forked from lix-project/lix
Require OpenSSL
This commit is contained in:
parent
85aeedb9bc
commit
a6ca68a70c
|
@ -3,7 +3,6 @@ CC = @CC@
|
|||
CFLAGS = @CFLAGS@
|
||||
CXX = @CXX@
|
||||
CXXFLAGS = @CXXFLAGS@
|
||||
HAVE_OPENSSL = @HAVE_OPENSSL@
|
||||
HAVE_SODIUM = @HAVE_SODIUM@
|
||||
OPENSSL_LIBS = @OPENSSL_LIBS@
|
||||
PACKAGE_NAME = @PACKAGE_NAME@
|
||||
|
|
|
@ -183,16 +183,12 @@ AC_ARG_WITH(store-dir, AC_HELP_STRING([--with-store-dir=PATH],
|
|||
AC_SUBST(storedir)
|
||||
|
||||
|
||||
# Look for OpenSSL, an optional dependency.
|
||||
# Look for OpenSSL, a required dependency.
|
||||
AC_PATH_PROG(openssl, openssl, openssl) # if not found, call openssl in $PATH
|
||||
AC_SUBST(openssl)
|
||||
AC_DEFINE_UNQUOTED(OPENSSL_PATH, ["$openssl"], [Path of the OpenSSL binary])
|
||||
|
||||
PKG_CHECK_MODULES([OPENSSL], [libcrypto],
|
||||
[AC_DEFINE([HAVE_OPENSSL], [1], [Whether to use OpenSSL.])
|
||||
CXXFLAGS="$OPENSSL_CFLAGS $CXXFLAGS"
|
||||
have_openssl=1], [have_openssl=])
|
||||
AC_SUBST(HAVE_OPENSSL, [$have_openssl])
|
||||
PKG_CHECK_MODULES([OPENSSL], [libcrypto], [CXXFLAGS="$OPENSSL_CFLAGS $CXXFLAGS"])
|
||||
|
||||
|
||||
# Look for libbz2, a required dependency.
|
||||
|
|
|
@ -3,16 +3,8 @@
|
|||
#include <iostream>
|
||||
#include <cstring>
|
||||
|
||||
#ifdef HAVE_OPENSSL
|
||||
#include <openssl/md5.h>
|
||||
#include <openssl/sha.h>
|
||||
#else
|
||||
extern "C" {
|
||||
#include "md5.h"
|
||||
#include "sha1.h"
|
||||
#include "sha256.h"
|
||||
}
|
||||
#endif
|
||||
|
||||
#include "hash.hh"
|
||||
#include "archive.hh"
|
||||
|
|
|
@ -6,12 +6,6 @@ libutil_DIR := $(d)
|
|||
|
||||
libutil_SOURCES := $(wildcard $(d)/*.cc)
|
||||
|
||||
libutil_LDFLAGS = -llzma
|
||||
|
||||
ifeq ($(HAVE_OPENSSL), 1)
|
||||
libutil_LDFLAGS += $(OPENSSL_LIBS)
|
||||
else
|
||||
libutil_SOURCES += $(d)/md5.c $(d)/sha1.c $(d)/sha256.c
|
||||
endif
|
||||
libutil_LDFLAGS = -llzma $(OPENSSL_LIBS)
|
||||
|
||||
libutil_LIBS = libformat
|
||||
|
|
|
@ -1,620 +0,0 @@
|
|||
/* crypto/md32_common.h */
|
||||
/* ====================================================================
|
||||
* Copyright (c) 1999-2002 The OpenSSL Project. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
*
|
||||
* 3. All advertising materials mentioning features or use of this
|
||||
* software must display the following acknowledgment:
|
||||
* "This product includes software developed by the OpenSSL Project
|
||||
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
||||
*
|
||||
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
||||
* endorse or promote products derived from this software without
|
||||
* prior written permission. For written permission, please contact
|
||||
* licensing@OpenSSL.org.
|
||||
*
|
||||
* 5. Products derived from this software may not be called "OpenSSL"
|
||||
* nor may "OpenSSL" appear in their names without prior written
|
||||
* permission of the OpenSSL Project.
|
||||
*
|
||||
* 6. Redistributions of any form whatsoever must retain the following
|
||||
* acknowledgment:
|
||||
* "This product includes software developed by the OpenSSL Project
|
||||
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
||||
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
||||
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
||||
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
* ====================================================================
|
||||
*
|
||||
* This product includes cryptographic software written by Eric Young
|
||||
* (eay@cryptsoft.com). This product includes software written by Tim
|
||||
* Hudson (tjh@cryptsoft.com).
|
||||
*
|
||||
*/
|
||||
|
||||
/*
|
||||
* This is a generic 32 bit "collector" for message digest algorithms.
|
||||
* Whenever needed it collects input character stream into chunks of
|
||||
* 32 bit values and invokes a block function that performs actual hash
|
||||
* calculations.
|
||||
*
|
||||
* Porting guide.
|
||||
*
|
||||
* Obligatory macros:
|
||||
*
|
||||
* DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN
|
||||
* this macro defines byte order of input stream.
|
||||
* HASH_CBLOCK
|
||||
* size of a unit chunk HASH_BLOCK operates on.
|
||||
* HASH_LONG
|
||||
* has to be at lest 32 bit wide, if it's wider, then
|
||||
* HASH_LONG_LOG2 *has to* be defined along
|
||||
* HASH_CTX
|
||||
* context structure that at least contains following
|
||||
* members:
|
||||
* typedef struct {
|
||||
* ...
|
||||
* HASH_LONG Nl,Nh;
|
||||
* HASH_LONG data[HASH_LBLOCK];
|
||||
* unsigned int num;
|
||||
* ...
|
||||
* } HASH_CTX;
|
||||
* HASH_UPDATE
|
||||
* name of "Update" function, implemented here.
|
||||
* HASH_TRANSFORM
|
||||
* name of "Transform" function, implemented here.
|
||||
* HASH_FINAL
|
||||
* name of "Final" function, implemented here.
|
||||
* HASH_BLOCK_HOST_ORDER
|
||||
* name of "block" function treating *aligned* input message
|
||||
* in host byte order, implemented externally.
|
||||
* HASH_BLOCK_DATA_ORDER
|
||||
* name of "block" function treating *unaligned* input message
|
||||
* in original (data) byte order, implemented externally (it
|
||||
* actually is optional if data and host are of the same
|
||||
* "endianess").
|
||||
* HASH_MAKE_STRING
|
||||
* macro convering context variables to an ASCII hash string.
|
||||
*
|
||||
* Optional macros:
|
||||
*
|
||||
* B_ENDIAN or L_ENDIAN
|
||||
* defines host byte-order.
|
||||
* HASH_LONG_LOG2
|
||||
* defaults to 2 if not states otherwise.
|
||||
* HASH_LBLOCK
|
||||
* assumed to be HASH_CBLOCK/4 if not stated otherwise.
|
||||
* HASH_BLOCK_DATA_ORDER_ALIGNED
|
||||
* alternative "block" function capable of treating
|
||||
* aligned input message in original (data) order,
|
||||
* implemented externally.
|
||||
*
|
||||
* MD5 example:
|
||||
*
|
||||
* #define DATA_ORDER_IS_LITTLE_ENDIAN
|
||||
*
|
||||
* #define HASH_LONG MD5_LONG
|
||||
* #define HASH_LONG_LOG2 MD5_LONG_LOG2
|
||||
* #define HASH_CTX MD5_CTX
|
||||
* #define HASH_CBLOCK MD5_CBLOCK
|
||||
* #define HASH_LBLOCK MD5_LBLOCK
|
||||
* #define HASH_UPDATE MD5_Update
|
||||
* #define HASH_TRANSFORM MD5_Transform
|
||||
* #define HASH_FINAL MD5_Final
|
||||
* #define HASH_BLOCK_HOST_ORDER md5_block_host_order
|
||||
* #define HASH_BLOCK_DATA_ORDER md5_block_data_order
|
||||
*
|
||||
* <appro@fy.chalmers.se>
|
||||
*/
|
||||
|
||||
#if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN)
|
||||
#error "DATA_ORDER must be defined!"
|
||||
#endif
|
||||
|
||||
#ifndef HASH_CBLOCK
|
||||
#error "HASH_CBLOCK must be defined!"
|
||||
#endif
|
||||
#ifndef HASH_LONG
|
||||
#error "HASH_LONG must be defined!"
|
||||
#endif
|
||||
#ifndef HASH_CTX
|
||||
#error "HASH_CTX must be defined!"
|
||||
#endif
|
||||
|
||||
#ifndef HASH_UPDATE
|
||||
#error "HASH_UPDATE must be defined!"
|
||||
#endif
|
||||
#ifndef HASH_TRANSFORM
|
||||
#error "HASH_TRANSFORM must be defined!"
|
||||
#endif
|
||||
#ifndef HASH_FINAL
|
||||
#error "HASH_FINAL must be defined!"
|
||||
#endif
|
||||
|
||||
#ifndef HASH_BLOCK_HOST_ORDER
|
||||
#error "HASH_BLOCK_HOST_ORDER must be defined!"
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
/*
|
||||
* Moved below as it's required only if HASH_BLOCK_DATA_ORDER_ALIGNED
|
||||
* isn't defined.
|
||||
*/
|
||||
#ifndef HASH_BLOCK_DATA_ORDER
|
||||
#error "HASH_BLOCK_DATA_ORDER must be defined!"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef HASH_LBLOCK
|
||||
#define HASH_LBLOCK (HASH_CBLOCK/4)
|
||||
#endif
|
||||
|
||||
#ifndef HASH_LONG_LOG2
|
||||
#define HASH_LONG_LOG2 2
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Engage compiler specific rotate intrinsic function if available.
|
||||
*/
|
||||
#undef ROTATE
|
||||
#ifndef PEDANTIC
|
||||
# if defined(_MSC_VER) || defined(__ICC)
|
||||
# define ROTATE(a,n) _lrotl(a,n)
|
||||
# elif defined(__MWERKS__)
|
||||
# if defined(__POWERPC__)
|
||||
# define ROTATE(a,n) __rlwinm(a,n,0,31)
|
||||
# elif defined(__MC68K__)
|
||||
/* Motorola specific tweak. <appro@fy.chalmers.se> */
|
||||
# define ROTATE(a,n) ( n<24 ? __rol(a,n) : __ror(a,32-n) )
|
||||
# else
|
||||
# define ROTATE(a,n) __rol(a,n)
|
||||
# endif
|
||||
# elif defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
|
||||
/*
|
||||
* Some GNU C inline assembler templates. Note that these are
|
||||
* rotates by *constant* number of bits! But that's exactly
|
||||
* what we need here...
|
||||
* <appro@fy.chalmers.se>
|
||||
*/
|
||||
# if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)
|
||||
# define ROTATE(a,n) ({ register unsigned int ret; \
|
||||
asm ( \
|
||||
"roll %1,%0" \
|
||||
: "=r"(ret) \
|
||||
: "I"(n), "0"(a) \
|
||||
: "cc"); \
|
||||
ret; \
|
||||
})
|
||||
# elif defined(__powerpc) || defined(__ppc__) || defined(__powerpc64__)
|
||||
# define ROTATE(a,n) ({ register unsigned int ret; \
|
||||
asm ( \
|
||||
"rlwinm %0,%1,%2,0,31" \
|
||||
: "=r"(ret) \
|
||||
: "r"(a), "I"(n)); \
|
||||
ret; \
|
||||
})
|
||||
# endif
|
||||
# endif
|
||||
#endif /* PEDANTIC */
|
||||
|
||||
#if HASH_LONG_LOG2==2 /* Engage only if sizeof(HASH_LONG)== 4 */
|
||||
/* A nice byte order reversal from Wei Dai <weidai@eskimo.com> */
|
||||
#ifdef ROTATE
|
||||
/* 5 instructions with rotate instruction, else 9 */
|
||||
#define REVERSE_FETCH32(a,l) ( \
|
||||
l=*(const HASH_LONG *)(a), \
|
||||
((ROTATE(l,8)&0x00FF00FF)|(ROTATE((l&0x00FF00FF),24))) \
|
||||
)
|
||||
#else
|
||||
/* 6 instructions with rotate instruction, else 8 */
|
||||
#define REVERSE_FETCH32(a,l) ( \
|
||||
l=*(const HASH_LONG *)(a), \
|
||||
l=(((l>>8)&0x00FF00FF)|((l&0x00FF00FF)<<8)), \
|
||||
ROTATE(l,16) \
|
||||
)
|
||||
/*
|
||||
* Originally the middle line started with l=(((l&0xFF00FF00)>>8)|...
|
||||
* It's rewritten as above for two reasons:
|
||||
* - RISCs aren't good at long constants and have to explicitely
|
||||
* compose 'em with several (well, usually 2) instructions in a
|
||||
* register before performing the actual operation and (as you
|
||||
* already realized:-) having same constant should inspire the
|
||||
* compiler to permanently allocate the only register for it;
|
||||
* - most modern CPUs have two ALUs, but usually only one has
|
||||
* circuitry for shifts:-( this minor tweak inspires compiler
|
||||
* to schedule shift instructions in a better way...
|
||||
*
|
||||
* <appro@fy.chalmers.se>
|
||||
*/
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef ROTATE
|
||||
#define ROTATE(a,n) (((a)<<(n))|(((a)&0xffffffff)>>(32-(n))))
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Make some obvious choices. E.g., HASH_BLOCK_DATA_ORDER_ALIGNED
|
||||
* and HASH_BLOCK_HOST_ORDER ought to be the same if input data
|
||||
* and host are of the same "endianess". It's possible to mask
|
||||
* this with blank #define HASH_BLOCK_DATA_ORDER though...
|
||||
*
|
||||
* <appro@fy.chalmers.se>
|
||||
*/
|
||||
#if defined(B_ENDIAN)
|
||||
# if defined(DATA_ORDER_IS_BIG_ENDIAN)
|
||||
# if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2
|
||||
# define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER
|
||||
# endif
|
||||
# endif
|
||||
#elif defined(L_ENDIAN)
|
||||
# if defined(DATA_ORDER_IS_LITTLE_ENDIAN)
|
||||
# if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2
|
||||
# define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
|
||||
#ifndef HASH_BLOCK_DATA_ORDER
|
||||
#error "HASH_BLOCK_DATA_ORDER must be defined!"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
|
||||
|
||||
#ifndef PEDANTIC
|
||||
# if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
|
||||
# if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)
|
||||
/*
|
||||
* This gives ~30-40% performance improvement in SHA-256 compiled
|
||||
* with gcc [on P4]. Well, first macro to be frank. We can pull
|
||||
* this trick on x86* platforms only, because these CPUs can fetch
|
||||
* unaligned data without raising an exception.
|
||||
*/
|
||||
# define HOST_c2l(c,l) ({ unsigned int r=*((const unsigned int *)(c)); \
|
||||
asm ("bswapl %0":"=r"(r):"0"(r)); \
|
||||
(c)+=4; (l)=r; })
|
||||
# define HOST_l2c(l,c) ({ unsigned int r=(l); \
|
||||
asm ("bswapl %0":"=r"(r):"0"(r)); \
|
||||
*((unsigned int *)(c))=r; (c)+=4; r; })
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef HOST_c2l
|
||||
#define HOST_c2l(c,l) (l =(((unsigned long)(*((c)++)))<<24), \
|
||||
l|=(((unsigned long)(*((c)++)))<<16), \
|
||||
l|=(((unsigned long)(*((c)++)))<< 8), \
|
||||
l|=(((unsigned long)(*((c)++))) ), \
|
||||
l)
|
||||
#endif
|
||||
#define HOST_p_c2l(c,l,n) { \
|
||||
switch (n) { \
|
||||
case 0: l =((unsigned long)(*((c)++)))<<24; \
|
||||
case 1: l|=((unsigned long)(*((c)++)))<<16; \
|
||||
case 2: l|=((unsigned long)(*((c)++)))<< 8; \
|
||||
case 3: l|=((unsigned long)(*((c)++))); \
|
||||
} }
|
||||
#define HOST_p_c2l_p(c,l,sc,len) { \
|
||||
switch (sc) { \
|
||||
case 0: l =((unsigned long)(*((c)++)))<<24; \
|
||||
if (--len == 0) break; \
|
||||
case 1: l|=((unsigned long)(*((c)++)))<<16; \
|
||||
if (--len == 0) break; \
|
||||
case 2: l|=((unsigned long)(*((c)++)))<< 8; \
|
||||
} }
|
||||
/* NOTE the pointer is not incremented at the end of this */
|
||||
#define HOST_c2l_p(c,l,n) { \
|
||||
l=0; (c)+=n; \
|
||||
switch (n) { \
|
||||
case 3: l =((unsigned long)(*(--(c))))<< 8; \
|
||||
case 2: l|=((unsigned long)(*(--(c))))<<16; \
|
||||
case 1: l|=((unsigned long)(*(--(c))))<<24; \
|
||||
} }
|
||||
#ifndef HOST_l2c
|
||||
#define HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l)>>24)&0xff), \
|
||||
*((c)++)=(unsigned char)(((l)>>16)&0xff), \
|
||||
*((c)++)=(unsigned char)(((l)>> 8)&0xff), \
|
||||
*((c)++)=(unsigned char)(((l) )&0xff), \
|
||||
l)
|
||||
#endif
|
||||
|
||||
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
|
||||
|
||||
#if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)
|
||||
/* See comment in DATA_ORDER_IS_BIG_ENDIAN section. */
|
||||
# define HOST_c2l(c,l) ((l)=*((const unsigned int *)(c)), (c)+=4, l)
|
||||
# define HOST_l2c(l,c) (*((unsigned int *)(c))=(l), (c)+=4, l)
|
||||
#endif
|
||||
|
||||
#ifndef HOST_c2l
|
||||
#define HOST_c2l(c,l) (l =(((unsigned long)(*((c)++))) ), \
|
||||
l|=(((unsigned long)(*((c)++)))<< 8), \
|
||||
l|=(((unsigned long)(*((c)++)))<<16), \
|
||||
l|=(((unsigned long)(*((c)++)))<<24), \
|
||||
l)
|
||||
#endif
|
||||
#define HOST_p_c2l(c,l,n) { \
|
||||
switch (n) { \
|
||||
case 0: l =((unsigned long)(*((c)++))); \
|
||||
case 1: l|=((unsigned long)(*((c)++)))<< 8; \
|
||||
case 2: l|=((unsigned long)(*((c)++)))<<16; \
|
||||
case 3: l|=((unsigned long)(*((c)++)))<<24; \
|
||||
} }
|
||||
#define HOST_p_c2l_p(c,l,sc,len) { \
|
||||
switch (sc) { \
|
||||
case 0: l =((unsigned long)(*((c)++))); \
|
||||
if (--len == 0) break; \
|
||||
case 1: l|=((unsigned long)(*((c)++)))<< 8; \
|
||||
if (--len == 0) break; \
|
||||
case 2: l|=((unsigned long)(*((c)++)))<<16; \
|
||||
} }
|
||||
/* NOTE the pointer is not incremented at the end of this */
|
||||
#define HOST_c2l_p(c,l,n) { \
|
||||
l=0; (c)+=n; \
|
||||
switch (n) { \
|
||||
case 3: l =((unsigned long)(*(--(c))))<<16; \
|
||||
case 2: l|=((unsigned long)(*(--(c))))<< 8; \
|
||||
case 1: l|=((unsigned long)(*(--(c)))); \
|
||||
} }
|
||||
#ifndef HOST_l2c
|
||||
#define HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \
|
||||
*((c)++)=(unsigned char)(((l)>> 8)&0xff), \
|
||||
*((c)++)=(unsigned char)(((l)>>16)&0xff), \
|
||||
*((c)++)=(unsigned char)(((l)>>24)&0xff), \
|
||||
l)
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Time for some action:-)
|
||||
*/
|
||||
|
||||
int HASH_UPDATE (HASH_CTX *c, const void *data_, size_t len)
|
||||
{
|
||||
const unsigned char *data=data_;
|
||||
register HASH_LONG * p;
|
||||
register HASH_LONG l;
|
||||
size_t sw,sc,ew,ec;
|
||||
|
||||
if (len==0) return 1;
|
||||
|
||||
l=(c->Nl+(((HASH_LONG)len)<<3))&0xffffffffUL;
|
||||
/* 95-05-24 eay Fixed a bug with the overflow handling, thanks to
|
||||
* Wei Dai <weidai@eskimo.com> for pointing it out. */
|
||||
if (l < c->Nl) /* overflow */
|
||||
c->Nh++;
|
||||
c->Nh+=(len>>29); /* might cause compiler warning on 16-bit */
|
||||
c->Nl=l;
|
||||
|
||||
if (c->num != 0)
|
||||
{
|
||||
p=c->data;
|
||||
sw=c->num>>2;
|
||||
sc=c->num&0x03;
|
||||
|
||||
if ((c->num+len) >= HASH_CBLOCK)
|
||||
{
|
||||
l=p[sw]; HOST_p_c2l(data,l,sc); p[sw++]=l;
|
||||
for (; sw<HASH_LBLOCK; sw++)
|
||||
{
|
||||
HOST_c2l(data,l); p[sw]=l;
|
||||
}
|
||||
HASH_BLOCK_HOST_ORDER (c,p,1);
|
||||
len-=(HASH_CBLOCK-c->num);
|
||||
c->num=0;
|
||||
/* drop through and do the rest */
|
||||
}
|
||||
else
|
||||
{
|
||||
c->num+=(unsigned int)len;
|
||||
if ((sc+len) < 4) /* ugly, add char's to a word */
|
||||
{
|
||||
l=p[sw]; HOST_p_c2l_p(data,l,sc,len); p[sw]=l;
|
||||
}
|
||||
else
|
||||
{
|
||||
ew=(c->num>>2);
|
||||
ec=(c->num&0x03);
|
||||
if (sc)
|
||||
l=p[sw];
|
||||
HOST_p_c2l(data,l,sc);
|
||||
p[sw++]=l;
|
||||
for (; sw < ew; sw++)
|
||||
{
|
||||
HOST_c2l(data,l); p[sw]=l;
|
||||
}
|
||||
if (ec)
|
||||
{
|
||||
HOST_c2l_p(data,l,ec); p[sw]=l;
|
||||
}
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
sw=len/HASH_CBLOCK;
|
||||
if (sw > 0)
|
||||
{
|
||||
#if defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
|
||||
/*
|
||||
* Note that HASH_BLOCK_DATA_ORDER_ALIGNED gets defined
|
||||
* only if sizeof(HASH_LONG)==4.
|
||||
*/
|
||||
if ((((size_t)data)%4) == 0)
|
||||
{
|
||||
/* data is properly aligned so that we can cast it: */
|
||||
HASH_BLOCK_DATA_ORDER_ALIGNED (c,(const HASH_LONG *)data,sw);
|
||||
sw*=HASH_CBLOCK;
|
||||
data+=sw;
|
||||
len-=sw;
|
||||
}
|
||||
else
|
||||
#if !defined(HASH_BLOCK_DATA_ORDER)
|
||||
while (sw--)
|
||||
{
|
||||
memcpy (p=c->data,data,HASH_CBLOCK);
|
||||
HASH_BLOCK_DATA_ORDER_ALIGNED(c,p,1);
|
||||
data+=HASH_CBLOCK;
|
||||
len-=HASH_CBLOCK;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
#if defined(HASH_BLOCK_DATA_ORDER)
|
||||
{
|
||||
HASH_BLOCK_DATA_ORDER(c,data,sw);
|
||||
sw*=HASH_CBLOCK;
|
||||
data+=sw;
|
||||
len-=sw;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
if (len!=0)
|
||||
{
|
||||
p = c->data;
|
||||
c->num = len;
|
||||
ew=len>>2; /* words to copy */
|
||||
ec=len&0x03;
|
||||
for (; ew; ew--,p++)
|
||||
{
|
||||
HOST_c2l(data,l); *p=l;
|
||||
}
|
||||
HOST_c2l_p(data,l,ec);
|
||||
*p=l;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
void HASH_TRANSFORM (HASH_CTX *c, const unsigned char *data)
|
||||
{
|
||||
#if defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
|
||||
if ((((size_t)data)%4) == 0)
|
||||
/* data is properly aligned so that we can cast it: */
|
||||
HASH_BLOCK_DATA_ORDER_ALIGNED (c,(const HASH_LONG *)data,1);
|
||||
else
|
||||
#if !defined(HASH_BLOCK_DATA_ORDER)
|
||||
{
|
||||
memcpy (c->data,data,HASH_CBLOCK);
|
||||
HASH_BLOCK_DATA_ORDER_ALIGNED (c,c->data,1);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
#if defined(HASH_BLOCK_DATA_ORDER)
|
||||
HASH_BLOCK_DATA_ORDER (c,data,1);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
int HASH_FINAL (unsigned char *md, HASH_CTX *c)
|
||||
{
|
||||
register HASH_LONG *p;
|
||||
register unsigned long l;
|
||||
register int i,j;
|
||||
static const unsigned char end[4]={0x80,0x00,0x00,0x00};
|
||||
const unsigned char *cp=end;
|
||||
|
||||
/* c->num should definitly have room for at least one more byte. */
|
||||
p=c->data;
|
||||
i=c->num>>2;
|
||||
j=c->num&0x03;
|
||||
|
||||
#if 0
|
||||
/* purify often complains about the following line as an
|
||||
* Uninitialized Memory Read. While this can be true, the
|
||||
* following p_c2l macro will reset l when that case is true.
|
||||
* This is because j&0x03 contains the number of 'valid' bytes
|
||||
* already in p[i]. If and only if j&0x03 == 0, the UMR will
|
||||
* occur but this is also the only time p_c2l will do
|
||||
* l= *(cp++) instead of l|= *(cp++)
|
||||
* Many thanks to Alex Tang <altitude@cic.net> for pickup this
|
||||
* 'potential bug' */
|
||||
#ifdef PURIFY
|
||||
if (j==0) p[i]=0; /* Yeah, but that's not the way to fix it:-) */
|
||||
#endif
|
||||
l=p[i];
|
||||
#else
|
||||
l = (j==0) ? 0 : p[i];
|
||||
#endif
|
||||
HOST_p_c2l(cp,l,j); p[i++]=l; /* i is the next 'undefined word' */
|
||||
|
||||
if (i>(HASH_LBLOCK-2)) /* save room for Nl and Nh */
|
||||
{
|
||||
if (i<HASH_LBLOCK) p[i]=0;
|
||||
HASH_BLOCK_HOST_ORDER (c,p,1);
|
||||
i=0;
|
||||
}
|
||||
for (; i<(HASH_LBLOCK-2); i++)
|
||||
p[i]=0;
|
||||
|
||||
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
|
||||
p[HASH_LBLOCK-2]=c->Nh;
|
||||
p[HASH_LBLOCK-1]=c->Nl;
|
||||
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
|
||||
p[HASH_LBLOCK-2]=c->Nl;
|
||||
p[HASH_LBLOCK-1]=c->Nh;
|
||||
#endif
|
||||
HASH_BLOCK_HOST_ORDER (c,p,1);
|
||||
|
||||
#ifndef HASH_MAKE_STRING
|
||||
#error "HASH_MAKE_STRING must be defined!"
|
||||
#else
|
||||
HASH_MAKE_STRING(c,md);
|
||||
#endif
|
||||
|
||||
c->num=0;
|
||||
/* clear stuff, HASH_BLOCK may be leaving some stuff on the stack
|
||||
* but I'm not worried :-)
|
||||
OPENSSL_cleanse((void *)c,sizeof(HASH_CTX));
|
||||
*/
|
||||
return 1;
|
||||
}
|
||||
|
||||
#ifndef MD32_REG_T
|
||||
#define MD32_REG_T long
|
||||
/*
|
||||
* This comment was originaly written for MD5, which is why it
|
||||
* discusses A-D. But it basically applies to all 32-bit digests,
|
||||
* which is why it was moved to common header file.
|
||||
*
|
||||
* In case you wonder why A-D are declared as long and not
|
||||
* as MD5_LONG. Doing so results in slight performance
|
||||
* boost on LP64 architectures. The catch is we don't
|
||||
* really care if 32 MSBs of a 64-bit register get polluted
|
||||
* with eventual overflows as we *save* only 32 LSBs in
|
||||
* *either* case. Now declaring 'em long excuses the compiler
|
||||
* from keeping 32 MSBs zeroed resulting in 13% performance
|
||||
* improvement under SPARC Solaris7/64 and 5% under AlphaLinux.
|
||||
* Well, to be honest it should say that this *prevents*
|
||||
* performance degradation.
|
||||
* <appro@fy.chalmers.se>
|
||||
* Apparently there're LP64 compilers that generate better
|
||||
* code if A-D are declared int. Most notably GCC-x86_64
|
||||
* generates better code.
|
||||
* <appro@fy.chalmers.se>
|
||||
*/
|
||||
#endif
|
|
@ -1,365 +0,0 @@
|
|||
/* Functions to compute MD5 message digest of files or memory blocks.
|
||||
according to the definition of MD5 in RFC 1321 from April 1992.
|
||||
Copyright (C) 1995,1996,1997,1999,2000,2001 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, write to the Free
|
||||
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
||||
02111-1307 USA. */
|
||||
|
||||
/* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. */
|
||||
|
||||
#include <sys/types.h>
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "md5.h"
|
||||
|
||||
|
||||
static md5_uint32 SWAP(md5_uint32 n)
|
||||
{
|
||||
static int checked = 0;
|
||||
static int bigendian = 0;
|
||||
static md5_uint32 test;
|
||||
|
||||
if (!checked) {
|
||||
test = 1;
|
||||
if (* (char *) &test == 0)
|
||||
bigendian = 1;
|
||||
checked = 1;
|
||||
}
|
||||
|
||||
if (bigendian)
|
||||
return (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24));
|
||||
else
|
||||
return n;
|
||||
}
|
||||
|
||||
|
||||
/* This array contains the bytes used to pad the buffer to the next
|
||||
64-byte boundary. (RFC 1321, 3.1: Step 1) */
|
||||
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
|
||||
|
||||
|
||||
/* Initialize structure containing state of computation.
|
||||
(RFC 1321, 3.3: Step 3) */
|
||||
void
|
||||
MD5_Init (ctx)
|
||||
struct MD5_CTX *ctx;
|
||||
{
|
||||
ctx->A = 0x67452301;
|
||||
ctx->B = 0xefcdab89;
|
||||
ctx->C = 0x98badcfe;
|
||||
ctx->D = 0x10325476;
|
||||
|
||||
ctx->total[0] = ctx->total[1] = 0;
|
||||
ctx->buflen = 0;
|
||||
}
|
||||
|
||||
/* Put result from CTX in first 16 bytes following RESBUF. The result
|
||||
must be in little endian byte order.
|
||||
|
||||
IMPORTANT: On some systems it is required that RESBUF is correctly
|
||||
aligned for a 32 bits value. */
|
||||
void *
|
||||
md5_read_ctx (ctx, resbuf)
|
||||
const struct MD5_CTX *ctx;
|
||||
void *resbuf;
|
||||
{
|
||||
((md5_uint32 *) resbuf)[0] = SWAP (ctx->A);
|
||||
((md5_uint32 *) resbuf)[1] = SWAP (ctx->B);
|
||||
((md5_uint32 *) resbuf)[2] = SWAP (ctx->C);
|
||||
((md5_uint32 *) resbuf)[3] = SWAP (ctx->D);
|
||||
|
||||
return resbuf;
|
||||
}
|
||||
|
||||
/* Process the remaining bytes in the internal buffer and the usual
|
||||
prolog according to the standard and write the result to RESBUF.
|
||||
|
||||
IMPORTANT: On some systems it is required that RESBUF is correctly
|
||||
aligned for a 32 bits value. */
|
||||
void *
|
||||
MD5_Final (resbuf, ctx)
|
||||
void *resbuf;
|
||||
struct MD5_CTX *ctx;
|
||||
{
|
||||
/* Take yet unprocessed bytes into account. */
|
||||
md5_uint32 bytes = ctx->buflen;
|
||||
size_t pad;
|
||||
|
||||
/* Now count remaining bytes. */
|
||||
ctx->total[0] += bytes;
|
||||
if (ctx->total[0] < bytes)
|
||||
++ctx->total[1];
|
||||
|
||||
pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
|
||||
memcpy (&ctx->buffer[bytes], fillbuf, pad);
|
||||
|
||||
/* Put the 64-bit file length in *bits* at the end of the buffer. */
|
||||
*(md5_uint32 *) &ctx->buffer[bytes + pad] = SWAP (ctx->total[0] << 3);
|
||||
*(md5_uint32 *) &ctx->buffer[bytes + pad + 4] = SWAP ((ctx->total[1] << 3) |
|
||||
(ctx->total[0] >> 29));
|
||||
|
||||
/* Process last bytes. */
|
||||
md5_process_block (ctx->buffer, bytes + pad + 8, ctx);
|
||||
|
||||
return md5_read_ctx (ctx, resbuf);
|
||||
}
|
||||
|
||||
void
|
||||
MD5_Update (ctx, buffer, len)
|
||||
struct MD5_CTX *ctx;
|
||||
const void *buffer;
|
||||
size_t len;
|
||||
{
|
||||
/* When we already have some bits in our internal buffer concatenate
|
||||
both inputs first. */
|
||||
if (ctx->buflen != 0)
|
||||
{
|
||||
size_t left_over = ctx->buflen;
|
||||
size_t add = 128 - left_over > len ? len : 128 - left_over;
|
||||
|
||||
memcpy (&ctx->buffer[left_over], buffer, add);
|
||||
ctx->buflen += add;
|
||||
|
||||
if (ctx->buflen > 64)
|
||||
{
|
||||
md5_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
|
||||
|
||||
ctx->buflen &= 63;
|
||||
/* The regions in the following copy operation cannot overlap. */
|
||||
memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
|
||||
ctx->buflen);
|
||||
}
|
||||
|
||||
buffer = (const char *) buffer + add;
|
||||
len -= add;
|
||||
}
|
||||
|
||||
/* Process available complete blocks. */
|
||||
if (len >= 64)
|
||||
{
|
||||
#if !_STRING_ARCH_unaligned
|
||||
/* To check alignment gcc has an appropriate operator. Other
|
||||
compilers don't. */
|
||||
# if __GNUC__ >= 2
|
||||
# define UNALIGNED_P(p) (((md5_uintptr) p) % __alignof__ (md5_uint32) != 0)
|
||||
# else
|
||||
# define UNALIGNED_P(p) (((md5_uintptr) p) % sizeof (md5_uint32) != 0)
|
||||
# endif
|
||||
if (UNALIGNED_P (buffer))
|
||||
while (len > 64)
|
||||
{
|
||||
md5_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
|
||||
buffer = (const char *) buffer + 64;
|
||||
len -= 64;
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
md5_process_block (buffer, len & ~63, ctx);
|
||||
buffer = (const char *) buffer + (len & ~63);
|
||||
len &= 63;
|
||||
}
|
||||
}
|
||||
|
||||
/* Move remaining bytes in internal buffer. */
|
||||
if (len > 0)
|
||||
{
|
||||
size_t left_over = ctx->buflen;
|
||||
|
||||
memcpy (&ctx->buffer[left_over], buffer, len);
|
||||
left_over += len;
|
||||
if (left_over >= 64)
|
||||
{
|
||||
md5_process_block (ctx->buffer, 64, ctx);
|
||||
left_over -= 64;
|
||||
memcpy (ctx->buffer, &ctx->buffer[64], left_over);
|
||||
}
|
||||
ctx->buflen = left_over;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* These are the four functions used in the four steps of the MD5 algorithm
|
||||
and defined in the RFC 1321. The first function is a little bit optimized
|
||||
(as found in Colin Plumbs public domain implementation). */
|
||||
/* #define FF(b, c, d) ((b & c) | (~b & d)) */
|
||||
#define FF(b, c, d) (d ^ (b & (c ^ d)))
|
||||
#define FG(b, c, d) FF (d, b, c)
|
||||
#define FH(b, c, d) (b ^ c ^ d)
|
||||
#define FI(b, c, d) (c ^ (b | ~d))
|
||||
|
||||
/* Process LEN bytes of BUFFER, accumulating context into CTX.
|
||||
It is assumed that LEN % 64 == 0. */
|
||||
|
||||
void
|
||||
md5_process_block (buffer, len, ctx)
|
||||
const void *buffer;
|
||||
size_t len;
|
||||
struct MD5_CTX *ctx;
|
||||
{
|
||||
md5_uint32 correct_words[16];
|
||||
const md5_uint32 *words = buffer;
|
||||
size_t nwords = len / sizeof (md5_uint32);
|
||||
const md5_uint32 *endp = words + nwords;
|
||||
md5_uint32 A = ctx->A;
|
||||
md5_uint32 B = ctx->B;
|
||||
md5_uint32 C = ctx->C;
|
||||
md5_uint32 D = ctx->D;
|
||||
|
||||
/* First increment the byte count. RFC 1321 specifies the possible
|
||||
length of the file up to 2^64 bits. Here we only compute the
|
||||
number of bytes. Do a double word increment. */
|
||||
ctx->total[0] += len;
|
||||
if (ctx->total[0] < len)
|
||||
++ctx->total[1];
|
||||
|
||||
/* Process all bytes in the buffer with 64 bytes in each round of
|
||||
the loop. */
|
||||
while (words < endp)
|
||||
{
|
||||
md5_uint32 *cwp = correct_words;
|
||||
md5_uint32 A_save = A;
|
||||
md5_uint32 B_save = B;
|
||||
md5_uint32 C_save = C;
|
||||
md5_uint32 D_save = D;
|
||||
|
||||
/* First round: using the given function, the context and a constant
|
||||
the next context is computed. Because the algorithms processing
|
||||
unit is a 32-bit word and it is determined to work on words in
|
||||
little endian byte order we perhaps have to change the byte order
|
||||
before the computation. To reduce the work for the next steps
|
||||
we store the swapped words in the array CORRECT_WORDS. */
|
||||
|
||||
#define OP(a, b, c, d, s, T) \
|
||||
do \
|
||||
{ \
|
||||
a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T; \
|
||||
++words; \
|
||||
CYCLIC (a, s); \
|
||||
a += b; \
|
||||
} \
|
||||
while (0)
|
||||
|
||||
/* It is unfortunate that C does not provide an operator for
|
||||
cyclic rotation. Hope the C compiler is smart enough. */
|
||||
#define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
|
||||
|
||||
/* Before we start, one word to the strange constants.
|
||||
They are defined in RFC 1321 as
|
||||
|
||||
T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
|
||||
*/
|
||||
|
||||
/* Round 1. */
|
||||
OP (A, B, C, D, 7, 0xd76aa478);
|
||||
OP (D, A, B, C, 12, 0xe8c7b756);
|
||||
OP (C, D, A, B, 17, 0x242070db);
|
||||
OP (B, C, D, A, 22, 0xc1bdceee);
|
||||
OP (A, B, C, D, 7, 0xf57c0faf);
|
||||
OP (D, A, B, C, 12, 0x4787c62a);
|
||||
OP (C, D, A, B, 17, 0xa8304613);
|
||||
OP (B, C, D, A, 22, 0xfd469501);
|
||||
OP (A, B, C, D, 7, 0x698098d8);
|
||||
OP (D, A, B, C, 12, 0x8b44f7af);
|
||||
OP (C, D, A, B, 17, 0xffff5bb1);
|
||||
OP (B, C, D, A, 22, 0x895cd7be);
|
||||
OP (A, B, C, D, 7, 0x6b901122);
|
||||
OP (D, A, B, C, 12, 0xfd987193);
|
||||
OP (C, D, A, B, 17, 0xa679438e);
|
||||
OP (B, C, D, A, 22, 0x49b40821);
|
||||
|
||||
/* For the second to fourth round we have the possibly swapped words
|
||||
in CORRECT_WORDS. Redefine the macro to take an additional first
|
||||
argument specifying the function to use. */
|
||||
#undef OP
|
||||
#define OP(f, a, b, c, d, k, s, T) \
|
||||
do \
|
||||
{ \
|
||||
a += f (b, c, d) + correct_words[k] + T; \
|
||||
CYCLIC (a, s); \
|
||||
a += b; \
|
||||
} \
|
||||
while (0)
|
||||
|
||||
/* Round 2. */
|
||||
OP (FG, A, B, C, D, 1, 5, 0xf61e2562);
|
||||
OP (FG, D, A, B, C, 6, 9, 0xc040b340);
|
||||
OP (FG, C, D, A, B, 11, 14, 0x265e5a51);
|
||||
OP (FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
|
||||
OP (FG, A, B, C, D, 5, 5, 0xd62f105d);
|
||||
OP (FG, D, A, B, C, 10, 9, 0x02441453);
|
||||
OP (FG, C, D, A, B, 15, 14, 0xd8a1e681);
|
||||
OP (FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
|
||||
OP (FG, A, B, C, D, 9, 5, 0x21e1cde6);
|
||||
OP (FG, D, A, B, C, 14, 9, 0xc33707d6);
|
||||
OP (FG, C, D, A, B, 3, 14, 0xf4d50d87);
|
||||
OP (FG, B, C, D, A, 8, 20, 0x455a14ed);
|
||||
OP (FG, A, B, C, D, 13, 5, 0xa9e3e905);
|
||||
OP (FG, D, A, B, C, 2, 9, 0xfcefa3f8);
|
||||
OP (FG, C, D, A, B, 7, 14, 0x676f02d9);
|
||||
OP (FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
|
||||
|
||||
/* Round 3. */
|
||||
OP (FH, A, B, C, D, 5, 4, 0xfffa3942);
|
||||
OP (FH, D, A, B, C, 8, 11, 0x8771f681);
|
||||
OP (FH, C, D, A, B, 11, 16, 0x6d9d6122);
|
||||
OP (FH, B, C, D, A, 14, 23, 0xfde5380c);
|
||||
OP (FH, A, B, C, D, 1, 4, 0xa4beea44);
|
||||
OP (FH, D, A, B, C, 4, 11, 0x4bdecfa9);
|
||||
OP (FH, C, D, A, B, 7, 16, 0xf6bb4b60);
|
||||
OP (FH, B, C, D, A, 10, 23, 0xbebfbc70);
|
||||
OP (FH, A, B, C, D, 13, 4, 0x289b7ec6);
|
||||
OP (FH, D, A, B, C, 0, 11, 0xeaa127fa);
|
||||
OP (FH, C, D, A, B, 3, 16, 0xd4ef3085);
|
||||
OP (FH, B, C, D, A, 6, 23, 0x04881d05);
|
||||
OP (FH, A, B, C, D, 9, 4, 0xd9d4d039);
|
||||
OP (FH, D, A, B, C, 12, 11, 0xe6db99e5);
|
||||
OP (FH, C, D, A, B, 15, 16, 0x1fa27cf8);
|
||||
OP (FH, B, C, D, A, 2, 23, 0xc4ac5665);
|
||||
|
||||
/* Round 4. */
|
||||
OP (FI, A, B, C, D, 0, 6, 0xf4292244);
|
||||
OP (FI, D, A, B, C, 7, 10, 0x432aff97);
|
||||
OP (FI, C, D, A, B, 14, 15, 0xab9423a7);
|
||||
OP (FI, B, C, D, A, 5, 21, 0xfc93a039);
|
||||
OP (FI, A, B, C, D, 12, 6, 0x655b59c3);
|
||||
OP (FI, D, A, B, C, 3, 10, 0x8f0ccc92);
|
||||
OP (FI, C, D, A, B, 10, 15, 0xffeff47d);
|
||||
OP (FI, B, C, D, A, 1, 21, 0x85845dd1);
|
||||
OP (FI, A, B, C, D, 8, 6, 0x6fa87e4f);
|
||||
OP (FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
|
||||
OP (FI, C, D, A, B, 6, 15, 0xa3014314);
|
||||
OP (FI, B, C, D, A, 13, 21, 0x4e0811a1);
|
||||
OP (FI, A, B, C, D, 4, 6, 0xf7537e82);
|
||||
OP (FI, D, A, B, C, 11, 10, 0xbd3af235);
|
||||
OP (FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
|
||||
OP (FI, B, C, D, A, 9, 21, 0xeb86d391);
|
||||
|
||||
/* Add the starting values of the context. */
|
||||
A += A_save;
|
||||
B += B_save;
|
||||
C += C_save;
|
||||
D += D_save;
|
||||
}
|
||||
|
||||
/* Put checksum in context given as argument. */
|
||||
ctx->A = A;
|
||||
ctx->B = B;
|
||||
ctx->C = C;
|
||||
ctx->D = D;
|
||||
}
|
|
@ -1,82 +0,0 @@
|
|||
/* Declaration of functions and data types used for MD5 sum computing
|
||||
library functions.
|
||||
Copyright (C) 1995,1996,1997,1999,2000,2001 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, write to the Free
|
||||
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
||||
02111-1307 USA. */
|
||||
|
||||
#ifndef _MD5_H
|
||||
#define _MD5_H 1
|
||||
|
||||
#include <inttypes.h>
|
||||
typedef uint32_t md5_uint32;
|
||||
typedef uintptr_t md5_uintptr;
|
||||
|
||||
/* Structure to save state of computation between the single steps. */
|
||||
struct MD5_CTX
|
||||
{
|
||||
md5_uint32 A;
|
||||
md5_uint32 B;
|
||||
md5_uint32 C;
|
||||
md5_uint32 D;
|
||||
|
||||
md5_uint32 total[2];
|
||||
md5_uint32 buflen;
|
||||
char buffer[128] __attribute__ ((__aligned__ (__alignof__ (md5_uint32))));
|
||||
};
|
||||
|
||||
/*
|
||||
* The following three functions are build up the low level used in
|
||||
* the functions `md5_stream' and `md5_buffer'.
|
||||
*/
|
||||
|
||||
/* Initialize structure containing state of computation.
|
||||
(RFC 1321, 3.3: Step 3) */
|
||||
extern void MD5_Init (struct MD5_CTX *ctx);
|
||||
|
||||
/* Starting with the result of former calls of this function (or the
|
||||
initialization function update the context for the next LEN bytes
|
||||
starting at BUFFER.
|
||||
It is necessary that LEN is a multiple of 64!!! */
|
||||
extern void md5_process_block (const void *buffer, size_t len,
|
||||
struct MD5_CTX *ctx);
|
||||
|
||||
/* Starting with the result of former calls of this function (or the
|
||||
initialization function update the context for the next LEN bytes
|
||||
starting at BUFFER.
|
||||
It is NOT required that LEN is a multiple of 64. */
|
||||
extern void MD5_Update (struct MD5_CTX *ctx, const void *buffer, size_t len);
|
||||
|
||||
/* Process the remaining bytes in the buffer and put result from CTX
|
||||
in first 16 bytes following RESBUF. The result is always in little
|
||||
endian byte order, so that a byte-wise output yields to the wanted
|
||||
ASCII representation of the message digest.
|
||||
|
||||
IMPORTANT: On some systems it is required that RESBUF is correctly
|
||||
aligned for a 32 bits value. */
|
||||
extern void *MD5_Final (void *resbuf, struct MD5_CTX *ctx);
|
||||
|
||||
|
||||
/* Put result from CTX in first 16 bytes following RESBUF. The result is
|
||||
always in little endian byte order, so that a byte-wise output yields
|
||||
to the wanted ASCII representation of the message digest.
|
||||
|
||||
IMPORTANT: On some systems it is required that RESBUF is correctly
|
||||
aligned for a 32 bits value. */
|
||||
extern void *md5_read_ctx (const struct MD5_CTX *ctx, void *resbuf);
|
||||
|
||||
|
||||
#endif /* md5.h */
|
|
@ -1,369 +0,0 @@
|
|||
/* $Id$ */
|
||||
|
||||
/* sha.c - Implementation of the Secure Hash Algorithm
|
||||
*
|
||||
* Copyright (C) 1995, A.M. Kuchling
|
||||
*
|
||||
* Distribute and use freely; there are no restrictions on further
|
||||
* dissemination and usage except those imposed by the laws of your
|
||||
* country of residence.
|
||||
*
|
||||
* Adapted to pike and some cleanup by Niels Möller.
|
||||
*/
|
||||
|
||||
/* $Id$ */
|
||||
|
||||
/* SHA: NIST's Secure Hash Algorithm */
|
||||
|
||||
/* Based on SHA code originally posted to sci.crypt by Peter Gutmann
|
||||
in message <30ajo5$oe8@ccu2.auckland.ac.nz>.
|
||||
Modified to test for endianness on creation of SHA objects by AMK.
|
||||
Also, the original specification of SHA was found to have a weakness
|
||||
by NSA/NIST. This code implements the fixed version of SHA.
|
||||
*/
|
||||
|
||||
/* Here's the first paragraph of Peter Gutmann's posting:
|
||||
|
||||
The following is my SHA (FIPS 180) code updated to allow use of the "fixed"
|
||||
SHA, thanks to Jim Gillogly and an anonymous contributor for the information on
|
||||
what's changed in the new version. The fix is a simple change which involves
|
||||
adding a single rotate in the initial expansion function. It is unknown
|
||||
whether this is an optimal solution to the problem which was discovered in the
|
||||
SHA or whether it's simply a bandaid which fixes the problem with a minimum of
|
||||
effort (for example the reengineering of a great many Capstone chips).
|
||||
*/
|
||||
|
||||
#include "sha1.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
void sha_copy(struct SHA_CTX *dest, struct SHA_CTX *src)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
dest->count_l=src->count_l;
|
||||
dest->count_h=src->count_h;
|
||||
for(i=0; i<SHA_DIGESTLEN; i++)
|
||||
dest->digest[i]=src->digest[i];
|
||||
for(i=0; i < src->index; i++)
|
||||
dest->block[i] = src->block[i];
|
||||
dest->index = src->index;
|
||||
}
|
||||
|
||||
|
||||
/* The SHA f()-functions. The f1 and f3 functions can be optimized to
|
||||
save one boolean operation each - thanks to Rich Schroeppel,
|
||||
rcs@cs.arizona.edu for discovering this */
|
||||
|
||||
/*#define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) // Rounds 0-19 */
|
||||
#define f1(x,y,z) ( z ^ ( x & ( y ^ z ) ) ) /* Rounds 0-19 */
|
||||
#define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */
|
||||
/*#define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) // Rounds 40-59 */
|
||||
#define f3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) ) /* Rounds 40-59 */
|
||||
#define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */
|
||||
|
||||
/* The SHA Mysterious Constants */
|
||||
|
||||
#define K1 0x5A827999L /* Rounds 0-19 */
|
||||
#define K2 0x6ED9EBA1L /* Rounds 20-39 */
|
||||
#define K3 0x8F1BBCDCL /* Rounds 40-59 */
|
||||
#define K4 0xCA62C1D6L /* Rounds 60-79 */
|
||||
|
||||
/* SHA initial values */
|
||||
|
||||
#define h0init 0x67452301L
|
||||
#define h1init 0xEFCDAB89L
|
||||
#define h2init 0x98BADCFEL
|
||||
#define h3init 0x10325476L
|
||||
#define h4init 0xC3D2E1F0L
|
||||
|
||||
/* 32-bit rotate left - kludged with shifts */
|
||||
|
||||
#define ROTL(n,X) ( ( (X) << (n) ) | ( (X) >> ( 32 - (n) ) ) )
|
||||
|
||||
/* The initial expanding function. The hash function is defined over an
|
||||
80-word expanded input array W, where the first 16 are copies of the input
|
||||
data, and the remaining 64 are defined by
|
||||
|
||||
W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]
|
||||
|
||||
This implementation generates these values on the fly in a circular
|
||||
buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
|
||||
optimization.
|
||||
|
||||
The updated SHA changes the expanding function by adding a rotate of 1
|
||||
bit. Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
|
||||
for this information */
|
||||
|
||||
#define expand(W,i) ( W[ i & 15 ] = \
|
||||
ROTL( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \
|
||||
W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) )
|
||||
|
||||
|
||||
/* The prototype SHA sub-round. The fundamental sub-round is:
|
||||
|
||||
a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data;
|
||||
b' = a;
|
||||
c' = ROTL( 30, b );
|
||||
d' = c;
|
||||
e' = d;
|
||||
|
||||
but this is implemented by unrolling the loop 5 times and renaming the
|
||||
variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
|
||||
This code is then replicated 20 times for each of the 4 functions, using
|
||||
the next 20 values from the W[] array each time */
|
||||
|
||||
#define subRound(a, b, c, d, e, f, k, data) \
|
||||
( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) )
|
||||
|
||||
/* Initialize the SHA values */
|
||||
|
||||
void SHA1_Init(struct SHA_CTX *ctx)
|
||||
{
|
||||
/* Set the h-vars to their initial values */
|
||||
ctx->digest[ 0 ] = h0init;
|
||||
ctx->digest[ 1 ] = h1init;
|
||||
ctx->digest[ 2 ] = h2init;
|
||||
ctx->digest[ 3 ] = h3init;
|
||||
ctx->digest[ 4 ] = h4init;
|
||||
|
||||
/* Initialize bit count */
|
||||
ctx->count_l = ctx->count_h = 0;
|
||||
|
||||
/* Initialize buffer */
|
||||
ctx->index = 0;
|
||||
}
|
||||
|
||||
/* Perform the SHA transformation. Note that this code, like MD5, seems to
|
||||
break some optimizing compilers due to the complexity of the expressions
|
||||
and the size of the basic block. It may be necessary to split it into
|
||||
sections, e.g. based on the four subrounds
|
||||
|
||||
Note that this function destroys the data area */
|
||||
|
||||
static void sha_transform(struct SHA_CTX *ctx, uint32_t *data )
|
||||
{
|
||||
uint32_t A, B, C, D, E; /* Local vars */
|
||||
|
||||
/* Set up first buffer and local data buffer */
|
||||
A = ctx->digest[0];
|
||||
B = ctx->digest[1];
|
||||
C = ctx->digest[2];
|
||||
D = ctx->digest[3];
|
||||
E = ctx->digest[4];
|
||||
|
||||
/* Heavy mangling, in 4 sub-rounds of 20 interations each. */
|
||||
subRound( A, B, C, D, E, f1, K1, data[ 0] );
|
||||
subRound( E, A, B, C, D, f1, K1, data[ 1] );
|
||||
subRound( D, E, A, B, C, f1, K1, data[ 2] );
|
||||
subRound( C, D, E, A, B, f1, K1, data[ 3] );
|
||||
subRound( B, C, D, E, A, f1, K1, data[ 4] );
|
||||
subRound( A, B, C, D, E, f1, K1, data[ 5] );
|
||||
subRound( E, A, B, C, D, f1, K1, data[ 6] );
|
||||
subRound( D, E, A, B, C, f1, K1, data[ 7] );
|
||||
subRound( C, D, E, A, B, f1, K1, data[ 8] );
|
||||
subRound( B, C, D, E, A, f1, K1, data[ 9] );
|
||||
subRound( A, B, C, D, E, f1, K1, data[10] );
|
||||
subRound( E, A, B, C, D, f1, K1, data[11] );
|
||||
subRound( D, E, A, B, C, f1, K1, data[12] );
|
||||
subRound( C, D, E, A, B, f1, K1, data[13] );
|
||||
subRound( B, C, D, E, A, f1, K1, data[14] );
|
||||
subRound( A, B, C, D, E, f1, K1, data[15] );
|
||||
subRound( E, A, B, C, D, f1, K1, expand( data, 16 ) );
|
||||
subRound( D, E, A, B, C, f1, K1, expand( data, 17 ) );
|
||||
subRound( C, D, E, A, B, f1, K1, expand( data, 18 ) );
|
||||
subRound( B, C, D, E, A, f1, K1, expand( data, 19 ) );
|
||||
|
||||
subRound( A, B, C, D, E, f2, K2, expand( data, 20 ) );
|
||||
subRound( E, A, B, C, D, f2, K2, expand( data, 21 ) );
|
||||
subRound( D, E, A, B, C, f2, K2, expand( data, 22 ) );
|
||||
subRound( C, D, E, A, B, f2, K2, expand( data, 23 ) );
|
||||
subRound( B, C, D, E, A, f2, K2, expand( data, 24 ) );
|
||||
subRound( A, B, C, D, E, f2, K2, expand( data, 25 ) );
|
||||
subRound( E, A, B, C, D, f2, K2, expand( data, 26 ) );
|
||||
subRound( D, E, A, B, C, f2, K2, expand( data, 27 ) );
|
||||
subRound( C, D, E, A, B, f2, K2, expand( data, 28 ) );
|
||||
subRound( B, C, D, E, A, f2, K2, expand( data, 29 ) );
|
||||
subRound( A, B, C, D, E, f2, K2, expand( data, 30 ) );
|
||||
subRound( E, A, B, C, D, f2, K2, expand( data, 31 ) );
|
||||
subRound( D, E, A, B, C, f2, K2, expand( data, 32 ) );
|
||||
subRound( C, D, E, A, B, f2, K2, expand( data, 33 ) );
|
||||
subRound( B, C, D, E, A, f2, K2, expand( data, 34 ) );
|
||||
subRound( A, B, C, D, E, f2, K2, expand( data, 35 ) );
|
||||
subRound( E, A, B, C, D, f2, K2, expand( data, 36 ) );
|
||||
subRound( D, E, A, B, C, f2, K2, expand( data, 37 ) );
|
||||
subRound( C, D, E, A, B, f2, K2, expand( data, 38 ) );
|
||||
subRound( B, C, D, E, A, f2, K2, expand( data, 39 ) );
|
||||
|
||||
subRound( A, B, C, D, E, f3, K3, expand( data, 40 ) );
|
||||
subRound( E, A, B, C, D, f3, K3, expand( data, 41 ) );
|
||||
subRound( D, E, A, B, C, f3, K3, expand( data, 42 ) );
|
||||
subRound( C, D, E, A, B, f3, K3, expand( data, 43 ) );
|
||||
subRound( B, C, D, E, A, f3, K3, expand( data, 44 ) );
|
||||
subRound( A, B, C, D, E, f3, K3, expand( data, 45 ) );
|
||||
subRound( E, A, B, C, D, f3, K3, expand( data, 46 ) );
|
||||
subRound( D, E, A, B, C, f3, K3, expand( data, 47 ) );
|
||||
subRound( C, D, E, A, B, f3, K3, expand( data, 48 ) );
|
||||
subRound( B, C, D, E, A, f3, K3, expand( data, 49 ) );
|
||||
subRound( A, B, C, D, E, f3, K3, expand( data, 50 ) );
|
||||
subRound( E, A, B, C, D, f3, K3, expand( data, 51 ) );
|
||||
subRound( D, E, A, B, C, f3, K3, expand( data, 52 ) );
|
||||
subRound( C, D, E, A, B, f3, K3, expand( data, 53 ) );
|
||||
subRound( B, C, D, E, A, f3, K3, expand( data, 54 ) );
|
||||
subRound( A, B, C, D, E, f3, K3, expand( data, 55 ) );
|
||||
subRound( E, A, B, C, D, f3, K3, expand( data, 56 ) );
|
||||
subRound( D, E, A, B, C, f3, K3, expand( data, 57 ) );
|
||||
subRound( C, D, E, A, B, f3, K3, expand( data, 58 ) );
|
||||
subRound( B, C, D, E, A, f3, K3, expand( data, 59 ) );
|
||||
|
||||
subRound( A, B, C, D, E, f4, K4, expand( data, 60 ) );
|
||||
subRound( E, A, B, C, D, f4, K4, expand( data, 61 ) );
|
||||
subRound( D, E, A, B, C, f4, K4, expand( data, 62 ) );
|
||||
subRound( C, D, E, A, B, f4, K4, expand( data, 63 ) );
|
||||
subRound( B, C, D, E, A, f4, K4, expand( data, 64 ) );
|
||||
subRound( A, B, C, D, E, f4, K4, expand( data, 65 ) );
|
||||
subRound( E, A, B, C, D, f4, K4, expand( data, 66 ) );
|
||||
subRound( D, E, A, B, C, f4, K4, expand( data, 67 ) );
|
||||
subRound( C, D, E, A, B, f4, K4, expand( data, 68 ) );
|
||||
subRound( B, C, D, E, A, f4, K4, expand( data, 69 ) );
|
||||
subRound( A, B, C, D, E, f4, K4, expand( data, 70 ) );
|
||||
subRound( E, A, B, C, D, f4, K4, expand( data, 71 ) );
|
||||
subRound( D, E, A, B, C, f4, K4, expand( data, 72 ) );
|
||||
subRound( C, D, E, A, B, f4, K4, expand( data, 73 ) );
|
||||
subRound( B, C, D, E, A, f4, K4, expand( data, 74 ) );
|
||||
subRound( A, B, C, D, E, f4, K4, expand( data, 75 ) );
|
||||
subRound( E, A, B, C, D, f4, K4, expand( data, 76 ) );
|
||||
subRound( D, E, A, B, C, f4, K4, expand( data, 77 ) );
|
||||
subRound( C, D, E, A, B, f4, K4, expand( data, 78 ) );
|
||||
subRound( B, C, D, E, A, f4, K4, expand( data, 79 ) );
|
||||
|
||||
/* Build message digest */
|
||||
ctx->digest[0] += A;
|
||||
ctx->digest[1] += B;
|
||||
ctx->digest[2] += C;
|
||||
ctx->digest[3] += D;
|
||||
ctx->digest[4] += E;
|
||||
}
|
||||
|
||||
#if 1
|
||||
|
||||
#ifndef EXTRACT_UCHAR
|
||||
#define EXTRACT_UCHAR(p) (*(unsigned char *)(p))
|
||||
#endif
|
||||
|
||||
#define STRING2INT(s) ((((((EXTRACT_UCHAR(s) << 8) \
|
||||
| EXTRACT_UCHAR(s+1)) << 8) \
|
||||
| EXTRACT_UCHAR(s+2)) << 8) \
|
||||
| EXTRACT_UCHAR(s+3))
|
||||
#else
|
||||
uint32_t STRING2INT(unsigned char *s)
|
||||
{
|
||||
uint32_t r;
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0, r = 0; i < 4; i++, s++)
|
||||
r = (r << 8) | *s;
|
||||
return r;
|
||||
}
|
||||
#endif
|
||||
|
||||
static void sha_block(struct SHA_CTX *ctx, const unsigned char *block)
|
||||
{
|
||||
uint32_t data[SHA_DATALEN];
|
||||
unsigned int i;
|
||||
|
||||
/* Update block count */
|
||||
if (!++ctx->count_l)
|
||||
++ctx->count_h;
|
||||
|
||||
/* Endian independent conversion */
|
||||
for (i = 0; i<SHA_DATALEN; i++, block += 4)
|
||||
data[i] = STRING2INT(block);
|
||||
|
||||
sha_transform(ctx, data);
|
||||
}
|
||||
|
||||
void SHA1_Update(struct SHA_CTX *ctx, const unsigned char *buffer, uint32_t len)
|
||||
{
|
||||
if (ctx->index)
|
||||
{ /* Try to fill partial block */
|
||||
unsigned left = SHA_DATASIZE - ctx->index;
|
||||
if (len < left)
|
||||
{
|
||||
memcpy(ctx->block + ctx->index, buffer, len);
|
||||
ctx->index += len;
|
||||
return; /* Finished */
|
||||
}
|
||||
else
|
||||
{
|
||||
memcpy(ctx->block + ctx->index, buffer, left);
|
||||
sha_block(ctx, ctx->block);
|
||||
buffer += left;
|
||||
len -= left;
|
||||
}
|
||||
}
|
||||
while (len >= SHA_DATASIZE)
|
||||
{
|
||||
sha_block(ctx, buffer);
|
||||
buffer += SHA_DATASIZE;
|
||||
len -= SHA_DATASIZE;
|
||||
}
|
||||
if ((ctx->index = len)) /* This assignment is intended */
|
||||
/* Buffer leftovers */
|
||||
memcpy(ctx->block, buffer, len);
|
||||
}
|
||||
|
||||
/* Final wrapup - pad to SHA_DATASIZE-byte boundary with the bit pattern
|
||||
1 0* (64-bit count of bits processed, MSB-first) */
|
||||
|
||||
void SHA1_Final(unsigned char *s, struct SHA_CTX *ctx)
|
||||
{
|
||||
uint32_t data[SHA_DATALEN];
|
||||
unsigned int i;
|
||||
unsigned int words;
|
||||
|
||||
i = ctx->index;
|
||||
/* Set the first char of padding to 0x80. This is safe since there is
|
||||
always at least one byte free */
|
||||
ctx->block[i++] = 0x80;
|
||||
|
||||
/* Fill rest of word */
|
||||
for( ; i & 3; i++)
|
||||
ctx->block[i] = 0;
|
||||
|
||||
/* i is now a multiple of the word size 4 */
|
||||
words = i >> 2;
|
||||
for (i = 0; i < words; i++)
|
||||
data[i] = STRING2INT(ctx->block + 4*i);
|
||||
|
||||
if (words > (SHA_DATALEN-2))
|
||||
{ /* No room for length in this block. Process it and
|
||||
* pad with another one */
|
||||
for (i = words ; i < SHA_DATALEN; i++)
|
||||
data[i] = 0;
|
||||
sha_transform(ctx, data);
|
||||
for (i = 0; i < (SHA_DATALEN-2); i++)
|
||||
data[i] = 0;
|
||||
}
|
||||
else
|
||||
for (i = words ; i < SHA_DATALEN - 2; i++)
|
||||
data[i] = 0;
|
||||
/* Theres 512 = 2^9 bits in one block */
|
||||
data[SHA_DATALEN-2] = (ctx->count_h << 9) | (ctx->count_l >> 23);
|
||||
data[SHA_DATALEN-1] = (ctx->count_l << 9) | (ctx->index << 3);
|
||||
sha_transform(ctx, data);
|
||||
sha_digest(ctx, s);
|
||||
}
|
||||
|
||||
void sha_digest(struct SHA_CTX *ctx, unsigned char *s)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < SHA_DIGESTLEN; i++)
|
||||
{
|
||||
*s++ = ctx->digest[i] >> 24;
|
||||
*s++ = 0xff & (ctx->digest[i] >> 16);
|
||||
*s++ = 0xff & (ctx->digest[i] >> 8);
|
||||
*s++ = 0xff & ctx->digest[i];
|
||||
}
|
||||
}
|
|
@ -1,28 +0,0 @@
|
|||
#ifndef _SHA_H
|
||||
#define _SHA_H
|
||||
|
||||
#include <inttypes.h>
|
||||
|
||||
/* The SHA block size and message digest sizes, in bytes */
|
||||
|
||||
#define SHA_DATASIZE 64
|
||||
#define SHA_DATALEN 16
|
||||
#define SHA_DIGESTSIZE 20
|
||||
#define SHA_DIGESTLEN 5
|
||||
/* The structure for storing SHA info */
|
||||
|
||||
struct SHA_CTX {
|
||||
uint32_t digest[SHA_DIGESTLEN]; /* Message digest */
|
||||
uint32_t count_l, count_h; /* 64-bit block count */
|
||||
uint8_t block[SHA_DATASIZE]; /* SHA data buffer */
|
||||
unsigned int index; /* index into buffer */
|
||||
};
|
||||
|
||||
void SHA1_Init(struct SHA_CTX *ctx);
|
||||
void SHA1_Update(struct SHA_CTX *ctx, const unsigned char *buffer, uint32_t len);
|
||||
void SHA1_Final(unsigned char *s, struct SHA_CTX *ctx);
|
||||
void sha_digest(struct SHA_CTX *ctx, unsigned char *s);
|
||||
void sha_copy(struct SHA_CTX *dest, struct SHA_CTX *src);
|
||||
|
||||
|
||||
#endif /* !_SHA_H */
|
|
@ -1,238 +0,0 @@
|
|||
/* crypto/sha/sha256.c */
|
||||
/* ====================================================================
|
||||
* Copyright (c) 2004 The OpenSSL Project. All rights reserved
|
||||
* according to the OpenSSL license [found in ./md32_common.h].
|
||||
* ====================================================================
|
||||
*/
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "sha256.h"
|
||||
|
||||
int SHA224_Init (SHA256_CTX *c)
|
||||
{
|
||||
c->h[0]=0xc1059ed8UL; c->h[1]=0x367cd507UL;
|
||||
c->h[2]=0x3070dd17UL; c->h[3]=0xf70e5939UL;
|
||||
c->h[4]=0xffc00b31UL; c->h[5]=0x68581511UL;
|
||||
c->h[6]=0x64f98fa7UL; c->h[7]=0xbefa4fa4UL;
|
||||
c->Nl=0; c->Nh=0;
|
||||
c->num=0; c->md_len=SHA224_DIGEST_LENGTH;
|
||||
return 1;
|
||||
}
|
||||
|
||||
int SHA256_Init (SHA256_CTX *c)
|
||||
{
|
||||
c->h[0]=0x6a09e667UL; c->h[1]=0xbb67ae85UL;
|
||||
c->h[2]=0x3c6ef372UL; c->h[3]=0xa54ff53aUL;
|
||||
c->h[4]=0x510e527fUL; c->h[5]=0x9b05688cUL;
|
||||
c->h[6]=0x1f83d9abUL; c->h[7]=0x5be0cd19UL;
|
||||
c->Nl=0; c->Nh=0;
|
||||
c->num=0; c->md_len=SHA256_DIGEST_LENGTH;
|
||||
return 1;
|
||||
}
|
||||
|
||||
unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
|
||||
{
|
||||
SHA256_CTX c;
|
||||
static unsigned char m[SHA224_DIGEST_LENGTH];
|
||||
|
||||
if (md == NULL) md=m;
|
||||
SHA224_Init(&c);
|
||||
SHA256_Update(&c,d,n);
|
||||
SHA256_Final(md,&c);
|
||||
return(md);
|
||||
}
|
||||
|
||||
unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
|
||||
{
|
||||
SHA256_CTX c;
|
||||
static unsigned char m[SHA256_DIGEST_LENGTH];
|
||||
|
||||
if (md == NULL) md=m;
|
||||
SHA256_Init(&c);
|
||||
SHA256_Update(&c,d,n);
|
||||
SHA256_Final(md,&c);
|
||||
return(md);
|
||||
}
|
||||
|
||||
int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
|
||||
{ return SHA256_Update (c,data,len); }
|
||||
int SHA224_Final (unsigned char *md, SHA256_CTX *c)
|
||||
{ return SHA256_Final (md,c); }
|
||||
|
||||
#define DATA_ORDER_IS_BIG_ENDIAN
|
||||
|
||||
#define HASH_LONG uint32_t
|
||||
#define HASH_LONG_LOG2 2
|
||||
#define HASH_CTX SHA256_CTX
|
||||
#define HASH_CBLOCK SHA_CBLOCK
|
||||
#define HASH_LBLOCK SHA_LBLOCK
|
||||
/*
|
||||
* Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
|
||||
* default: case below covers for it. It's not clear however if it's
|
||||
* permitted to truncate to amount of bytes not divisible by 4. I bet not,
|
||||
* but if it is, then default: case shall be extended. For reference.
|
||||
* Idea behind separate cases for pre-defined lenghts is to let the
|
||||
* compiler decide if it's appropriate to unroll small loops.
|
||||
*/
|
||||
#define HASH_MAKE_STRING(c,s) do { \
|
||||
unsigned long ll; \
|
||||
unsigned int n; \
|
||||
switch ((c)->md_len) \
|
||||
{ case SHA224_DIGEST_LENGTH: \
|
||||
for (n=0;n<SHA224_DIGEST_LENGTH/4;n++) \
|
||||
{ ll=(c)->h[n]; HOST_l2c(ll,(s)); } \
|
||||
break; \
|
||||
case SHA256_DIGEST_LENGTH: \
|
||||
for (n=0;n<SHA256_DIGEST_LENGTH/4;n++) \
|
||||
{ ll=(c)->h[n]; HOST_l2c(ll,(s)); } \
|
||||
break; \
|
||||
default: \
|
||||
if ((c)->md_len > SHA256_DIGEST_LENGTH) \
|
||||
return 0; \
|
||||
for (n=0;n<(c)->md_len/4;n++) \
|
||||
{ ll=(c)->h[n]; HOST_l2c(ll,(s)); } \
|
||||
break; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define HASH_UPDATE SHA256_Update
|
||||
#define HASH_TRANSFORM SHA256_Transform
|
||||
#define HASH_FINAL SHA256_Final
|
||||
#define HASH_BLOCK_HOST_ORDER sha256_block_host_order
|
||||
#define HASH_BLOCK_DATA_ORDER sha256_block_data_order
|
||||
void sha256_block_host_order (SHA256_CTX *ctx, const void *in, size_t num);
|
||||
void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);
|
||||
|
||||
#include "md32_common.h"
|
||||
|
||||
static const uint32_t K256[64] = {
|
||||
0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
|
||||
0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
|
||||
0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
|
||||
0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
|
||||
0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
|
||||
0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
|
||||
0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
|
||||
0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
|
||||
0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,
|
||||
0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
|
||||
0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
|
||||
0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
|
||||
0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
|
||||
0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
|
||||
0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
|
||||
0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };
|
||||
|
||||
/*
|
||||
* FIPS specification refers to right rotations, while our ROTATE macro
|
||||
* is left one. This is why you might notice that rotation coefficients
|
||||
* differ from those observed in FIPS document by 32-N...
|
||||
*/
|
||||
#define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
|
||||
#define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
|
||||
#define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
|
||||
#define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
|
||||
|
||||
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
|
||||
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
||||
|
||||
#define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
|
||||
T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \
|
||||
h = Sigma0(a) + Maj(a,b,c); \
|
||||
d += T1; h += T1; } while (0)
|
||||
|
||||
#define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \
|
||||
s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \
|
||||
s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \
|
||||
T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \
|
||||
ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0)
|
||||
|
||||
static void sha256_block (SHA256_CTX *ctx, const void *in, size_t num, int host)
|
||||
{
|
||||
uint32_t a,b,c,d,e,f,g,h,s0,s1,T1;
|
||||
uint32_t X[16];
|
||||
int i;
|
||||
const unsigned char *data=in;
|
||||
|
||||
while (num--) {
|
||||
|
||||
a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
|
||||
e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
|
||||
|
||||
if (host)
|
||||
{
|
||||
const uint32_t *W=(const uint32_t *)data;
|
||||
|
||||
T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h);
|
||||
T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g);
|
||||
T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f);
|
||||
T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e);
|
||||
T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d);
|
||||
T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c);
|
||||
T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b);
|
||||
T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a);
|
||||
T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h);
|
||||
T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g);
|
||||
T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f);
|
||||
T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e);
|
||||
T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d);
|
||||
T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c);
|
||||
T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b);
|
||||
T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a);
|
||||
|
||||
data += SHA256_CBLOCK;
|
||||
}
|
||||
else
|
||||
{
|
||||
uint32_t l;
|
||||
|
||||
HOST_c2l(data,l); T1 = X[0] = l; ROUND_00_15(0,a,b,c,d,e,f,g,h);
|
||||
HOST_c2l(data,l); T1 = X[1] = l; ROUND_00_15(1,h,a,b,c,d,e,f,g);
|
||||
HOST_c2l(data,l); T1 = X[2] = l; ROUND_00_15(2,g,h,a,b,c,d,e,f);
|
||||
HOST_c2l(data,l); T1 = X[3] = l; ROUND_00_15(3,f,g,h,a,b,c,d,e);
|
||||
HOST_c2l(data,l); T1 = X[4] = l; ROUND_00_15(4,e,f,g,h,a,b,c,d);
|
||||
HOST_c2l(data,l); T1 = X[5] = l; ROUND_00_15(5,d,e,f,g,h,a,b,c);
|
||||
HOST_c2l(data,l); T1 = X[6] = l; ROUND_00_15(6,c,d,e,f,g,h,a,b);
|
||||
HOST_c2l(data,l); T1 = X[7] = l; ROUND_00_15(7,b,c,d,e,f,g,h,a);
|
||||
HOST_c2l(data,l); T1 = X[8] = l; ROUND_00_15(8,a,b,c,d,e,f,g,h);
|
||||
HOST_c2l(data,l); T1 = X[9] = l; ROUND_00_15(9,h,a,b,c,d,e,f,g);
|
||||
HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f);
|
||||
HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e);
|
||||
HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d);
|
||||
HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c);
|
||||
HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b);
|
||||
HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a);
|
||||
}
|
||||
|
||||
for (i=16;i<64;i+=8)
|
||||
{
|
||||
ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X);
|
||||
ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X);
|
||||
ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X);
|
||||
ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X);
|
||||
ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X);
|
||||
ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X);
|
||||
ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X);
|
||||
ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X);
|
||||
}
|
||||
|
||||
ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
|
||||
ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Idea is to trade couple of cycles for some space. On IA-32 we save
|
||||
* about 4K in "big footprint" case. In "small footprint" case any gain
|
||||
* is appreciated:-)
|
||||
*/
|
||||
void HASH_BLOCK_HOST_ORDER (SHA256_CTX *ctx, const void *in, size_t num)
|
||||
{ sha256_block (ctx,in,num,1); }
|
||||
|
||||
void HASH_BLOCK_DATA_ORDER (SHA256_CTX *ctx, const void *in, size_t num)
|
||||
{ sha256_block (ctx,in,num,0); }
|
||||
|
||||
|
|
@ -1,35 +0,0 @@
|
|||
#ifndef _SHA256_H
|
||||
#define _SHA256_H 1
|
||||
|
||||
#include <inttypes.h>
|
||||
|
||||
#define SHA_LBLOCK 16
|
||||
#define SHA_CBLOCK (SHA_LBLOCK*4) /* SHA treats input data as a
|
||||
* contiguous array of 32 bit
|
||||
* wide big-endian values. */
|
||||
|
||||
#define SHA256_CBLOCK (SHA_LBLOCK*4) /* SHA-256 treats input data as a
|
||||
* contiguous array of 32 bit
|
||||
* wide big-endian values. */
|
||||
#define SHA224_DIGEST_LENGTH 28
|
||||
#define SHA256_DIGEST_LENGTH 32
|
||||
|
||||
typedef struct SHA256state_st
|
||||
{
|
||||
uint32_t h[8];
|
||||
uint32_t Nl,Nh;
|
||||
uint32_t data[SHA_LBLOCK];
|
||||
unsigned int num,md_len;
|
||||
} SHA256_CTX;
|
||||
|
||||
int SHA224_Init(SHA256_CTX *c);
|
||||
int SHA224_Update(SHA256_CTX *c, const void *data, size_t len);
|
||||
int SHA224_Final(unsigned char *md, SHA256_CTX *c);
|
||||
unsigned char *SHA224(const unsigned char *d, size_t n,unsigned char *md);
|
||||
int SHA256_Init(SHA256_CTX *c);
|
||||
int SHA256_Update(SHA256_CTX *c, const void *data, size_t len);
|
||||
int SHA256_Final(unsigned char *md, SHA256_CTX *c);
|
||||
unsigned char *SHA256(const unsigned char *d, size_t n,unsigned char *md);
|
||||
void SHA256_Transform(SHA256_CTX *c, const unsigned char *data);
|
||||
|
||||
#endif
|
Loading…
Reference in a new issue