When used with `readFile`, we have a pretty good heuristic of the file
size, so `reserve` this in the `string`. This will save some allocation
/ copy when the string is growing.
This closes#3026 by allowing `builtins.readFile` to read a file with a
wrongly reported file size, for example, files in `/proc` may report a
file size of 0. Reading file in `/proc` is not a good enough motivation,
however I do think it just makes nix more robust by allowing more file
to be read. Especially, I do considerer the previous behavior to be
dangerous because nix was previously reading truncated files. Examples
of file system which incorrectly report file size may be network file
system or dynamic file system (for performance reason, a dynamic file
system such as FUSE may generate the content of the file on demand).
```
nix-repl> builtins.readFile "/proc/version"
""
```
With this commit:
```
nix-repl> builtins.readFile "/proc/version"
"Linux version 5.6.7 (nixbld@localhost) (gcc version 9.3.0 (GCC)) #1-NixOS SMP Thu Apr 23 08:38:27 UTC 2020\n"
```
Here is a summary of the behavior changes:
- If the reported size is smaller, previous implementation
was silently returning a truncated file content. The new implementation
is returning the correct file content.
- If a file had a bigger reported file size, previous implementation was
failing with an exception, but the new implementation is returning the
correct file content. This change of behavior is coherent with this pull
request.
Open questions
- The behavior is unchanged for correctly reported file size, however
performances may vary because it uses the more complex sink interface.
Considering that sink is used a lot, I don't think this impacts the
performance a lot.
- `builtins.readFile` on an infinite file, such as `/dev/random` may
fill the memory.
- it does not support adding file to store, such as `${/proc/version}`.
Suppose I have a path /nix/store/[hash]-[name]/a/a/a/a/a/[...]/a,
long enough that everything after "/nix/store/" is longer than 4096
(MAX_PATH) bytes.
Nix will happily allow such a path to be inserted into the store,
because it doesn't look at all the nested structure. It just cares
about the /nix/store/[hash]-[name] part. But, when the path is deleted,
we encounter a problem. Nix will move the path to /nix/store/trash, but
then when it's trying to recursively delete the trash directory, it will
at some point try to unlink
/nix/store/trash/[hash]-[name]/a/a/a/a/a/[...]/a. This will fail,
because the path is too long. After this has failed, any store deletion
operation will never work again, because Nix needs to delete the trash
directory before recreating it to move new things to it. (I assume this
is because otherwise a path being deleted could already exist in the
trash, and then moving it would fail.)
This means that if I can trick somebody into just fetching a tarball
containing a path of the right length, they won't be able to delete
store paths or garbage collect ever again, until the offending path is
manually removed from /nix/store/trash. (And even fixing this manually
is quite difficult if you don't understand the issue, because the
absolute path that Nix says it failed to remove is also too long for
rm(1).)
This patch fixes the issue by making Nix's recursive delete operation
use unlinkat(2). This function takes a relative path and a directory
file descriptor. We ensure that the relative path is always just the
name of the directory entry, and therefore its length will never exceed
255 bytes. This means that it will never even come close to AX_PATH,
and Nix will therefore be able to handle removing arbitrarily deep
directory hierachies.
Since the directory file descriptor is used for recursion after being
used in readDirectory, I made a variant of readDirectory that takes an
already open directory stream, to avoid the directory being opened
multiple times. As we have seen from this issue, the less we have to
interact with paths, the better, and so it's good to reuse file
descriptors where possible.
I left _deletePath as succeeding even if the parent directory doesn't
exist, even though that feels wrong to me, because without that early
return, the linux-sandbox test failed.
Reported-by: Alyssa Ross <hi@alyssa.is>
Thanks-to: Puck Meerburg <puck@puckipedia.com>
Tested-by: Puck Meerburg <puck@puckipedia.com>
Reviewed-by: Puck Meerburg <puck@puckipedia.com>
Most functions now take a StorePath argument rather than a Path (which
is just an alias for std::string). The StorePath constructor ensures
that the path is syntactically correct (i.e. it looks like
<store-dir>/<base32-hash>-<name>). Similarly, functions like
buildPaths() now take a StorePathWithOutputs, rather than abusing Path
by adding a '!<outputs>' suffix.
Note that the StorePath type is implemented in Rust. This involves
some hackery to allow Rust values to be used directly in C++, via a
helper type whose destructor calls the Rust type's drop()
function. The main issue is the dynamic nature of C++ move semantics:
after we have moved a Rust value, we should not call the drop function
on the original value. So when we move a value, we set the original
value to bitwise zero, and the destructor only calls drop() if the
value is not bitwise zero. This should be sufficient for most types.
Also lots of minor cleanups to the C++ API to make it more modern
(e.g. using std::optional and std::string_view in some places).
The intent of the code was that if the window size cannot be determined,
it would be treated as having the maximum possible size. Because of a
missing assignment, it was actually treated as having a width of 0.
The reason the width could not be determined was because it was obtained
from stdout, not stderr, even though the printing was done to stderr.
This commit addresses both issues.
This adds a command 'nix make-content-addressable' that rewrites the
specified store paths into content-addressable paths. The advantage of
such paths is that 1) they can be imported without signatures; 2) they
can enable deduplication in cases where derivation changes do not
cause output changes (apart from store path hashes).
For example,
$ nix make-content-addressable -r nixpkgs.cowsay
rewrote '/nix/store/g1g31ah55xdia1jdqabv1imf6mcw0nb1-glibc-2.25-49' to '/nix/store/48jfj7bg78a8n4f2nhg269rgw1936vj4-glibc-2.25-49'
...
rewrote '/nix/store/qbi6rzpk0bxjw8lw6azn2mc7ynnn455q-cowsay-3.03+dfsg1-16' to '/nix/store/iq6g2x4q62xp7y7493bibx0qn5w7xz67-cowsay-3.03+dfsg1-16'
We can then copy the resulting closure to another store without
signatures:
$ nix copy --trusted-public-keys '' ---to ~/my-nix /nix/store/iq6g2x4q62xp7y7493bibx0qn5w7xz67-cowsay-3.03+dfsg1-16
In order to support self-references in content-addressable paths,
these paths are hashed "modulo" self-references, meaning that
self-references are zeroed out during hashing. Somewhat annoyingly,
this means that the NAR hash stored in the Nix database is no longer
necessarily equal to the output of "nix hash-path"; for
content-addressable paths, you need to pass the --modulo flag:
$ nix path-info --json /nix/store/iq6g2x4q62xp7y7493bibx0qn5w7xz67-cowsay-3.03+dfsg1-16 | jq -r .[].narHash
sha256:0ri611gdilz2c9rsibqhsipbfs9vwcqvs811a52i2bnkhv7w9mgw
$ nix hash-path --type sha256 --base32 /nix/store/iq6g2x4q62xp7y7493bibx0qn5w7xz67-cowsay-3.03+dfsg1-16
1ggznh07khq0hz6id09pqws3a8q9pn03ya3c03nwck1kwq8rclzs
$ nix hash-path --type sha256 --base32 /nix/store/iq6g2x4q62xp7y7493bibx0qn5w7xz67-cowsay-3.03+dfsg1-16 --modulo iq6g2x4q62xp7y7493bibx0qn5w7xz67
0ri611gdilz2c9rsibqhsipbfs9vwcqvs811a52i2bnkhv7w9mgw
Passing `--post-build-hook /foo/bar` to a nix-* command will cause
`/foo/bar` to be executed after each build with the following
environment variables set:
DRV_PATH=/nix/store/drv-that-has-been-built.drv
OUT_PATHS=/nix/store/...build /nix/store/...build-bin /nix/store/...build-dev
This can be useful in particular to upload all the builded artifacts to
the cache (including the ones that don't appear in the runtime closure
of the final derivation or are built because of IFD).
This new feature prints the stderr/stdout output to the `nix-build`
and `nix build` client, and the output is printed in a Nix 2
compatible format:
[nix]$ ./inst/bin/nix-build ./test.nix
these derivations will be built:
/nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv
building '/nix/store/ishzj9ni17xq4hgrjvlyjkfvm00b0ch9-my-example-derivation.drv'...
hello!
bye!
running post-build-hook '/home/grahamc/projects/github.com/NixOS/nix/post-hook.sh'...
post-build-hook: + sleep 1
post-build-hook: + echo 'Signing paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation
post-build-hook: Signing paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation
post-build-hook: + sleep 1
post-build-hook: + echo 'Uploading paths' /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation
post-build-hook: Uploading paths /nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation
post-build-hook: + sleep 1
post-build-hook: + printf 'very important stuff'
/nix/store/qr213vjmibrqwnyp5fw678y7whbkqyny-my-example-derivation
[nix-shell:~/projects/github.com/NixOS/nix]$ ./inst/bin/nix build -L -f ./test.nix
my-example-derivation> hello!
my-example-derivation> bye!
my-example-derivation (post)> + sleep 1
my-example-derivation (post)> + echo 'Signing paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation
my-example-derivation (post)> Signing paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation
my-example-derivation (post)> + sleep 1
my-example-derivation (post)> + echo 'Uploading paths' /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation
my-example-derivation (post)> Uploading paths /nix/store/c263gzj2kb2609mz8wrbmh53l14wzmfs-my-example-derivation
my-example-derivation (post)> + sleep 1
my-example-derivation (post)> + printf 'very important stuff'
[1 built, 0.0 MiB DL]
Co-authored-by: Graham Christensen <graham@grahamc.com>
Co-authored-by: Eelco Dolstra <edolstra@gmail.com>
To determine which seccomp filters to install, we were incorrectly
using settings.thisSystem, which doesn't denote the actual system when
--system is used.
Fixes#2791.
This reverts commit a0ef21262f. This
doesn't work in 'nix run' and nix-shell because setns() fails in
multithreaded programs, and Boehm GC mark threads are uncancellable.
Fixes#2646.
Previously, config would only be read from XDG_CONFIG_HOME. This change
allows reading config from additional directories, which enables e.g.
per-project binary caches or chroot stores with the help of direnv.
‘geteuid’ gives us the user that the command is being run as,
including in setuid modes. By using geteuid to determind id, we can
avoid the ‘sudo -i’ hack when upgrading Nix. So now, upgrading Nix on
macOS is as simple as:
$ sudo nix-channel --update
$ sudo nix-env -u
$ sudo launchctl stop org.nixos.nix-daemon
$ sudo launchctl start org.nixos.nix-daemon
or
$ sudo systemctl restart nix-daemon
This reduces memory consumption of
nix copy --from file://... --to ~/my-nix /nix/store/95cwv4q54dc6giaqv6q6p4r02ia2km35-blender-2.79
from 514 MiB to 18 MiB for an uncompressed binary cache, and from 192
MiB to 53 MiB for a bzipped binary cache. It may also be faster
because fetching can happen concurrently with decompression/writing.
Continuation of 48662d151b.
Issue https://github.com/NixOS/nix/issues/1681.
E.g.
cannot build on 'ssh://mac1': cannot connect to 'mac1': bash: nix-store: command not found
cannot build on 'ssh://mac2': cannot connect to 'mac2': Host key verification failed.
cannot build on 'ssh://mac3': cannot connect to 'mac3': Received disconnect from 213... port 6001:2: Too many authentication failures
Authentication failed.
All ANSI sequences except color setting are now filtered out. In
particular, terminal resets (such as from NixOS VM tests) are filtered
out.
Also, fix the completely broken tab character handling.
In this mode, the following restrictions apply:
* The builtins currentTime, currentSystem and storePath throw an
error.
* $NIX_PATH and -I are ignored.
* fetchGit and fetchMercurial require a revision hash.
* fetchurl and fetchTarball require a sha256 attribute.
* No file system access is allowed outside of the paths returned by
fetch{Git,Mercurial,url,Tarball}. Thus 'nix build -f ./foo.nix' is
not allowed.
Thus, the evaluation result is completely reproducible from the
command line arguments. E.g.
nix build --pure-eval '(
let
nix = fetchGit { url = https://github.com/NixOS/nixpkgs.git; rev = "9c927de4b179a6dd210dd88d34bda8af4b575680"; };
nixpkgs = fetchGit { url = https://github.com/NixOS/nixpkgs.git; ref = "release-17.09"; rev = "66b4de79e3841530e6d9c6baf98702aa1f7124e4"; };
in (import (nix + "/release.nix") { inherit nix nixpkgs; }).build.x86_64-linux
)'
The goal is to enable completely reproducible and traceable
evaluation. For example, a NixOS configuration could be fully
described by a single Git commit hash. 'nixos-rebuild' would do
something like
nix build --pure-eval '(
(import (fetchGit { url = file:///my-nixos-config; rev = "..."; })).system
')
where the Git repository /my-nixos-config would use further fetchGit
calls or Git externals to fetch Nixpkgs and whatever other
dependencies it has. Either way, the commit hash would uniquely
identify the NixOS configuration and allow it to reproduced.
Used to determine symlink size with stat and value with readlink.
This could technically result in garbage if symlink changed between
calls. Also gets around the broken stat implementation in our
network filesystem (returns size + 1 giving a byte of garbage).