy.com>
2013-09-21 03:25:30 +00:00
dynamicEnv = &newEnv;
2013-09-02 14:29:15 +00:00
unsigned int displ = 0;
2015-07-17 17:24:28 +00:00
for (auto & i : attrs)
newEnv.vars[i.first] = i.second.displ = displ++;
2013-09-02 14:29:15 +00:00
2015-07-17 17:24:28 +00:00
for (auto & i : attrs)
i.second.e->bindVars(i.second.inherited ? env : newEnv);
}
else
2015-07-17 17:24:28 +00:00
for (auto & i : attrs)
i.second.e->bindVars(env);
Dynamic attrs This adds new syntax for attribute names: * attrs."${name}" => getAttr name attrs * attrs ? "${name}" => isAttrs attrs && hasAttr attrs name * attrs."${name}" or def => if attrs ? "${name}" then attrs."${name}" else def * { "${name}" = value; } => listToAttrs [{ inherit name value; }] Of course, it's a bit more complicated than that. The attribute chains can be arbitrarily long and contain combinations of static and dynamic parts (e.g. attrs."${foo}".bar."${baz}" or qux), which is relatively straightforward for the getAttrs/hasAttrs cases but is more complex for the listToAttrs case due to rules about duplicate attribute definitions. For attribute sets with dynamic attribute names, duplicate static attributes are detected at parse time while duplicate dynamic attributes are detected when the attribute set is forced. So, for example, { a = null; a.b = null; "${"c"}" = true; } will be a parse-time error, while { a = {}; "${"a"}".b = null; c = true; } will be an eval-time error (technically that case could theoretically be detected at parse time, but the general case would require full evaluation). Moreover, duplicate dynamic attributes are not allowed even in cases where they would be with static attributes ({ a.b.d = true; a.b.c = false; } is legal, but { a."${"b"}".d = true; a."${"b"}".c = false; } is not). This restriction might be relaxed in the future in cases where the static variant would not be an error, but it is not obvious that that is desirable. Finally, recursive attribute sets with dynamic attributes have the static attributes in scope but not the dynamic ones. So rec { a = true; "${"b"}" = a; } is equivalent to { a = true; b = true; } but rec { "${"a"}" = true; b = a; } would be an error or use a from the surrounding scope if it exists. Note that the getAttr, getAttr or default, and hasAttr are all implemented purely in the parser as syntactic sugar, while attribute sets with dynamic attribute names required changes to the AST to be implemented cleanly. This is an alternative solution to and closes #167 Signed-off-by: Shea Levy <shea@shealevy.com>
2013-09-21 03:25:30 +00:00
2015-07-17 17:24:28 +00:00
for (auto & i : dynamicAttrs) {
i.nameExpr->bindVars(*dynamicEnv);
i.valueExpr->bindVars(*dynamicEnv);
Dynamic attrs This adds new syntax for attribute names: * attrs."${name}" => getAttr name attrs * attrs ? "${name}" => isAttrs attrs && hasAttr attrs name * attrs."${name}" or def => if attrs ? "${name}" then attrs."${name}" else def * { "${name}" = value; } => listToAttrs [{ inherit name value; }] Of course, it's a bit more complicated than that. The attribute chains can be arbitrarily long and contain combinations of static and dynamic parts (e.g. attrs."${foo}".bar."${baz}" or qux), which is relatively straightforward for the getAttrs/hasAttrs cases but is more complex for the listToAttrs case due to rules about duplicate attribute definitions. For attribute sets with dynamic attribute names, duplicate static attributes are detected at parse time while duplicate dynamic attributes are detected when the attribute set is forced. So, for example, { a = null; a.b = null; "${"c"}" = true; } will be a parse-time error, while { a = {}; "${"a"}".b = null; c = true; } will be an eval-time error (technically that case could theoretically be detected at parse time, but the general case would require full evaluation). Moreover, duplicate dynamic attributes are not allowed even in cases where they would be with static attributes ({ a.b.d = true; a.b.c = false; } is legal, but { a."${"b"}".d = true; a."${"b"}".c = false; } is not). This restriction might be relaxed in the future in cases where the static variant would not be an error, but it is not obvious that that is desirable. Finally, recursive attribute sets with dynamic attributes have the static attributes in scope but not the dynamic ones. So rec { a = true; "${"b"}" = a; } is equivalent to { a = true; b = true; } but rec { "${"a"}" = true; b = a; } would be an error or use a from the surrounding scope if it exists. Note that the getAttr, getAttr or default, and hasAttr are all implemented purely in the parser as syntactic sugar, while attribute sets with dynamic attribute names required changes to the AST to be implemented cleanly. This is an alternative solution to and closes #167 Signed-off-by: Shea Levy <shea@shealevy.com>
2013-09-21 03:25:30 +00:00
}
}
void ExprList::bindVars(const StaticEnv & env)
{
2015-07-17 17:24:28 +00:00
for (auto & i : elems)
i->bindVars(env);
}
void ExprLambda::bindVars(const StaticEnv & env)
{
StaticEnv newEnv(false, &env);
2013-09-02 14:29:15 +00:00
unsigned int displ = 0;
2013-09-02 14:29:15 +00:00
if (!arg.empty()) newEnv.vars[arg] = displ++;
if (matchAttrs) {
2015-07-17 17:24:28 +00:00
for (auto & i : formals->formals)
newEnv.vars[i.name] = displ++;
2015-07-17 17:24:28 +00:00
for (auto & i : formals->formals)
if (i.def) i.def->bindVars(newEnv);
}
body->bindVars(newEnv);
}
void ExprLet::bindVars(const StaticEnv & env)
{
StaticEnv newEnv(false, &env);
2013-09-02 14:29:15 +00:00
unsigned int displ = 0;
2015-07-17 17:24:28 +00:00
for (auto & i : attrs->attrs)
newEnv.vars[i.first] = i.second.displ = displ++;
2013-09-02 14:29:15 +00:00
2015-07-17 17:24:28 +00:00
for (auto & i : attrs->attrs)
i.second.e->bindVars(i.second.inherited ? env : newEnv);
2013-09-02 14:29:15 +00:00
body->bindVars(newEnv);
}
void ExprWith::bindVars(const StaticEnv & env)
{
2010-04-14 15:01:04 +00:00
/* Does this `with' have an enclosing `with'? If so, record its
level so that `lookupVar' can look up variables in the previous
`with' if this one doesn't contain the desired attribute. */
2010-04-14 15:01:04 +00:00
const StaticEnv * curEnv;
unsigned int level;
prevWith = 0;
for (curEnv = &env, level = 1; curEnv; curEnv = curEnv->up, level++)
2010-04-14 15:01:04 +00:00
if (curEnv->isWith) {
prevWith = level;
break;
}
2013-09-02 14:29:15 +00:00
attrs->bindVars(env);
StaticEnv newEnv(true, &env);
body->bindVars(newEnv);
}
void ExprIf::bindVars(const StaticEnv & env)
{
cond->bindVars(env);
then->bindVars(env);
else_->bindVars(env);
}
void ExprAssert::bindVars(const StaticEnv & env)
{
cond->bindVars(env);
body->bindVars(env);
}
void ExprOpNot::bindVars(const StaticEnv & env)
{
e->bindVars(env);
}
void ExprConcatStrings::bindVars(const StaticEnv & env)
{
2015-07-17 17:24:28 +00:00
for (auto & i : *es)
i->bindVars(env);
}
void ExprPos::bindVars(const StaticEnv & env)
{
}
/* Storing function names. */
void Expr::setName(Symbol & name)
{
}
void ExprLambda::setName(Symbol & name)
{
this->name = name;
body->setName(name);
}
2013-11-07 17:04:36 +00:00
string ExprLambda::showNamePos() const
{
return (format("%1% at %2%") % (name.set() ? "'" + (string) name + "'" : "anonymous function") % pos).str();
}
/* Symbol table. */
size_t SymbolTable::totalSize() const
{
size_t n = 0;
2015-07-17 17:24:28 +00:00
for (auto & i : symbols)
n += i.size();
return n;
}
}