lix-releng-staging/src/libexpr/primops.cc

999 lines
31 KiB
C++
Raw Normal View History

#include "misc.hh"
#include "eval.hh"
#include "globals.hh"
#include "store-api.hh"
#include "util.hh"
#include "archive.hh"
#include "expr-to-xml.hh"
#include "nixexpr-ast.hh"
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <algorithm>
namespace nix {
2007-01-29 15:11:32 +00:00
/*************************************************************
* Constants
*************************************************************/
static Expr prim_builtins(EvalState & state, const ATermVector & args)
{
/* Return an attribute set containing all primops. This allows
Nix expressions to test for new primops and take appropriate
action if they're not available. For instance, rather than
calling a primop `foo' directly, they could say `if builtins ?
foo then builtins.foo ... else ...'. */
2007-01-13 14:21:49 +00:00
ATermMap builtins(state.primOps.size());
for (ATermMap::const_iterator i = state.primOps.begin();
i != state.primOps.end(); ++i)
{
string name = aterm2String(i->key);
if (string(name, 0, 2) == "__")
name = string(name, 2);
/* !!! should use makePrimOp here, I guess. */
builtins.set(toATerm(name), makeAttrRHS(makeVar(i->key), makeNoPos()));
}
return makeAttrs(builtins);
}
2007-01-29 15:11:32 +00:00
/* Boolean constructors. */
static Expr prim_true(EvalState & state, const ATermVector & args)
2007-01-29 15:11:32 +00:00
{
return eTrue;
}
static Expr prim_false(EvalState & state, const ATermVector & args)
2007-01-29 15:11:32 +00:00
{
return eFalse;
}
/* Return the null value. */
static Expr prim_null(EvalState & state, const ATermVector & args)
2007-01-29 15:11:32 +00:00
{
return makeNull();
}
/* Return a string constant representing the current platform. Note!
that differs between platforms, so Nix expressions using
`__currentSystem' can evaluate to different values on different
platforms. */
static Expr prim_currentSystem(EvalState & state, const ATermVector & args)
2007-01-29 15:11:32 +00:00
{
return makeStr(thisSystem);
}
static Expr prim_currentTime(EvalState & state, const ATermVector & args)
2007-01-29 15:11:32 +00:00
{
return ATmake("Int(<int>)", time(0));
}
/*************************************************************
* Miscellaneous
*************************************************************/
/* Load and evaluate an expression from path specified by the
argument. */
static Expr prim_import(EvalState & state, const ATermVector & args)
{
PathSet context;
Path path = coerceToPath(state, args[0], context);
2006-11-03 16:17:39 +00:00
for (PathSet::iterator i = context.begin(); i != context.end(); ++i) {
assert(isStorePath(*i));
if (!store->isValidPath(*i))
2006-11-03 16:17:39 +00:00
throw EvalError(format("cannot import `%1%', since path `%2%' is not valid")
% path % *i);
if (isDerivation(*i))
2006-11-30 18:02:04 +00:00
store->buildDerivations(singleton<PathSet>(*i));
2006-11-03 16:17:39 +00:00
}
return evalFile(state, path);
}
2007-01-29 15:11:32 +00:00
/* Determine whether the argument is the null value. */
static Expr prim_isNull(EvalState & state, const ATermVector & args)
2007-01-29 15:11:32 +00:00
{
return makeBool(matchNull(evalExpr(state, args[0])));
}
/* Determine whether the argument is a function. */
static Expr prim_isFunction(EvalState & state, const ATermVector & args)
{
Expr e = evalExpr(state, args[0]);
ATermList formals;
ATerm name, body, pos;
return makeBool(
matchFunction(e, formals, body, pos) ||
matchFunction1(e, name, body, pos));
}
2007-01-29 15:11:32 +00:00
static Path findDependency(Path dir, string dep)
{
if (dep[0] == '/') throw EvalError(
format("illegal absolute dependency `%1%'") % dep);
Path p = canonPath(dir + "/" + dep);
if (pathExists(p))
return p;
else
return "";
}
/* Make path `p' relative to directory `pivot'. E.g.,
relativise("/a/b/c", "a/b/x/y") => "../x/y". Both input paths
should be in absolute canonical form. */
static string relativise(Path pivot, Path p)
{
assert(pivot.size() > 0 && pivot[0] == '/');
assert(p.size() > 0 && p[0] == '/');
if (pivot == p) return ".";
/* `p' is in `pivot'? */
Path pivot2 = pivot + "/";
if (p.substr(0, pivot2.size()) == pivot2) {
return p.substr(pivot2.size());
}
/* Otherwise, `p' is in a parent of `pivot'. Find up till which
path component `p' and `pivot' match, and add an appropriate
number of `..' components. */
string::size_type i = 1;
while (1) {
string::size_type j = pivot.find('/', i);
if (j == string::npos) break;
j++;
if (pivot.substr(0, j) != p.substr(0, j)) break;
i = j;
}
string prefix;
unsigned int slashes = count(pivot.begin() + i, pivot.end(), '/') + 1;
while (slashes--) {
prefix += "../";
}
return prefix + p.substr(i);
}
static Expr prim_dependencyClosure(EvalState & state, const ATermVector & args)
2007-01-29 15:11:32 +00:00
{
startNest(nest, lvlDebug, "finding dependencies");
Expr attrs = evalExpr(state, args[0]);
/* Get the start set. */
Expr startSet = queryAttr(attrs, "startSet");
if (!startSet) throw EvalError("attribute `startSet' required");
ATermList startSet2 = evalList(state, startSet);
Path pivot;
PathSet workSet;
for (ATermIterator i(startSet2); i; ++i) {
PathSet context; /* !!! what to do? */
Path p = coerceToPath(state, *i, context);
workSet.insert(p);
pivot = dirOf(p);
}
/* Get the search path. */
PathSet searchPath;
Expr e = queryAttr(attrs, "searchPath");
if (e) {
ATermList list = evalList(state, e);
for (ATermIterator i(list); i; ++i) {
PathSet context; /* !!! what to do? */
Path p = coerceToPath(state, *i, context);
searchPath.insert(p);
}
}
Expr scanner = queryAttr(attrs, "scanner");
if (!scanner) throw EvalError("attribute `scanner' required");
/* Construct the dependency closure by querying the dependency of
each path in `workSet', adding the dependencies to
`workSet'. */
PathSet doneSet;
while (!workSet.empty()) {
Path path = *(workSet.begin());
workSet.erase(path);
if (doneSet.find(path) != doneSet.end()) continue;
doneSet.insert(path);
try {
/* Call the `scanner' function with `path' as argument. */
debug(format("finding dependencies in `%1%'") % path);
ATermList deps = evalList(state, makeCall(scanner, makeStr(path)));
/* Try to find the dependencies relative to the `path'. */
for (ATermIterator i(deps); i; ++i) {
string s = evalStringNoCtx(state, *i);
Path dep = findDependency(dirOf(path), s);
if (dep == "") {
for (PathSet::iterator j = searchPath.begin();
j != searchPath.end(); ++j)
{
dep = findDependency(*j, s);
if (dep != "") break;
}
}
if (dep == "")
debug(format("did NOT find dependency `%1%'") % s);
else {
debug(format("found dependency `%1%'") % dep);
workSet.insert(dep);
}
}
} catch (Error & e) {
e.addPrefix(format("while finding dependencies in `%1%':\n")
% path);
throw;
}
}
/* Return a list of the dependencies we've just found. */
ATermList deps = ATempty;
for (PathSet::iterator i = doneSet.begin(); i != doneSet.end(); ++i) {
deps = ATinsert(deps, makeStr(relativise(pivot, *i)));
deps = ATinsert(deps, makeStr(*i));
}
debug(format("dependency list is `%1%'") % makeList(deps));
return makeList(deps);
}
static Expr prim_abort(EvalState & state, const ATermVector & args)
2007-01-29 15:11:32 +00:00
{
PathSet context;
throw Abort(format("evaluation aborted with the following error message: `%1%'") %
evalString(state, args[0], context));
}
static Expr prim_throw(EvalState & state, const ATermVector & args)
{
PathSet context;
throw ThrownError(format("user-thrown exception: `%1%'") %
evalString(state, args[0], context));
}
2007-01-29 15:11:32 +00:00
/* Return an environment variable. Use with care. */
static Expr prim_getEnv(EvalState & state, const ATermVector & args)
2007-01-29 15:11:32 +00:00
{
string name = evalStringNoCtx(state, args[0]);
return makeStr(getEnv(name));
}
/* for debugging purposes. print the first arg on stdout (perhaps stderr should be used?)
* and return the second
*/
static Expr prim_trace(EvalState & state, const ATermVector & args)
{
//string str = evalStringNoCtx(state, args[0]);
Expr a = evalExpr(state, args[0]);
printf("traced value: %s\n", atPrint(a).c_str());
return evalExpr(state, args[1]);
}
2007-01-29 15:11:32 +00:00
static Expr prim_relativise(EvalState & state, const ATermVector & args)
2007-01-29 15:11:32 +00:00
{
PathSet context; /* !!! what to do? */
Path pivot = coerceToPath(state, args[0], context);
Path path = coerceToPath(state, args[1], context);
return makeStr(relativise(pivot, path));
}
2007-01-29 15:11:32 +00:00
/*************************************************************
* Derivations
*************************************************************/
* Removed the `id' attribute hack. * Formalise the notion of fixed-output derivations, i.e., derivations for which a cryptographic hash of the output is known in advance. Changes to such derivations should not propagate upwards through the dependency graph. Previously this was done by specifying the hash component of the output path through the `id' attribute, but this is insecure since you can lie about it (i.e., you can specify any hash and then produce a completely different output). Now the responsibility for checking the output is moved from the builder to Nix itself. A fixed-output derivation can be created by specifying the `outputHash' and `outputHashAlgo' attributes, the latter taking values `md5', `sha1', and `sha256', and the former specifying the actual hash in hexadecimal or in base-32 (auto-detected by looking at the length of the attribute value). MD5 is included for compatibility but should be considered deprecated. * Removed the `drvPath' pseudo-attribute in derivation results. It's no longer necessary. * Cleaned up the support for multiple output paths in derivation store expressions. Each output now has a unique identifier (e.g., `out', `devel', `docs'). Previously there was no way to tell output paths apart at the store expression level. * `nix-hash' now has a flag `--base32' to specify that the hash should be printed in base-32 notation. * `fetchurl' accepts parameters `sha256' and `sha1' in addition to `md5'. * `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a flag to specify the hash.)
2005-01-17 16:55:19 +00:00
/* Returns the hash of a derivation modulo fixed-output
subderivations. A fixed-output derivation is a derivation with one
output (`out') for which an expected hash and hash algorithm are
specified (using the `outputHash' and `outputHashAlgo'
attributes). We don't want changes to such derivations to
propagate upwards through the dependency graph, changing output
paths everywhere.
For instance, if we change the url in a call to the `fetchurl'
function, we do not want to rebuild everything depending on it
(after all, (the hash of) the file being downloaded is unchanged).
So the *output paths* should not change. On the other hand, the
*derivation store expression paths* should change to reflect the
new dependency graph.
That's what this function does: it returns a hash which is just the
of the derivation ATerm, except that any input store expression
paths have been replaced by the result of a recursive call to this
function, and that for fixed-output derivations we return
(basically) its outputHash. */
static Hash hashDerivationModulo(EvalState & state, Derivation drv)
{
/* Return a fixed hash for fixed-output derivations. */
if (drv.outputs.size() == 1) {
DerivationOutputs::const_iterator i = drv.outputs.begin();
if (i->first == "out" &&
i->second.hash != "")
{
return hashString(htSHA256, "fixed:out:"
+ i->second.hashAlgo + ":"
+ i->second.hash + ":"
+ i->second.path);
* Removed the `id' attribute hack. * Formalise the notion of fixed-output derivations, i.e., derivations for which a cryptographic hash of the output is known in advance. Changes to such derivations should not propagate upwards through the dependency graph. Previously this was done by specifying the hash component of the output path through the `id' attribute, but this is insecure since you can lie about it (i.e., you can specify any hash and then produce a completely different output). Now the responsibility for checking the output is moved from the builder to Nix itself. A fixed-output derivation can be created by specifying the `outputHash' and `outputHashAlgo' attributes, the latter taking values `md5', `sha1', and `sha256', and the former specifying the actual hash in hexadecimal or in base-32 (auto-detected by looking at the length of the attribute value). MD5 is included for compatibility but should be considered deprecated. * Removed the `drvPath' pseudo-attribute in derivation results. It's no longer necessary. * Cleaned up the support for multiple output paths in derivation store expressions. Each output now has a unique identifier (e.g., `out', `devel', `docs'). Previously there was no way to tell output paths apart at the store expression level. * `nix-hash' now has a flag `--base32' to specify that the hash should be printed in base-32 notation. * `fetchurl' accepts parameters `sha256' and `sha1' in addition to `md5'. * `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a flag to specify the hash.)
2005-01-17 16:55:19 +00:00
}
}
* Removed the `id' attribute hack. * Formalise the notion of fixed-output derivations, i.e., derivations for which a cryptographic hash of the output is known in advance. Changes to such derivations should not propagate upwards through the dependency graph. Previously this was done by specifying the hash component of the output path through the `id' attribute, but this is insecure since you can lie about it (i.e., you can specify any hash and then produce a completely different output). Now the responsibility for checking the output is moved from the builder to Nix itself. A fixed-output derivation can be created by specifying the `outputHash' and `outputHashAlgo' attributes, the latter taking values `md5', `sha1', and `sha256', and the former specifying the actual hash in hexadecimal or in base-32 (auto-detected by looking at the length of the attribute value). MD5 is included for compatibility but should be considered deprecated. * Removed the `drvPath' pseudo-attribute in derivation results. It's no longer necessary. * Cleaned up the support for multiple output paths in derivation store expressions. Each output now has a unique identifier (e.g., `out', `devel', `docs'). Previously there was no way to tell output paths apart at the store expression level. * `nix-hash' now has a flag `--base32' to specify that the hash should be printed in base-32 notation. * `fetchurl' accepts parameters `sha256' and `sha1' in addition to `md5'. * `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a flag to specify the hash.)
2005-01-17 16:55:19 +00:00
/* For other derivations, replace the inputs paths with recursive
calls to this function.*/
DerivationInputs inputs2;
for (DerivationInputs::iterator i = drv.inputDrvs.begin();
i != drv.inputDrvs.end(); ++i)
{
Hash h = state.drvHashes[i->first];
if (h.type == htUnknown) {
Derivation drv2 = derivationFromPath(i->first);
h = hashDerivationModulo(state, drv2);
state.drvHashes[i->first] = h;
}
inputs2[printHash(h)] = i->second;
}
drv.inputDrvs = inputs2;
* Removed the `id' attribute hack. * Formalise the notion of fixed-output derivations, i.e., derivations for which a cryptographic hash of the output is known in advance. Changes to such derivations should not propagate upwards through the dependency graph. Previously this was done by specifying the hash component of the output path through the `id' attribute, but this is insecure since you can lie about it (i.e., you can specify any hash and then produce a completely different output). Now the responsibility for checking the output is moved from the builder to Nix itself. A fixed-output derivation can be created by specifying the `outputHash' and `outputHashAlgo' attributes, the latter taking values `md5', `sha1', and `sha256', and the former specifying the actual hash in hexadecimal or in base-32 (auto-detected by looking at the length of the attribute value). MD5 is included for compatibility but should be considered deprecated. * Removed the `drvPath' pseudo-attribute in derivation results. It's no longer necessary. * Cleaned up the support for multiple output paths in derivation store expressions. Each output now has a unique identifier (e.g., `out', `devel', `docs'). Previously there was no way to tell output paths apart at the store expression level. * `nix-hash' now has a flag `--base32' to specify that the hash should be printed in base-32 notation. * `fetchurl' accepts parameters `sha256' and `sha1' in addition to `md5'. * `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a flag to specify the hash.)
2005-01-17 16:55:19 +00:00
return hashTerm(unparseDerivation(drv));
}
/* Construct (as a unobservable side effect) a Nix derivation
expression that performs the derivation described by the argument
set. Returns the original set extended with the following
attributes: `outPath' containing the primary output path of the
derivation; `drvPath' containing the path of the Nix expression;
and `type' set to `derivation' to indicate that this is a
derivation. */
static Expr prim_derivationStrict(EvalState & state, const ATermVector & args)
{
startNest(nest, lvlVomit, "evaluating derivation");
2007-01-13 14:21:49 +00:00
ATermMap attrs;
queryAllAttrs(evalExpr(state, args[0]), attrs, true);
/* Figure out the name already (for stack backtraces). */
2006-10-23 16:45:19 +00:00
ATerm posDrvName;
2006-05-04 12:21:08 +00:00
Expr eDrvName = attrs.get(toATerm("name"));
if (!eDrvName)
throw EvalError("required attribute `name' missing");
if (!matchAttrRHS(eDrvName, eDrvName, posDrvName)) abort();
2006-10-23 16:45:19 +00:00
string drvName;
try {
drvName = evalStringNoCtx(state, eDrvName);
} catch (Error & e) {
e.addPrefix(format("while evaluating the derivation attribute `name' at %1%:\n")
% showPos(posDrvName));
throw;
}
/* Build the derivation expression by processing the attributes. */
Derivation drv;
* Removed the `id' attribute hack. * Formalise the notion of fixed-output derivations, i.e., derivations for which a cryptographic hash of the output is known in advance. Changes to such derivations should not propagate upwards through the dependency graph. Previously this was done by specifying the hash component of the output path through the `id' attribute, but this is insecure since you can lie about it (i.e., you can specify any hash and then produce a completely different output). Now the responsibility for checking the output is moved from the builder to Nix itself. A fixed-output derivation can be created by specifying the `outputHash' and `outputHashAlgo' attributes, the latter taking values `md5', `sha1', and `sha256', and the former specifying the actual hash in hexadecimal or in base-32 (auto-detected by looking at the length of the attribute value). MD5 is included for compatibility but should be considered deprecated. * Removed the `drvPath' pseudo-attribute in derivation results. It's no longer necessary. * Cleaned up the support for multiple output paths in derivation store expressions. Each output now has a unique identifier (e.g., `out', `devel', `docs'). Previously there was no way to tell output paths apart at the store expression level. * `nix-hash' now has a flag `--base32' to specify that the hash should be printed in base-32 notation. * `fetchurl' accepts parameters `sha256' and `sha1' in addition to `md5'. * `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a flag to specify the hash.)
2005-01-17 16:55:19 +00:00
PathSet context;
* Removed the `id' attribute hack. * Formalise the notion of fixed-output derivations, i.e., derivations for which a cryptographic hash of the output is known in advance. Changes to such derivations should not propagate upwards through the dependency graph. Previously this was done by specifying the hash component of the output path through the `id' attribute, but this is insecure since you can lie about it (i.e., you can specify any hash and then produce a completely different output). Now the responsibility for checking the output is moved from the builder to Nix itself. A fixed-output derivation can be created by specifying the `outputHash' and `outputHashAlgo' attributes, the latter taking values `md5', `sha1', and `sha256', and the former specifying the actual hash in hexadecimal or in base-32 (auto-detected by looking at the length of the attribute value). MD5 is included for compatibility but should be considered deprecated. * Removed the `drvPath' pseudo-attribute in derivation results. It's no longer necessary. * Cleaned up the support for multiple output paths in derivation store expressions. Each output now has a unique identifier (e.g., `out', `devel', `docs'). Previously there was no way to tell output paths apart at the store expression level. * `nix-hash' now has a flag `--base32' to specify that the hash should be printed in base-32 notation. * `fetchurl' accepts parameters `sha256' and `sha1' in addition to `md5'. * `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a flag to specify the hash.)
2005-01-17 16:55:19 +00:00
string outputHash;
string outputHashAlgo;
bool outputHashRecursive = false;
2006-05-04 12:21:08 +00:00
for (ATermMap::const_iterator i = attrs.begin(); i != attrs.end(); ++i) {
string key = aterm2String(i->key);
ATerm value;
Expr pos;
2006-05-04 12:21:08 +00:00
ATerm rhs = i->value;
if (!matchAttrRHS(rhs, value, pos)) abort();
startNest(nest, lvlVomit, format("processing attribute `%1%'") % key);
try {
/* The `args' attribute is special: it supplies the
command-line arguments to the builder. */
if (key == "args") {
ATermList es;
value = evalExpr(state, value);
if (!matchList(value, es)) {
static bool haveWarned = false;
warnOnce(haveWarned, "the `args' attribute should evaluate to a list");
es = flattenList(state, value);
}
for (ATermIterator i(es); i; ++i) {
string s = coerceToString(state, *i, context, true);
drv.args.push_back(s);
}
}
/* All other attributes are passed to the builder through
the environment. */
else {
string s = coerceToString(state, value, context, true);
drv.env[key] = s;
if (key == "builder") drv.builder = s;
else if (key == "system") drv.platform = s;
else if (key == "name") drvName = s;
else if (key == "outputHash") outputHash = s;
else if (key == "outputHashAlgo") outputHashAlgo = s;
else if (key == "outputHashMode") {
if (s == "recursive") outputHashRecursive = true;
else if (s == "flat") outputHashRecursive = false;
else throw EvalError(format("invalid value `%1%' for `outputHashMode' attribute") % s);
}
}
} catch (Error & e) {
2006-10-23 16:45:19 +00:00
e.addPrefix(format("while evaluating the derivation attribute `%1%' at %2%:\n")
% key % showPos(pos));
e.addPrefix(format("while instantiating the derivation named `%1%' at %2%:\n")
% drvName % showPos(posDrvName));
throw;
}
}
/* Everything in the context of the strings in the derivation
attributes should be added as dependencies of the resulting
derivation. */
for (PathSet::iterator i = context.begin(); i != context.end(); ++i) {
debug(format("derivation uses `%1%'") % *i);
assert(isStorePath(*i));
if (isDerivation(*i))
drv.inputDrvs[*i] = singleton<StringSet>("out");
else
drv.inputSrcs.insert(*i);
}
/* Do we have all required attributes? */
if (drv.builder == "")
throw EvalError("required attribute `builder' missing");
if (drv.platform == "")
throw EvalError("required attribute `system' missing");
* Removed the `id' attribute hack. * Formalise the notion of fixed-output derivations, i.e., derivations for which a cryptographic hash of the output is known in advance. Changes to such derivations should not propagate upwards through the dependency graph. Previously this was done by specifying the hash component of the output path through the `id' attribute, but this is insecure since you can lie about it (i.e., you can specify any hash and then produce a completely different output). Now the responsibility for checking the output is moved from the builder to Nix itself. A fixed-output derivation can be created by specifying the `outputHash' and `outputHashAlgo' attributes, the latter taking values `md5', `sha1', and `sha256', and the former specifying the actual hash in hexadecimal or in base-32 (auto-detected by looking at the length of the attribute value). MD5 is included for compatibility but should be considered deprecated. * Removed the `drvPath' pseudo-attribute in derivation results. It's no longer necessary. * Cleaned up the support for multiple output paths in derivation store expressions. Each output now has a unique identifier (e.g., `out', `devel', `docs'). Previously there was no way to tell output paths apart at the store expression level. * `nix-hash' now has a flag `--base32' to specify that the hash should be printed in base-32 notation. * `fetchurl' accepts parameters `sha256' and `sha1' in addition to `md5'. * `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a flag to specify the hash.)
2005-01-17 16:55:19 +00:00
/* If an output hash was given, check it. */
if (outputHash == "")
outputHashAlgo = "";
else {
HashType ht = parseHashType(outputHashAlgo);
if (ht == htUnknown)
throw EvalError(format("unknown hash algorithm `%1%'") % outputHashAlgo);
Hash h(ht);
if (outputHash.size() == h.hashSize * 2)
* Removed the `id' attribute hack. * Formalise the notion of fixed-output derivations, i.e., derivations for which a cryptographic hash of the output is known in advance. Changes to such derivations should not propagate upwards through the dependency graph. Previously this was done by specifying the hash component of the output path through the `id' attribute, but this is insecure since you can lie about it (i.e., you can specify any hash and then produce a completely different output). Now the responsibility for checking the output is moved from the builder to Nix itself. A fixed-output derivation can be created by specifying the `outputHash' and `outputHashAlgo' attributes, the latter taking values `md5', `sha1', and `sha256', and the former specifying the actual hash in hexadecimal or in base-32 (auto-detected by looking at the length of the attribute value). MD5 is included for compatibility but should be considered deprecated. * Removed the `drvPath' pseudo-attribute in derivation results. It's no longer necessary. * Cleaned up the support for multiple output paths in derivation store expressions. Each output now has a unique identifier (e.g., `out', `devel', `docs'). Previously there was no way to tell output paths apart at the store expression level. * `nix-hash' now has a flag `--base32' to specify that the hash should be printed in base-32 notation. * `fetchurl' accepts parameters `sha256' and `sha1' in addition to `md5'. * `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a flag to specify the hash.)
2005-01-17 16:55:19 +00:00
/* hexadecimal representation */
h = parseHash(ht, outputHash);
else if (outputHash.size() == hashLength32(h))
* Removed the `id' attribute hack. * Formalise the notion of fixed-output derivations, i.e., derivations for which a cryptographic hash of the output is known in advance. Changes to such derivations should not propagate upwards through the dependency graph. Previously this was done by specifying the hash component of the output path through the `id' attribute, but this is insecure since you can lie about it (i.e., you can specify any hash and then produce a completely different output). Now the responsibility for checking the output is moved from the builder to Nix itself. A fixed-output derivation can be created by specifying the `outputHash' and `outputHashAlgo' attributes, the latter taking values `md5', `sha1', and `sha256', and the former specifying the actual hash in hexadecimal or in base-32 (auto-detected by looking at the length of the attribute value). MD5 is included for compatibility but should be considered deprecated. * Removed the `drvPath' pseudo-attribute in derivation results. It's no longer necessary. * Cleaned up the support for multiple output paths in derivation store expressions. Each output now has a unique identifier (e.g., `out', `devel', `docs'). Previously there was no way to tell output paths apart at the store expression level. * `nix-hash' now has a flag `--base32' to specify that the hash should be printed in base-32 notation. * `fetchurl' accepts parameters `sha256' and `sha1' in addition to `md5'. * `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a flag to specify the hash.)
2005-01-17 16:55:19 +00:00
/* base-32 representation */
h = parseHash32(ht, outputHash);
else
throw Error(format("hash `%1%' has wrong length for hash type `%2%'")
% outputHash % outputHashAlgo);
* Removed the `id' attribute hack. * Formalise the notion of fixed-output derivations, i.e., derivations for which a cryptographic hash of the output is known in advance. Changes to such derivations should not propagate upwards through the dependency graph. Previously this was done by specifying the hash component of the output path through the `id' attribute, but this is insecure since you can lie about it (i.e., you can specify any hash and then produce a completely different output). Now the responsibility for checking the output is moved from the builder to Nix itself. A fixed-output derivation can be created by specifying the `outputHash' and `outputHashAlgo' attributes, the latter taking values `md5', `sha1', and `sha256', and the former specifying the actual hash in hexadecimal or in base-32 (auto-detected by looking at the length of the attribute value). MD5 is included for compatibility but should be considered deprecated. * Removed the `drvPath' pseudo-attribute in derivation results. It's no longer necessary. * Cleaned up the support for multiple output paths in derivation store expressions. Each output now has a unique identifier (e.g., `out', `devel', `docs'). Previously there was no way to tell output paths apart at the store expression level. * `nix-hash' now has a flag `--base32' to specify that the hash should be printed in base-32 notation. * `fetchurl' accepts parameters `sha256' and `sha1' in addition to `md5'. * `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a flag to specify the hash.)
2005-01-17 16:55:19 +00:00
string s = outputHash;
outputHash = printHash(h);
if (outputHashRecursive) outputHashAlgo = "r:" + outputHashAlgo;
* Removed the `id' attribute hack. * Formalise the notion of fixed-output derivations, i.e., derivations for which a cryptographic hash of the output is known in advance. Changes to such derivations should not propagate upwards through the dependency graph. Previously this was done by specifying the hash component of the output path through the `id' attribute, but this is insecure since you can lie about it (i.e., you can specify any hash and then produce a completely different output). Now the responsibility for checking the output is moved from the builder to Nix itself. A fixed-output derivation can be created by specifying the `outputHash' and `outputHashAlgo' attributes, the latter taking values `md5', `sha1', and `sha256', and the former specifying the actual hash in hexadecimal or in base-32 (auto-detected by looking at the length of the attribute value). MD5 is included for compatibility but should be considered deprecated. * Removed the `drvPath' pseudo-attribute in derivation results. It's no longer necessary. * Cleaned up the support for multiple output paths in derivation store expressions. Each output now has a unique identifier (e.g., `out', `devel', `docs'). Previously there was no way to tell output paths apart at the store expression level. * `nix-hash' now has a flag `--base32' to specify that the hash should be printed in base-32 notation. * `fetchurl' accepts parameters `sha256' and `sha1' in addition to `md5'. * `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a flag to specify the hash.)
2005-01-17 16:55:19 +00:00
}
2006-09-21 18:52:05 +00:00
/* Check whether the derivation name is valid. */
checkStoreName(drvName);
if (isDerivation(drvName))
throw EvalError(format("derivation names are not allowed to end in `%1%'")
% drvExtension);
/* Construct the "masked" derivation store expression, which is
* Removed the `id' attribute hack. * Formalise the notion of fixed-output derivations, i.e., derivations for which a cryptographic hash of the output is known in advance. Changes to such derivations should not propagate upwards through the dependency graph. Previously this was done by specifying the hash component of the output path through the `id' attribute, but this is insecure since you can lie about it (i.e., you can specify any hash and then produce a completely different output). Now the responsibility for checking the output is moved from the builder to Nix itself. A fixed-output derivation can be created by specifying the `outputHash' and `outputHashAlgo' attributes, the latter taking values `md5', `sha1', and `sha256', and the former specifying the actual hash in hexadecimal or in base-32 (auto-detected by looking at the length of the attribute value). MD5 is included for compatibility but should be considered deprecated. * Removed the `drvPath' pseudo-attribute in derivation results. It's no longer necessary. * Cleaned up the support for multiple output paths in derivation store expressions. Each output now has a unique identifier (e.g., `out', `devel', `docs'). Previously there was no way to tell output paths apart at the store expression level. * `nix-hash' now has a flag `--base32' to specify that the hash should be printed in base-32 notation. * `fetchurl' accepts parameters `sha256' and `sha1' in addition to `md5'. * `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a flag to specify the hash.)
2005-01-17 16:55:19 +00:00
the final one except that in the list of outputs, the output
paths are empty, and the corresponding environment variables
have an empty value. This ensures that changes in the set of
output names do get reflected in the hash. */
drv.env["out"] = "";
drv.outputs["out"] =
* Removed the `id' attribute hack. * Formalise the notion of fixed-output derivations, i.e., derivations for which a cryptographic hash of the output is known in advance. Changes to such derivations should not propagate upwards through the dependency graph. Previously this was done by specifying the hash component of the output path through the `id' attribute, but this is insecure since you can lie about it (i.e., you can specify any hash and then produce a completely different output). Now the responsibility for checking the output is moved from the builder to Nix itself. A fixed-output derivation can be created by specifying the `outputHash' and `outputHashAlgo' attributes, the latter taking values `md5', `sha1', and `sha256', and the former specifying the actual hash in hexadecimal or in base-32 (auto-detected by looking at the length of the attribute value). MD5 is included for compatibility but should be considered deprecated. * Removed the `drvPath' pseudo-attribute in derivation results. It's no longer necessary. * Cleaned up the support for multiple output paths in derivation store expressions. Each output now has a unique identifier (e.g., `out', `devel', `docs'). Previously there was no way to tell output paths apart at the store expression level. * `nix-hash' now has a flag `--base32' to specify that the hash should be printed in base-32 notation. * `fetchurl' accepts parameters `sha256' and `sha1' in addition to `md5'. * `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a flag to specify the hash.)
2005-01-17 16:55:19 +00:00
DerivationOutput("", outputHashAlgo, outputHash);
* Removed the `id' attribute hack. * Formalise the notion of fixed-output derivations, i.e., derivations for which a cryptographic hash of the output is known in advance. Changes to such derivations should not propagate upwards through the dependency graph. Previously this was done by specifying the hash component of the output path through the `id' attribute, but this is insecure since you can lie about it (i.e., you can specify any hash and then produce a completely different output). Now the responsibility for checking the output is moved from the builder to Nix itself. A fixed-output derivation can be created by specifying the `outputHash' and `outputHashAlgo' attributes, the latter taking values `md5', `sha1', and `sha256', and the former specifying the actual hash in hexadecimal or in base-32 (auto-detected by looking at the length of the attribute value). MD5 is included for compatibility but should be considered deprecated. * Removed the `drvPath' pseudo-attribute in derivation results. It's no longer necessary. * Cleaned up the support for multiple output paths in derivation store expressions. Each output now has a unique identifier (e.g., `out', `devel', `docs'). Previously there was no way to tell output paths apart at the store expression level. * `nix-hash' now has a flag `--base32' to specify that the hash should be printed in base-32 notation. * `fetchurl' accepts parameters `sha256' and `sha1' in addition to `md5'. * `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a flag to specify the hash.)
2005-01-17 16:55:19 +00:00
/* Use the masked derivation expression to compute the output
path. */
Path outPath = makeStorePath("output:out",
hashDerivationModulo(state, drv), drvName);
/* Construct the final derivation store expression. */
drv.env["out"] = outPath;
drv.outputs["out"] =
* Removed the `id' attribute hack. * Formalise the notion of fixed-output derivations, i.e., derivations for which a cryptographic hash of the output is known in advance. Changes to such derivations should not propagate upwards through the dependency graph. Previously this was done by specifying the hash component of the output path through the `id' attribute, but this is insecure since you can lie about it (i.e., you can specify any hash and then produce a completely different output). Now the responsibility for checking the output is moved from the builder to Nix itself. A fixed-output derivation can be created by specifying the `outputHash' and `outputHashAlgo' attributes, the latter taking values `md5', `sha1', and `sha256', and the former specifying the actual hash in hexadecimal or in base-32 (auto-detected by looking at the length of the attribute value). MD5 is included for compatibility but should be considered deprecated. * Removed the `drvPath' pseudo-attribute in derivation results. It's no longer necessary. * Cleaned up the support for multiple output paths in derivation store expressions. Each output now has a unique identifier (e.g., `out', `devel', `docs'). Previously there was no way to tell output paths apart at the store expression level. * `nix-hash' now has a flag `--base32' to specify that the hash should be printed in base-32 notation. * `fetchurl' accepts parameters `sha256' and `sha1' in addition to `md5'. * `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a flag to specify the hash.)
2005-01-17 16:55:19 +00:00
DerivationOutput(outPath, outputHashAlgo, outputHash);
/* Write the resulting term into the Nix store directory. */
Path drvPath = writeDerivation(drv, drvName);
printMsg(lvlChatty, format("instantiated `%1%' -> `%2%'")
% drvName % drvPath);
2005-01-18 11:15:50 +00:00
/* Optimisation, but required in read-only mode! because in that
case we don't actually write store expressions, so we can't
read them later. */
state.drvHashes[drvPath] = hashDerivationModulo(state, drv);
2005-01-18 11:15:50 +00:00
* Removed the `id' attribute hack. * Formalise the notion of fixed-output derivations, i.e., derivations for which a cryptographic hash of the output is known in advance. Changes to such derivations should not propagate upwards through the dependency graph. Previously this was done by specifying the hash component of the output path through the `id' attribute, but this is insecure since you can lie about it (i.e., you can specify any hash and then produce a completely different output). Now the responsibility for checking the output is moved from the builder to Nix itself. A fixed-output derivation can be created by specifying the `outputHash' and `outputHashAlgo' attributes, the latter taking values `md5', `sha1', and `sha256', and the former specifying the actual hash in hexadecimal or in base-32 (auto-detected by looking at the length of the attribute value). MD5 is included for compatibility but should be considered deprecated. * Removed the `drvPath' pseudo-attribute in derivation results. It's no longer necessary. * Cleaned up the support for multiple output paths in derivation store expressions. Each output now has a unique identifier (e.g., `out', `devel', `docs'). Previously there was no way to tell output paths apart at the store expression level. * `nix-hash' now has a flag `--base32' to specify that the hash should be printed in base-32 notation. * `fetchurl' accepts parameters `sha256' and `sha1' in addition to `md5'. * `nix-prefetch-url' now prints out a SHA-1 hash in base-32. (TODO: a flag to specify the hash.)
2005-01-17 16:55:19 +00:00
/* !!! assumes a single output */
2006-05-04 12:21:08 +00:00
ATermMap outAttrs(2);
outAttrs.set(toATerm("outPath"),
makeAttrRHS(makeStr(outPath, singleton<PathSet>(drvPath)), makeNoPos()));
2006-05-04 12:21:08 +00:00
outAttrs.set(toATerm("drvPath"),
makeAttrRHS(makeStr(drvPath, singleton<PathSet>(drvPath)), makeNoPos()));
return makeAttrs(outAttrs);
}
static Expr prim_derivationLazy(EvalState & state, const ATermVector & args)
{
Expr eAttrs = evalExpr(state, args[0]);
2007-01-13 14:21:49 +00:00
ATermMap attrs;
queryAllAttrs(eAttrs, attrs, true);
2006-05-04 12:21:08 +00:00
attrs.set(toATerm("type"),
makeAttrRHS(makeStr("derivation"), makeNoPos()));
Expr drvStrict = makeCall(makeVar(toATerm("derivation!")), eAttrs);
2006-05-04 12:21:08 +00:00
attrs.set(toATerm("outPath"),
makeAttrRHS(makeSelect(drvStrict, toATerm("outPath")), makeNoPos()));
attrs.set(toATerm("drvPath"),
makeAttrRHS(makeSelect(drvStrict, toATerm("drvPath")), makeNoPos()));
return makeAttrs(attrs);
}
2003-11-02 16:31:35 +00:00
2007-01-29 15:11:32 +00:00
/*************************************************************
* Paths
*************************************************************/
/* Convert the argument to a path. !!! obsolete? */
static Expr prim_toPath(EvalState & state, const ATermVector & args)
2003-11-02 16:31:35 +00:00
{
PathSet context;
2007-01-29 15:11:32 +00:00
string path = coerceToPath(state, args[0], context);
return makeStr(canonPath(path), context);
2003-11-02 16:31:35 +00:00
}
static Expr prim_pathExists(EvalState & state, const ATermVector & args)
{
PathSet context;
2007-01-29 15:11:32 +00:00
Path path = coerceToPath(state, args[0], context);
if (!context.empty())
throw EvalError(format("string `%1%' cannot refer to other paths") % path);
return makeBool(pathExists(path));
}
2007-01-29 15:11:32 +00:00
/* Return the base name of the given string, i.e., everything
following the last slash. */
static Expr prim_baseNameOf(EvalState & state, const ATermVector & args)
2003-11-02 16:31:35 +00:00
{
PathSet context;
2007-01-29 15:11:32 +00:00
return makeStr(baseNameOf(coerceToString(state, args[0], context)), context);
2003-11-02 16:31:35 +00:00
}
2007-01-29 15:11:32 +00:00
/* Return the directory of the given path, i.e., everything before the
last slash. Return either a path or a string depending on the type
of the argument. */
static Expr prim_dirOf(EvalState & state, const ATermVector & args)
{
PathSet context;
2007-01-29 15:11:32 +00:00
Expr e = evalExpr(state, args[0]); ATerm dummy;
bool isPath = matchPath(e, dummy);
Path dir = dirOf(coerceToPath(state, e, context));
return isPath ? makePath(toATerm(dir)) : makeStr(dir, context);
}
2007-01-29 15:11:32 +00:00
/*************************************************************
* Creating files
*************************************************************/
/* Convert the argument (which can be any Nix expression) to an XML
representation returned in a string. Not all Nix expressions can
be sensibly or completely represented (e.g., functions). */
static Expr prim_toXML(EvalState & state, const ATermVector & args)
{
std::ostringstream out;
PathSet context;
printTermAsXML(strictEvalExpr(state, args[0]), out, context);
return makeStr(out.str(), context);
}
/* Store a string in the Nix store as a source file that can be used
as an input by derivations. */
static Expr prim_toFile(EvalState & state, const ATermVector & args)
{
PathSet context;
string name = evalStringNoCtx(state, args[0]);
string contents = evalString(state, args[1], context);
PathSet refs;
2006-10-19 17:39:02 +00:00
for (PathSet::iterator i = context.begin(); i != context.end(); ++i) {
if (isDerivation(*i))
2006-10-19 17:43:58 +00:00
throw EvalError(format("in `toFile': the file `%1%' cannot refer to derivation outputs") % name);
2006-10-19 17:39:02 +00:00
refs.insert(*i);
}
Path storePath = readOnlyMode
? computeStorePathForText(name, contents, refs)
: store->addTextToStore(name, contents, refs);
/* Note: we don't need to add `context' to the context of the
result, since `storePath' itself has references to the paths
used in args[1]. */
return makeStr(storePath, singleton<PathSet>(storePath));
}
2007-01-29 15:11:32 +00:00
struct FilterFromExpr : PathFilter
{
2007-01-29 15:11:32 +00:00
EvalState & state;
Expr filter;
FilterFromExpr(EvalState & state, Expr filter)
: state(state), filter(filter)
{
}
2007-01-29 15:11:32 +00:00
bool operator () (const Path & path)
{
struct stat st;
if (lstat(path.c_str(), &st))
throw SysError(format("getting attributes of path `%1%'") % path);
2007-01-29 15:11:32 +00:00
Expr call =
makeCall(
makeCall(filter, makeStr(path)),
makeStr(
S_ISREG(st.st_mode) ? "regular" :
S_ISDIR(st.st_mode) ? "directory" :
S_ISLNK(st.st_mode) ? "symlink" :
"unknown" /* not supported, will fail! */
));
return evalBool(state, call);
}
};
static Expr prim_filterSource(EvalState & state, const ATermVector & args)
{
2007-01-29 15:11:32 +00:00
PathSet context;
Path path = coerceToPath(state, args[1], context);
if (!context.empty())
throw EvalError(format("string `%1%' cannot refer to other paths") % path);
2007-01-29 15:11:32 +00:00
FilterFromExpr filter(state, args[0]);
2007-01-29 15:11:32 +00:00
Path dstPath = readOnlyMode
? computeStorePathForPath(path, false, false, "", filter).first
: store->addToStore(path, false, false, "", filter);
2007-01-29 15:11:32 +00:00
return makeStr(dstPath, singleton<PathSet>(dstPath));
}
2007-01-29 15:11:32 +00:00
/*************************************************************
* Attribute sets
*************************************************************/
* A primitive operation `dependencyClosure' to do automatic dependency determination (e.g., finding the header files dependencies of a C file) in Nix low-level builds automatically. For instance, in the function `compileC' in make/lib/default.nix, we find the header file dependencies of C file `main' as follows: localIncludes = dependencyClosure { scanner = file: import (findIncludes { inherit file; }); startSet = [main]; }; The function works by "growing" the set of dependencies, starting with the set `startSet', and calling the function `scanner' for each file to get its dependencies (which should yield a list of strings representing relative paths). For instance, when `scanner' is called on a file `foo.c' that includes the line #include "../bar/fnord.h" then `scanner' should yield ["../bar/fnord.h"]. This list of dependencies is absolutised relative to the including file and added to the set of dependencies. The process continues until no more dependencies are found (hence its a closure). `dependencyClosure' yields a list that contains in alternation a dependency, and its relative path to the directory of the start file, e.g., [ /bla/bla/foo.c "foo.c" /bla/bar/fnord.h "../bar/fnord.h" ] These relative paths are necessary for the builder that compiles foo.c to reconstruct the relative directory structure expected by foo.c. The advantage of `dependencyClosure' over the old approach (using the impure `__currentTime') is that it's completely pure, and more efficient because it only rescans for dependencies (i.e., by building the derivations yielded by `scanner') if sources have actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
2007-01-29 15:11:32 +00:00
/* Return the names of the attributes in an attribute set as a sorted
list of strings. */
static Expr prim_attrNames(EvalState & state, const ATermVector & args)
* A primitive operation `dependencyClosure' to do automatic dependency determination (e.g., finding the header files dependencies of a C file) in Nix low-level builds automatically. For instance, in the function `compileC' in make/lib/default.nix, we find the header file dependencies of C file `main' as follows: localIncludes = dependencyClosure { scanner = file: import (findIncludes { inherit file; }); startSet = [main]; }; The function works by "growing" the set of dependencies, starting with the set `startSet', and calling the function `scanner' for each file to get its dependencies (which should yield a list of strings representing relative paths). For instance, when `scanner' is called on a file `foo.c' that includes the line #include "../bar/fnord.h" then `scanner' should yield ["../bar/fnord.h"]. This list of dependencies is absolutised relative to the including file and added to the set of dependencies. The process continues until no more dependencies are found (hence its a closure). `dependencyClosure' yields a list that contains in alternation a dependency, and its relative path to the directory of the start file, e.g., [ /bla/bla/foo.c "foo.c" /bla/bar/fnord.h "../bar/fnord.h" ] These relative paths are necessary for the builder that compiles foo.c to reconstruct the relative directory structure expected by foo.c. The advantage of `dependencyClosure' over the old approach (using the impure `__currentTime') is that it's completely pure, and more efficient because it only rescans for dependencies (i.e., by building the derivations yielded by `scanner') if sources have actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
{
2007-01-29 15:11:32 +00:00
ATermMap attrs;
queryAllAttrs(evalExpr(state, args[0]), attrs);
* A primitive operation `dependencyClosure' to do automatic dependency determination (e.g., finding the header files dependencies of a C file) in Nix low-level builds automatically. For instance, in the function `compileC' in make/lib/default.nix, we find the header file dependencies of C file `main' as follows: localIncludes = dependencyClosure { scanner = file: import (findIncludes { inherit file; }); startSet = [main]; }; The function works by "growing" the set of dependencies, starting with the set `startSet', and calling the function `scanner' for each file to get its dependencies (which should yield a list of strings representing relative paths). For instance, when `scanner' is called on a file `foo.c' that includes the line #include "../bar/fnord.h" then `scanner' should yield ["../bar/fnord.h"]. This list of dependencies is absolutised relative to the including file and added to the set of dependencies. The process continues until no more dependencies are found (hence its a closure). `dependencyClosure' yields a list that contains in alternation a dependency, and its relative path to the directory of the start file, e.g., [ /bla/bla/foo.c "foo.c" /bla/bar/fnord.h "../bar/fnord.h" ] These relative paths are necessary for the builder that compiles foo.c to reconstruct the relative directory structure expected by foo.c. The advantage of `dependencyClosure' over the old approach (using the impure `__currentTime') is that it's completely pure, and more efficient because it only rescans for dependencies (i.e., by building the derivations yielded by `scanner') if sources have actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
2007-01-29 15:11:32 +00:00
StringSet names;
for (ATermMap::const_iterator i = attrs.begin(); i != attrs.end(); ++i)
names.insert(aterm2String(i->key));
* A primitive operation `dependencyClosure' to do automatic dependency determination (e.g., finding the header files dependencies of a C file) in Nix low-level builds automatically. For instance, in the function `compileC' in make/lib/default.nix, we find the header file dependencies of C file `main' as follows: localIncludes = dependencyClosure { scanner = file: import (findIncludes { inherit file; }); startSet = [main]; }; The function works by "growing" the set of dependencies, starting with the set `startSet', and calling the function `scanner' for each file to get its dependencies (which should yield a list of strings representing relative paths). For instance, when `scanner' is called on a file `foo.c' that includes the line #include "../bar/fnord.h" then `scanner' should yield ["../bar/fnord.h"]. This list of dependencies is absolutised relative to the including file and added to the set of dependencies. The process continues until no more dependencies are found (hence its a closure). `dependencyClosure' yields a list that contains in alternation a dependency, and its relative path to the directory of the start file, e.g., [ /bla/bla/foo.c "foo.c" /bla/bar/fnord.h "../bar/fnord.h" ] These relative paths are necessary for the builder that compiles foo.c to reconstruct the relative directory structure expected by foo.c. The advantage of `dependencyClosure' over the old approach (using the impure `__currentTime') is that it's completely pure, and more efficient because it only rescans for dependencies (i.e., by building the derivations yielded by `scanner') if sources have actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
2007-01-29 15:11:32 +00:00
ATermList list = ATempty;
for (StringSet::const_reverse_iterator i = names.rbegin();
i != names.rend(); ++i)
list = ATinsert(list, makeStr(*i, PathSet()));
* A primitive operation `dependencyClosure' to do automatic dependency determination (e.g., finding the header files dependencies of a C file) in Nix low-level builds automatically. For instance, in the function `compileC' in make/lib/default.nix, we find the header file dependencies of C file `main' as follows: localIncludes = dependencyClosure { scanner = file: import (findIncludes { inherit file; }); startSet = [main]; }; The function works by "growing" the set of dependencies, starting with the set `startSet', and calling the function `scanner' for each file to get its dependencies (which should yield a list of strings representing relative paths). For instance, when `scanner' is called on a file `foo.c' that includes the line #include "../bar/fnord.h" then `scanner' should yield ["../bar/fnord.h"]. This list of dependencies is absolutised relative to the including file and added to the set of dependencies. The process continues until no more dependencies are found (hence its a closure). `dependencyClosure' yields a list that contains in alternation a dependency, and its relative path to the directory of the start file, e.g., [ /bla/bla/foo.c "foo.c" /bla/bar/fnord.h "../bar/fnord.h" ] These relative paths are necessary for the builder that compiles foo.c to reconstruct the relative directory structure expected by foo.c. The advantage of `dependencyClosure' over the old approach (using the impure `__currentTime') is that it's completely pure, and more efficient because it only rescans for dependencies (i.e., by building the derivations yielded by `scanner') if sources have actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
2007-01-29 15:11:32 +00:00
return makeList(list);
* A primitive operation `dependencyClosure' to do automatic dependency determination (e.g., finding the header files dependencies of a C file) in Nix low-level builds automatically. For instance, in the function `compileC' in make/lib/default.nix, we find the header file dependencies of C file `main' as follows: localIncludes = dependencyClosure { scanner = file: import (findIncludes { inherit file; }); startSet = [main]; }; The function works by "growing" the set of dependencies, starting with the set `startSet', and calling the function `scanner' for each file to get its dependencies (which should yield a list of strings representing relative paths). For instance, when `scanner' is called on a file `foo.c' that includes the line #include "../bar/fnord.h" then `scanner' should yield ["../bar/fnord.h"]. This list of dependencies is absolutised relative to the including file and added to the set of dependencies. The process continues until no more dependencies are found (hence its a closure). `dependencyClosure' yields a list that contains in alternation a dependency, and its relative path to the directory of the start file, e.g., [ /bla/bla/foo.c "foo.c" /bla/bar/fnord.h "../bar/fnord.h" ] These relative paths are necessary for the builder that compiles foo.c to reconstruct the relative directory structure expected by foo.c. The advantage of `dependencyClosure' over the old approach (using the impure `__currentTime') is that it's completely pure, and more efficient because it only rescans for dependencies (i.e., by building the derivations yielded by `scanner') if sources have actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
}
2007-01-29 15:11:32 +00:00
/* Dynamic version of the `.' operator. */
static Expr prim_getAttr(EvalState & state, const ATermVector & args)
* A primitive operation `dependencyClosure' to do automatic dependency determination (e.g., finding the header files dependencies of a C file) in Nix low-level builds automatically. For instance, in the function `compileC' in make/lib/default.nix, we find the header file dependencies of C file `main' as follows: localIncludes = dependencyClosure { scanner = file: import (findIncludes { inherit file; }); startSet = [main]; }; The function works by "growing" the set of dependencies, starting with the set `startSet', and calling the function `scanner' for each file to get its dependencies (which should yield a list of strings representing relative paths). For instance, when `scanner' is called on a file `foo.c' that includes the line #include "../bar/fnord.h" then `scanner' should yield ["../bar/fnord.h"]. This list of dependencies is absolutised relative to the including file and added to the set of dependencies. The process continues until no more dependencies are found (hence its a closure). `dependencyClosure' yields a list that contains in alternation a dependency, and its relative path to the directory of the start file, e.g., [ /bla/bla/foo.c "foo.c" /bla/bar/fnord.h "../bar/fnord.h" ] These relative paths are necessary for the builder that compiles foo.c to reconstruct the relative directory structure expected by foo.c. The advantage of `dependencyClosure' over the old approach (using the impure `__currentTime') is that it's completely pure, and more efficient because it only rescans for dependencies (i.e., by building the derivations yielded by `scanner') if sources have actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
{
2007-01-29 15:11:32 +00:00
string attr = evalStringNoCtx(state, args[0]);
return evalExpr(state, makeSelect(args[1], toATerm(attr)));
}
* A primitive operation `dependencyClosure' to do automatic dependency determination (e.g., finding the header files dependencies of a C file) in Nix low-level builds automatically. For instance, in the function `compileC' in make/lib/default.nix, we find the header file dependencies of C file `main' as follows: localIncludes = dependencyClosure { scanner = file: import (findIncludes { inherit file; }); startSet = [main]; }; The function works by "growing" the set of dependencies, starting with the set `startSet', and calling the function `scanner' for each file to get its dependencies (which should yield a list of strings representing relative paths). For instance, when `scanner' is called on a file `foo.c' that includes the line #include "../bar/fnord.h" then `scanner' should yield ["../bar/fnord.h"]. This list of dependencies is absolutised relative to the including file and added to the set of dependencies. The process continues until no more dependencies are found (hence its a closure). `dependencyClosure' yields a list that contains in alternation a dependency, and its relative path to the directory of the start file, e.g., [ /bla/bla/foo.c "foo.c" /bla/bar/fnord.h "../bar/fnord.h" ] These relative paths are necessary for the builder that compiles foo.c to reconstruct the relative directory structure expected by foo.c. The advantage of `dependencyClosure' over the old approach (using the impure `__currentTime') is that it's completely pure, and more efficient because it only rescans for dependencies (i.e., by building the derivations yielded by `scanner') if sources have actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
2007-01-29 15:11:32 +00:00
/* Dynamic version of the `?' operator. */
static Expr prim_hasAttr(EvalState & state, const ATermVector & args)
2007-01-29 15:11:32 +00:00
{
string attr = evalStringNoCtx(state, args[0]);
return evalExpr(state, makeOpHasAttr(args[1], toATerm(attr)));
}
* A primitive operation `dependencyClosure' to do automatic dependency determination (e.g., finding the header files dependencies of a C file) in Nix low-level builds automatically. For instance, in the function `compileC' in make/lib/default.nix, we find the header file dependencies of C file `main' as follows: localIncludes = dependencyClosure { scanner = file: import (findIncludes { inherit file; }); startSet = [main]; }; The function works by "growing" the set of dependencies, starting with the set `startSet', and calling the function `scanner' for each file to get its dependencies (which should yield a list of strings representing relative paths). For instance, when `scanner' is called on a file `foo.c' that includes the line #include "../bar/fnord.h" then `scanner' should yield ["../bar/fnord.h"]. This list of dependencies is absolutised relative to the including file and added to the set of dependencies. The process continues until no more dependencies are found (hence its a closure). `dependencyClosure' yields a list that contains in alternation a dependency, and its relative path to the directory of the start file, e.g., [ /bla/bla/foo.c "foo.c" /bla/bar/fnord.h "../bar/fnord.h" ] These relative paths are necessary for the builder that compiles foo.c to reconstruct the relative directory structure expected by foo.c. The advantage of `dependencyClosure' over the old approach (using the impure `__currentTime') is that it's completely pure, and more efficient because it only rescans for dependencies (i.e., by building the derivations yielded by `scanner') if sources have actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
/* takes
* param: list of { attr="attr"; value=value }
* returns an attribute set
* */
static Expr prim_listToAttrs(EvalState & state, const ATermVector & args)
{
try {
ATermMap res = ATermMap();
ATermList list;
list = evalList(state, args[0]);
for (ATermIterator i(list); i; ++i){
// *i should now contain a pointer to the list item expression
ATermList attrs;
Expr evaledExpr = evalExpr(state, *i);
if (matchAttrs(evaledExpr, attrs)){
Expr e = evalExpr(state, makeSelect(evaledExpr, toATerm("attr")));
string attr = evalStringNoCtx(state,e);
Expr r = makeSelect(evaledExpr, toATerm("value"));
res.set(toATerm(attr), makeAttrRHS(r, makeNoPos()));
}
else {
throw EvalError(format("passed list item is a %s (value: %s). Set { attr=\"name\"; value=nix expr; } expected.") % showType(evaledExpr) % showValue(evaledExpr));
}
} // for
return makeAttrs(res);
} catch (Error & e) {
e.addPrefix(format("in `listToAttrs':\n"));
throw;
}
}
static Expr prim_removeAttrs(EvalState & state, const ATermVector & args)
2007-01-29 15:11:32 +00:00
{
ATermMap attrs;
queryAllAttrs(evalExpr(state, args[0]), attrs, true);
2007-01-29 15:11:32 +00:00
ATermList list = evalList(state, args[1]);
2007-01-29 15:11:32 +00:00
for (ATermIterator i(list); i; ++i)
/* It's not an error for *i not to exist. */
attrs.remove(toATerm(evalStringNoCtx(state, *i)));
2007-01-29 15:11:32 +00:00
return makeAttrs(attrs);
}
* A primitive operation `dependencyClosure' to do automatic dependency determination (e.g., finding the header files dependencies of a C file) in Nix low-level builds automatically. For instance, in the function `compileC' in make/lib/default.nix, we find the header file dependencies of C file `main' as follows: localIncludes = dependencyClosure { scanner = file: import (findIncludes { inherit file; }); startSet = [main]; }; The function works by "growing" the set of dependencies, starting with the set `startSet', and calling the function `scanner' for each file to get its dependencies (which should yield a list of strings representing relative paths). For instance, when `scanner' is called on a file `foo.c' that includes the line #include "../bar/fnord.h" then `scanner' should yield ["../bar/fnord.h"]. This list of dependencies is absolutised relative to the including file and added to the set of dependencies. The process continues until no more dependencies are found (hence its a closure). `dependencyClosure' yields a list that contains in alternation a dependency, and its relative path to the directory of the start file, e.g., [ /bla/bla/foo.c "foo.c" /bla/bar/fnord.h "../bar/fnord.h" ] These relative paths are necessary for the builder that compiles foo.c to reconstruct the relative directory structure expected by foo.c. The advantage of `dependencyClosure' over the old approach (using the impure `__currentTime') is that it's completely pure, and more efficient because it only rescans for dependencies (i.e., by building the derivations yielded by `scanner') if sources have actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
/* Determine whether the argument is a list. */
static Expr prim_isAttrs(EvalState & state, const ATermVector & args)
{
ATermList list;
return makeBool(matchAttrs(evalExpr(state, args[0]), list));
}
* A primitive operation `dependencyClosure' to do automatic dependency determination (e.g., finding the header files dependencies of a C file) in Nix low-level builds automatically. For instance, in the function `compileC' in make/lib/default.nix, we find the header file dependencies of C file `main' as follows: localIncludes = dependencyClosure { scanner = file: import (findIncludes { inherit file; }); startSet = [main]; }; The function works by "growing" the set of dependencies, starting with the set `startSet', and calling the function `scanner' for each file to get its dependencies (which should yield a list of strings representing relative paths). For instance, when `scanner' is called on a file `foo.c' that includes the line #include "../bar/fnord.h" then `scanner' should yield ["../bar/fnord.h"]. This list of dependencies is absolutised relative to the including file and added to the set of dependencies. The process continues until no more dependencies are found (hence its a closure). `dependencyClosure' yields a list that contains in alternation a dependency, and its relative path to the directory of the start file, e.g., [ /bla/bla/foo.c "foo.c" /bla/bar/fnord.h "../bar/fnord.h" ] These relative paths are necessary for the builder that compiles foo.c to reconstruct the relative directory structure expected by foo.c. The advantage of `dependencyClosure' over the old approach (using the impure `__currentTime') is that it's completely pure, and more efficient because it only rescans for dependencies (i.e., by building the derivations yielded by `scanner') if sources have actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
2007-01-29 15:11:32 +00:00
/*************************************************************
* Lists
*************************************************************/
* A primitive operation `dependencyClosure' to do automatic dependency determination (e.g., finding the header files dependencies of a C file) in Nix low-level builds automatically. For instance, in the function `compileC' in make/lib/default.nix, we find the header file dependencies of C file `main' as follows: localIncludes = dependencyClosure { scanner = file: import (findIncludes { inherit file; }); startSet = [main]; }; The function works by "growing" the set of dependencies, starting with the set `startSet', and calling the function `scanner' for each file to get its dependencies (which should yield a list of strings representing relative paths). For instance, when `scanner' is called on a file `foo.c' that includes the line #include "../bar/fnord.h" then `scanner' should yield ["../bar/fnord.h"]. This list of dependencies is absolutised relative to the including file and added to the set of dependencies. The process continues until no more dependencies are found (hence its a closure). `dependencyClosure' yields a list that contains in alternation a dependency, and its relative path to the directory of the start file, e.g., [ /bla/bla/foo.c "foo.c" /bla/bar/fnord.h "../bar/fnord.h" ] These relative paths are necessary for the builder that compiles foo.c to reconstruct the relative directory structure expected by foo.c. The advantage of `dependencyClosure' over the old approach (using the impure `__currentTime') is that it's completely pure, and more efficient because it only rescans for dependencies (i.e., by building the derivations yielded by `scanner') if sources have actually changed. The old approach rescanned every time.
2005-08-14 12:38:47 +00:00
2007-01-29 15:11:32 +00:00
/* Determine whether the argument is a list. */
static Expr prim_isList(EvalState & state, const ATermVector & args)
2006-08-23 15:46:00 +00:00
{
2007-01-29 15:11:32 +00:00
ATermList list;
return makeBool(matchList(evalExpr(state, args[0]), list));
2006-08-23 15:46:00 +00:00
}
/* Return the first element of a list. */
static Expr prim_head(EvalState & state, const ATermVector & args)
{
ATermList list = evalList(state, args[0]);
if (ATisEmpty(list))
throw Error("`head' called on an empty list");
return evalExpr(state, ATgetFirst(list));
}
/* Return a list consisting of everything but the the first element of
a list. */
static Expr prim_tail(EvalState & state, const ATermVector & args)
{
ATermList list = evalList(state, args[0]);
if (ATisEmpty(list))
throw Error("`tail' called on an empty list");
return makeList(ATgetNext(list));
}
/* Apply a function to every element of a list. */
static Expr prim_map(EvalState & state, const ATermVector & args)
{
Expr fun = evalExpr(state, args[0]);
ATermList list = evalList(state, args[1]);
ATermList res = ATempty;
for (ATermIterator i(list); i; ++i)
res = ATinsert(res, makeCall(fun, *i));
return makeList(ATreverse(res));
}
2007-01-29 15:11:32 +00:00
/*************************************************************
* Integer arithmetic
*************************************************************/
static Expr prim_add(EvalState & state, const ATermVector & args)
{
int i1 = evalInt(state, args[0]);
int i2 = evalInt(state, args[1]);
return makeInt(i1 + i2);
}
static Expr prim_sub(EvalState & state, const ATermVector & args)
{
int i1 = evalInt(state, args[0]);
int i2 = evalInt(state, args[1]);
return makeInt(i1 - i2);
}
static Expr prim_lessThan(EvalState & state, const ATermVector & args)
{
int i1 = evalInt(state, args[0]);
int i2 = evalInt(state, args[1]);
return makeBool(i1 < i2);
}
/*************************************************************
* String manipulation
*************************************************************/
/* Convert the argument to a string. Paths are *not* copied to the
store, so `toString /foo/bar' yields `"/foo/bar"', not
`"/nix/store/whatever..."'. */
static Expr prim_toString(EvalState & state, const ATermVector & args)
{
PathSet context;
string s = coerceToString(state, args[0], context, true, false);
return makeStr(s, context);
}
/* `substr start len str' returns the substring of `str' starting at
character position `min(start, stringLength str)' inclusive and
ending at `min(start + len, stringLength str)'. `start' must be
non-negative. */
static Expr prim_substring(EvalState & state, const ATermVector & args)
{
int start = evalInt(state, args[0]);
int len = evalInt(state, args[1]);
PathSet context;
string s = coerceToString(state, args[2], context);
if (start < 0) throw EvalError("negative start position in `substring'");
return makeStr(string(s, start, len), context);
}
static Expr prim_stringLength(EvalState & state, const ATermVector & args)
{
PathSet context;
string s = coerceToString(state, args[0], context);
return makeInt(s.size());
}
/*************************************************************
* Primop registration
*************************************************************/
void EvalState::addPrimOps()
{
addPrimOp("builtins", 0, prim_builtins);
2007-01-29 15:11:32 +00:00
// Constants
addPrimOp("true", 0, prim_true);
addPrimOp("false", 0, prim_false);
addPrimOp("null", 0, prim_null);
addPrimOp("__currentSystem", 0, prim_currentSystem);
addPrimOp("__currentTime", 0, prim_currentTime);
2007-01-29 15:11:32 +00:00
// Miscellaneous
addPrimOp("import", 1, prim_import);
addPrimOp("isNull", 1, prim_isNull);
addPrimOp("__isFunction", 1, prim_isFunction);
addPrimOp("dependencyClosure", 1, prim_dependencyClosure);
addPrimOp("abort", 1, prim_abort);
addPrimOp("throw", 1, prim_throw);
addPrimOp("__getEnv", 1, prim_getEnv);
addPrimOp("__trace", 2, prim_trace);
addPrimOp("relativise", 2, prim_relativise);
2007-01-29 15:11:32 +00:00
// Derivations
addPrimOp("derivation!", 1, prim_derivationStrict);
addPrimOp("derivation", 1, prim_derivationLazy);
2007-01-29 15:11:32 +00:00
// Paths
addPrimOp("__toPath", 1, prim_toPath);
addPrimOp("__pathExists", 1, prim_pathExists);
addPrimOp("baseNameOf", 1, prim_baseNameOf);
addPrimOp("dirOf", 1, prim_dirOf);
2007-01-29 15:11:32 +00:00
// Creating files
addPrimOp("__toXML", 1, prim_toXML);
addPrimOp("__toFile", 2, prim_toFile);
addPrimOp("__filterSource", 2, prim_filterSource);
2007-01-29 15:11:32 +00:00
// Attribute sets
addPrimOp("__attrNames", 1, prim_attrNames);
addPrimOp("__getAttr", 2, prim_getAttr);
addPrimOp("__hasAttr", 2, prim_hasAttr);
addPrimOp("__isAttrs", 1, prim_isAttrs);
addPrimOp("removeAttrs", 2, prim_removeAttrs);
addPrimOp("__listToAttrs", 1, prim_listToAttrs);
2007-01-29 15:11:32 +00:00
// Lists
addPrimOp("__isList", 1, prim_isList);
addPrimOp("__head", 1, prim_head);
addPrimOp("__tail", 1, prim_tail);
addPrimOp("map", 2, prim_map);
2007-01-29 15:11:32 +00:00
// Integer arithmetic
addPrimOp("__add", 2, prim_add);
addPrimOp("__sub", 2, prim_sub);
addPrimOp("__lessThan", 2, prim_lessThan);
2007-01-29 15:11:32 +00:00
// String manipulation
addPrimOp("toString", 1, prim_toString);
addPrimOp("__substring", 3, prim_substring);
addPrimOp("__stringLength", 1, prim_stringLength);
}
}