lix/src/libexpr/eval.cc

2109 lines
58 KiB
C++
Raw Normal View History

#include "eval.hh"
#include "hash.hh"
#include "util.hh"
#include "store-api.hh"
#include "derivations.hh"
#include "globals.hh"
#include "eval-inline.hh"
#include "filetransfer.hh"
2018-09-01 22:50:22 +00:00
#include "json.hh"
2019-11-13 16:38:37 +00:00
#include "function-trace.hh"
2014-03-29 23:49:23 +00:00
#include <algorithm>
#include <chrono>
#include <cstring>
#include <unistd.h>
2012-02-04 13:27:11 +00:00
#include <sys/time.h>
#include <sys/resource.h>
2018-09-01 22:50:22 +00:00
#include <iostream>
#include <fstream>
2018-06-11 14:10:50 +00:00
#include <sys/resource.h>
#if HAVE_BOEHMGC
#define GC_INCLUDE_NEW
#include <gc/gc.h>
#include <gc/gc_cpp.h>
#endif
namespace nix {
2015-03-19 13:11:35 +00:00
static char * dupString(const char * s)
{
char * t;
#if HAVE_BOEHMGC
t = GC_STRDUP(s);
2015-03-19 13:11:35 +00:00
#else
t = strdup(s);
#endif
if (!t) throw std::bad_alloc();
return t;
}
static char * dupStringWithLen(const char * s, size_t size)
{
char * t;
#if HAVE_BOEHMGC
t = GC_STRNDUP(s, size);
#else
t = strndup(s, size);
#endif
if (!t) throw std::bad_alloc();
return t;
}
RootValue allocRootValue(Value * v)
{
return std::allocate_shared<Value *>(traceable_allocator<Value *>(), v);
}
static void printValue(std::ostream & str, std::set<const Value *> & active, const Value & v)
{
checkInterrupt();
if (!active.insert(&v).second) {
str << "<CYCLE>";
return;
}
switch (v.type) {
case tInt:
str << v.integer;
break;
case tBool:
str << (v.boolean ? "true" : "false");
break;
case tString:
2010-04-08 11:41:19 +00:00
str << "\"";
for (const char * i = v.string.s; *i; i++)
if (*i == '\"' || *i == '\\') str << "\\" << *i;
else if (*i == '\n') str << "\\n";
else if (*i == '\r') str << "\\r";
else if (*i == '\t') str << "\\t";
else if (*i == '$' && *(i+1) == '{') str << "\\" << *i;
2010-04-08 11:41:19 +00:00
else str << *i;
str << "\"";
break;
2010-03-30 09:22:33 +00:00
case tPath:
str << v.path; // !!! escaping?
break;
case tNull:
str << "null";
break;
2010-05-12 12:15:49 +00:00
case tAttrs: {
str << "{ ";
for (auto & i : v.attrs->lexicographicOrder()) {
str << i->name << " = ";
printValue(str, active, *i->value);
str << "; ";
}
str << "}";
break;
2010-05-12 12:15:49 +00:00
}
case tList1:
case tList2:
case tListN:
str << "[ ";
for (unsigned int n = 0; n < v.listSize(); ++n) {
printValue(str, active, *v.listElems()[n]);
str << " ";
}
str << "]";
break;
case tThunk:
2010-06-02 09:43:04 +00:00
case tApp:
str << "<CODE>";
break;
case tLambda:
str << "<LAMBDA>";
break;
case tPrimOp:
str << "<PRIMOP>";
break;
case tPrimOpApp:
str << "<PRIMOP-APP>";
break;
case tExternal:
str << *v.external;
break;
case tFloat:
str << v.fpoint;
2016-01-05 08:46:37 +00:00
break;
default:
throw Error("invalid value");
}
active.erase(&v);
}
std::ostream & operator << (std::ostream & str, const Value & v)
{
std::set<const Value *> active;
printValue(str, active, v);
return str;
}
const Value *getPrimOp(const Value &v) {
const Value * primOp = &v;
while (primOp->type == tPrimOpApp) {
primOp = primOp->primOpApp.left;
}
assert(primOp->type == tPrimOp);
return primOp;
}
string showType(ValueType type)
{
switch (type) {
case tInt: return "an integer";
case tBool: return "a Boolean";
case tString: return "a string";
2010-04-01 10:55:36 +00:00
case tPath: return "a path";
2010-04-21 15:57:11 +00:00
case tNull: return "null";
case tAttrs: return "a set";
case tList1: case tList2: case tListN: return "a list";
2010-04-21 15:57:11 +00:00
case tThunk: return "a thunk";
case tApp: return "a function application";
2010-04-01 10:55:36 +00:00
case tLambda: return "a function";
2010-04-21 15:57:11 +00:00
case tBlackhole: return "a black hole";
case tPrimOp: return "a built-in function";
case tPrimOpApp: return "a partially applied built-in function";
case tExternal: return "an external value";
case tFloat: return "a float";
}
abort();
}
string showType(const Value & v)
{
switch (v.type) {
case tString: return v.string.context ? "a string with context" : "a string";
case tPrimOp:
return fmt("the built-in function '%s'", string(v.primOp->name));
case tPrimOpApp:
return fmt("the partially applied built-in function '%s'", string(getPrimOp(v)->primOp->name));
case tExternal: return v.external->showType();
default:
return showType(v.type);
}
}
bool Value::isTrivial() const
{
return
type != tApp
&& type != tPrimOpApp
&& (type != tThunk
|| (dynamic_cast<ExprAttrs *>(thunk.expr)
&& ((ExprAttrs *) thunk.expr)->dynamicAttrs.empty())
|| dynamic_cast<ExprLambda *>(thunk.expr));
}
#if HAVE_BOEHMGC
/* Called when the Boehm GC runs out of memory. */
static void * oomHandler(size_t requested)
{
/* Convert this to a proper C++ exception. */
throw std::bad_alloc();
}
#endif
2014-04-04 19:14:11 +00:00
static Symbol getName(const AttrName & name, EvalState & state, Env & env)
{
if (name.symbol.set()) {
return name.symbol;
} else {
Value nameValue;
name.expr->eval(state, env, nameValue);
state.forceStringNoCtx(nameValue);
return state.symbols.create(nameValue.string.s);
}
}
static bool gcInitialised = false;
void initGC()
{
if (gcInitialised) return;
#if HAVE_BOEHMGC
/* Initialise the Boehm garbage collector. */
/* Don't look for interior pointers. This reduces the odds of
misdetection a bit. */
GC_set_all_interior_pointers(0);
/* We don't have any roots in data segments, so don't scan from
there. */
GC_set_no_dls(1);
GC_INIT();
2017-04-14 12:42:20 +00:00
GC_set_oom_fn(oomHandler);
/* Set the initial heap size to something fairly big (25% of
physical RAM, up to a maximum of 384 MiB) so that in most cases
we don't need to garbage collect at all. (Collection has a
fairly significant overhead.) The heap size can be overridden
through libgc's GC_INITIAL_HEAP_SIZE environment variable. We
should probably also provide a nix.conf setting for this. Note
that GC_expand_hp() causes a lot of virtual, but not physical
(resident) memory to be allocated. This might be a problem on
systems that don't overcommit. */
if (!getEnv("GC_INITIAL_HEAP_SIZE")) {
size_t size = 32 * 1024 * 1024;
#if HAVE_SYSCONF && defined(_SC_PAGESIZE) && defined(_SC_PHYS_PAGES)
size_t maxSize = 384 * 1024 * 1024;
long pageSize = sysconf(_SC_PAGESIZE);
long pages = sysconf(_SC_PHYS_PAGES);
if (pageSize != -1)
size = (pageSize * pages) / 4; // 25% of RAM
if (size > maxSize) size = maxSize;
#endif
debug(format("setting initial heap size to %1% bytes") % size);
GC_expand_hp(size);
}
#endif
gcInitialised = true;
}
/* Very hacky way to parse $NIX_PATH, which is colon-separated, but
can contain URLs (e.g. "nixpkgs=https://bla...:foo=https://"). */
2016-04-14 15:25:49 +00:00
static Strings parseNixPath(const string & s)
{
2016-04-14 15:25:49 +00:00
Strings res;
auto p = s.begin();
while (p != s.end()) {
auto start = p;
auto start2 = p;
while (p != s.end() && *p != ':') {
if (*p == '=') start2 = p + 1;
++p;
}
if (p == s.end()) {
if (p != start) res.push_back(std::string(start, p));
break;
}
if (*p == ':') {
if (isUri(std::string(start2, s.end()))) {
++p;
while (p != s.end() && *p != ':') ++p;
}
res.push_back(std::string(start, p));
if (p == s.end()) break;
}
++p;
}
return res;
}
EvalState::EvalState(const Strings & _searchPath, ref<Store> store)
: sWith(symbols.create("<with>"))
, sOutPath(symbols.create("outPath"))
, sDrvPath(symbols.create("drvPath"))
, sType(symbols.create("type"))
, sMeta(symbols.create("meta"))
, sName(symbols.create("name"))
2013-10-28 06:34:44 +00:00
, sValue(symbols.create("value"))
, sSystem(symbols.create("system"))
, sOverrides(symbols.create("__overrides"))
, sOutputs(symbols.create("outputs"))
, sOutputName(symbols.create("outputName"))
, sIgnoreNulls(symbols.create("__ignoreNulls"))
, sFile(symbols.create("file"))
, sLine(symbols.create("line"))
, sColumn(symbols.create("column"))
, sFunctor(symbols.create("__functor"))
, sToString(symbols.create("__toString"))
, sRight(symbols.create("right"))
, sWrong(symbols.create("wrong"))
Add support for passing structured data to builders Previously, all derivation attributes had to be coerced into strings so that they could be passed via the environment. This is lossy (e.g. lists get flattened, necessitating configureFlags vs. configureFlagsArray, of which the latter cannot be specified as an attribute), doesn't support attribute sets at all, and has size limitations (necessitating hacks like passAsFile). This patch adds a new mode for passing attributes to builders, namely encoded as a JSON file ".attrs.json" in the current directory of the builder. This mode is activated via the special attribute __structuredAttrs = true; (The idea is that one day we can set this in stdenv.mkDerivation.) For example, stdenv.mkDerivation { __structuredAttrs = true; name = "foo"; buildInputs = [ pkgs.hello pkgs.cowsay ]; doCheck = true; hardening.format = false; } results in a ".attrs.json" file containing (sans the indentation): { "buildInputs": [], "builder": "/nix/store/ygl61ycpr2vjqrx775l1r2mw1g2rb754-bash-4.3-p48/bin/bash", "configureFlags": [ "--with-foo", "--with-bar=1 2" ], "doCheck": true, "hardening": { "format": false }, "name": "foo", "nativeBuildInputs": [ "/nix/store/10h6li26i7g6z3mdpvra09yyf10mmzdr-hello-2.10", "/nix/store/4jnvjin0r6wp6cv1hdm5jbkx3vinlcvk-cowsay-3.03" ], "propagatedBuildInputs": [], "propagatedNativeBuildInputs": [], "stdenv": "/nix/store/f3hw3p8armnzy6xhd4h8s7anfjrs15n2-stdenv", "system": "x86_64-linux" } "passAsFile" is ignored in this mode because it's not needed - large strings are included directly in the JSON representation. It is up to the builder to do something with the JSON representation. For example, in bash-based builders, lists/attrsets of string values could be mapped to bash (associative) arrays.
2017-01-25 15:42:07 +00:00
, sStructuredAttrs(symbols.create("__structuredAttrs"))
, sBuilder(symbols.create("builder"))
, sArgs(symbols.create("args"))
, sContentAddressed(symbols.create("__contentAddressed"))
, sOutputHash(symbols.create("outputHash"))
, sOutputHashAlgo(symbols.create("outputHashAlgo"))
, sOutputHashMode(symbols.create("outputHashMode"))
2020-06-18 11:44:40 +00:00
, sRecurseForDerivations(symbols.create("recurseForDerivations"))
2018-11-29 18:18:36 +00:00
, sDescription(symbols.create("description"))
, sSelf(symbols.create("self"))
, sEpsilon(symbols.create(""))
, repair(NoRepair)
, store(store)
, regexCache(makeRegexCache())
, baseEnv(allocEnv(128))
2010-04-14 22:59:39 +00:00
, staticBaseEnv(false, 0)
{
countCalls = getEnv("NIX_COUNT_CALLS").value_or("0") != "0";
assert(gcInitialised);
static_assert(sizeof(Env) <= 16, "environment must be <= 16 bytes");
/* Initialise the Nix expression search path. */
if (!evalSettings.pureEval) {
for (auto & i : _searchPath) addToSearchPath(i);
for (auto & i : evalSettings.nixPath.get()) addToSearchPath(i);
}
2020-09-16 14:56:28 +00:00
try {
addToSearchPath("nix=" + canonPath(settings.nixDataDir + "/nix/corepkgs", true));
} catch (Error &) {
}
if (evalSettings.restrictEval || evalSettings.pureEval) {
allowedPaths = PathSet();
for (auto & i : searchPath) {
auto r = resolveSearchPathElem(i);
if (!r.first) continue;
auto path = r.second;
if (store->isInStore(r.second)) {
try {
StorePathSet closure;
store->computeFSClosure(store->toStorePath(r.second).first, closure);
for (auto & path : closure)
allowedPaths->insert(store->printStorePath(path));
} catch (InvalidPath &) {
allowedPaths->insert(r.second);
}
} else
allowedPaths->insert(r.second);
}
}
clearValue(vEmptySet);
vEmptySet.type = tAttrs;
vEmptySet.attrs = allocBindings(0);
createBaseEnv();
}
EvalState::~EvalState()
{
}
Path EvalState::checkSourcePath(const Path & path_)
{
if (!allowedPaths) return path_;
auto i = resolvedPaths.find(path_);
if (i != resolvedPaths.end())
return i->second;
bool found = false;
/* First canonicalize the path without symlinks, so we make sure an
* attacker can't append ../../... to a path that would be in allowedPaths
* and thus leak symlink targets.
*/
Path abspath = canonPath(path_);
for (auto & i : *allowedPaths) {
if (isDirOrInDir(abspath, i)) {
found = true;
break;
}
}
2018-01-19 13:58:26 +00:00
if (!found)
throw RestrictedPathError("access to path '%1%' is forbidden in restricted mode", abspath);
/* Resolve symlinks. */
debug(format("checking access to '%s'") % abspath);
Path path = canonPath(abspath, true);
for (auto & i : *allowedPaths) {
if (isDirOrInDir(path, i)) {
resolvedPaths[path_] = path;
return path;
}
}
2018-01-19 13:58:26 +00:00
throw RestrictedPathError("access to path '%1%' is forbidden in restricted mode", path);
}
void EvalState::checkURI(const std::string & uri)
{
if (!evalSettings.restrictEval) return;
/* 'uri' should be equal to a prefix, or in a subdirectory of a
prefix. Thus, the prefix https://github.co does not permit
access to https://github.com. Note: this allows 'http://' and
'https://' as prefixes for any http/https URI. */
for (auto & prefix : evalSettings.allowedUris.get())
if (uri == prefix ||
(uri.size() > prefix.size()
&& prefix.size() > 0
&& hasPrefix(uri, prefix)
&& (prefix[prefix.size() - 1] == '/' || uri[prefix.size()] == '/')))
return;
/* If the URI is a path, then check it against allowedPaths as
well. */
if (hasPrefix(uri, "/")) {
checkSourcePath(uri);
return;
}
if (hasPrefix(uri, "file://")) {
checkSourcePath(std::string(uri, 7));
return;
}
throw RestrictedPathError("access to URI '%s' is forbidden in restricted mode", uri);
}
Path EvalState::toRealPath(const Path & path, const PathSet & context)
{
// FIXME: check whether 'path' is in 'context'.
return
!context.empty() && store->isInStore(path)
? store->toRealPath(path)
: path;
2019-11-10 16:23:35 +00:00
}
Value * EvalState::addConstant(const string & name, Value & v)
2010-03-30 14:39:27 +00:00
{
Value * v2 = allocValue();
*v2 = v;
2010-04-14 22:59:39 +00:00
staticBaseEnv.vars[symbols.create(name)] = baseEnvDispl;
baseEnv.values[baseEnvDispl++] = v2;
2010-03-30 14:39:27 +00:00
string name2 = string(name, 0, 2) == "__" ? string(name, 2) : name;
baseEnv.values[0]->attrs->push_back(Attr(symbols.create(name2), v2));
return v2;
2010-03-30 14:39:27 +00:00
}
Value * EvalState::addPrimOp(const string & name,
2018-05-02 11:56:34 +00:00
size_t arity, PrimOpFun primOp)
{
2018-11-29 15:28:43 +00:00
auto name2 = string(name, 0, 2) == "__" ? string(name, 2) : name;
Symbol sym = symbols.create(name2);
/* Hack to make constants lazy: turn them into a application of
the primop to a dummy value. */
if (arity == 0) {
2018-11-29 15:28:43 +00:00
auto vPrimOp = allocValue();
vPrimOp->type = tPrimOp;
2020-08-20 10:34:04 +00:00
vPrimOp->primOp = new PrimOp { .fun = primOp, .arity = 1, .name = sym };
Value v;
2018-11-29 15:28:43 +00:00
mkApp(v, *vPrimOp, *vPrimOp);
return addConstant(name, v);
}
2018-11-29 15:28:43 +00:00
Value * v = allocValue();
v->type = tPrimOp;
2020-08-20 10:34:04 +00:00
v->primOp = new PrimOp { .fun = primOp, .arity = arity, .name = sym };
staticBaseEnv.vars[symbols.create(name)] = baseEnvDispl;
baseEnv.values[baseEnvDispl++] = v;
baseEnv.values[0]->attrs->push_back(Attr(sym, v));
return v;
}
Value * EvalState::addPrimOp(PrimOp && primOp)
{
/* Hack to make constants lazy: turn them into a application of
the primop to a dummy value. */
if (primOp.arity == 0) {
primOp.arity = 1;
auto vPrimOp = allocValue();
vPrimOp->type = tPrimOp;
vPrimOp->primOp = new PrimOp(std::move(primOp));
Value v;
mkApp(v, *vPrimOp, *vPrimOp);
return addConstant(primOp.name, v);
}
Symbol envName = primOp.name;
if (hasPrefix(primOp.name, "__"))
primOp.name = symbols.create(std::string(primOp.name, 2));
Value * v = allocValue();
v->type = tPrimOp;
v->primOp = new PrimOp(std::move(primOp));
staticBaseEnv.vars[envName] = baseEnvDispl;
baseEnv.values[baseEnvDispl++] = v;
baseEnv.values[0]->attrs->push_back(Attr(primOp.name, v));
return v;
}
Value & EvalState::getBuiltin(const string & name)
{
return *baseEnv.values[0]->attrs->find(symbols.create(name))->value;
}
2020-08-25 11:31:11 +00:00
std::optional<EvalState::Doc> EvalState::getDoc(Value & v)
{
if (v.type == tPrimOp || v.type == tPrimOpApp) {
auto v2 = &v;
while (v2->type == tPrimOpApp)
v2 = v2->primOpApp.left;
if (v2->primOp->doc)
return Doc {
.pos = noPos,
.name = v2->primOp->name,
.arity = v2->primOp->arity,
.args = v2->primOp->args,
.doc = v2->primOp->doc,
};
}
return {};
}
/* Every "format" object (even temporary) takes up a few hundred bytes
of stack space, which is a real killer in the recursive
evaluator. So here are some helper functions for throwing
exceptions. */
LocalNoInlineNoReturn(void throwEvalError(const char * s, const string & s2))
{
throw EvalError(s, s2);
}
LocalNoInlineNoReturn(void throwEvalError(const Pos & pos, const char * s, const string & s2))
{
throw EvalError({
.hint = hintfmt(s, s2),
.errPos = pos
});
}
LocalNoInlineNoReturn(void throwEvalError(const char * s, const string & s2, const string & s3))
{
throw EvalError(s, s2, s3);
}
LocalNoInlineNoReturn(void throwEvalError(const Pos & pos, const char * s, const string & s2, const string & s3))
2014-04-04 19:14:11 +00:00
{
throw EvalError({
.hint = hintfmt(s, s2, s3),
.errPos = pos
});
2014-04-04 19:14:11 +00:00
}
LocalNoInlineNoReturn(void throwEvalError(const Pos & p1, const char * s, const Symbol & sym, const Pos & p2))
Dynamic attrs This adds new syntax for attribute names: * attrs."${name}" => getAttr name attrs * attrs ? "${name}" => isAttrs attrs && hasAttr attrs name * attrs."${name}" or def => if attrs ? "${name}" then attrs."${name}" else def * { "${name}" = value; } => listToAttrs [{ inherit name value; }] Of course, it's a bit more complicated than that. The attribute chains can be arbitrarily long and contain combinations of static and dynamic parts (e.g. attrs."${foo}".bar."${baz}" or qux), which is relatively straightforward for the getAttrs/hasAttrs cases but is more complex for the listToAttrs case due to rules about duplicate attribute definitions. For attribute sets with dynamic attribute names, duplicate static attributes are detected at parse time while duplicate dynamic attributes are detected when the attribute set is forced. So, for example, { a = null; a.b = null; "${"c"}" = true; } will be a parse-time error, while { a = {}; "${"a"}".b = null; c = true; } will be an eval-time error (technically that case could theoretically be detected at parse time, but the general case would require full evaluation). Moreover, duplicate dynamic attributes are not allowed even in cases where they would be with static attributes ({ a.b.d = true; a.b.c = false; } is legal, but { a."${"b"}".d = true; a."${"b"}".c = false; } is not). This restriction might be relaxed in the future in cases where the static variant would not be an error, but it is not obvious that that is desirable. Finally, recursive attribute sets with dynamic attributes have the static attributes in scope but not the dynamic ones. So rec { a = true; "${"b"}" = a; } is equivalent to { a = true; b = true; } but rec { "${"a"}" = true; b = a; } would be an error or use a from the surrounding scope if it exists. Note that the getAttr, getAttr or default, and hasAttr are all implemented purely in the parser as syntactic sugar, while attribute sets with dynamic attribute names required changes to the AST to be implemented cleanly. This is an alternative solution to and closes #167 Signed-off-by: Shea Levy <shea@shealevy.com>
2013-09-21 03:25:30 +00:00
{
2020-05-12 16:52:26 +00:00
// p1 is where the error occurred; p2 is a position mentioned in the message.
throw EvalError({
.hint = hintfmt(s, sym, p2),
.errPos = p1
});
Dynamic attrs This adds new syntax for attribute names: * attrs."${name}" => getAttr name attrs * attrs ? "${name}" => isAttrs attrs && hasAttr attrs name * attrs."${name}" or def => if attrs ? "${name}" then attrs."${name}" else def * { "${name}" = value; } => listToAttrs [{ inherit name value; }] Of course, it's a bit more complicated than that. The attribute chains can be arbitrarily long and contain combinations of static and dynamic parts (e.g. attrs."${foo}".bar."${baz}" or qux), which is relatively straightforward for the getAttrs/hasAttrs cases but is more complex for the listToAttrs case due to rules about duplicate attribute definitions. For attribute sets with dynamic attribute names, duplicate static attributes are detected at parse time while duplicate dynamic attributes are detected when the attribute set is forced. So, for example, { a = null; a.b = null; "${"c"}" = true; } will be a parse-time error, while { a = {}; "${"a"}".b = null; c = true; } will be an eval-time error (technically that case could theoretically be detected at parse time, but the general case would require full evaluation). Moreover, duplicate dynamic attributes are not allowed even in cases where they would be with static attributes ({ a.b.d = true; a.b.c = false; } is legal, but { a."${"b"}".d = true; a."${"b"}".c = false; } is not). This restriction might be relaxed in the future in cases where the static variant would not be an error, but it is not obvious that that is desirable. Finally, recursive attribute sets with dynamic attributes have the static attributes in scope but not the dynamic ones. So rec { a = true; "${"b"}" = a; } is equivalent to { a = true; b = true; } but rec { "${"a"}" = true; b = a; } would be an error or use a from the surrounding scope if it exists. Note that the getAttr, getAttr or default, and hasAttr are all implemented purely in the parser as syntactic sugar, while attribute sets with dynamic attribute names required changes to the AST to be implemented cleanly. This is an alternative solution to and closes #167 Signed-off-by: Shea Levy <shea@shealevy.com>
2013-09-21 03:25:30 +00:00
}
LocalNoInlineNoReturn(void throwTypeError(const Pos & pos, const char * s))
{
throw TypeError({
.hint = hintfmt(s),
.errPos = pos
});
}
LocalNoInlineNoReturn(void throwTypeError(const char * s, const string & s1))
{
throw TypeError(s, s1);
}
LocalNoInlineNoReturn(void throwTypeError(const Pos & pos, const char * s, const ExprLambda & fun, const Symbol & s2))
2013-11-07 17:04:36 +00:00
{
throw TypeError({
.hint = hintfmt(s, fun.showNamePos(), s2),
.errPos = pos
});
2013-11-07 17:04:36 +00:00
}
LocalNoInlineNoReturn(void throwAssertionError(const Pos & pos, const char * s, const string & s1))
{
throw AssertionError({
.hint = hintfmt(s, s1),
.errPos = pos
});
}
LocalNoInlineNoReturn(void throwUndefinedVarError(const Pos & pos, const char * s, const string & s1))
{
throw UndefinedVarError({
.hint = hintfmt(s, s1),
.errPos = pos
});
}
2020-06-19 19:44:08 +00:00
LocalNoInline(void addErrorTrace(Error & e, const char * s, const string & s2))
{
2020-06-24 19:46:25 +00:00
e.addTrace(std::nullopt, s, s2);
}
2020-06-19 19:44:08 +00:00
LocalNoInline(void addErrorTrace(Error & e, const Pos & pos, const char * s, const string & s2))
{
2020-06-24 19:46:25 +00:00
e.addTrace(pos, s, s2);
}
2010-03-30 18:05:54 +00:00
void mkString(Value & v, const char * s)
{
2015-03-19 13:11:35 +00:00
mkStringNoCopy(v, dupString(s));
2010-03-30 18:05:54 +00:00
}
Value & mkString(Value & v, std::string_view s, const PathSet & context)
2010-03-30 18:05:54 +00:00
{
v.type = tString;
v.string.s = dupStringWithLen(s.data(), s.size());
v.string.context = 0;
if (!context.empty()) {
2018-05-02 11:56:34 +00:00
size_t n = 0;
v.string.context = (const char * *)
2015-03-19 13:11:35 +00:00
allocBytes((context.size() + 1) * sizeof(char *));
2015-07-17 17:24:28 +00:00
for (auto & i : context)
v.string.context[n++] = dupString(i.c_str());
v.string.context[n] = 0;
}
return v;
2010-03-30 18:05:54 +00:00
}
void mkPath(Value & v, const char * s)
{
2015-03-19 13:11:35 +00:00
mkPathNoCopy(v, dupString(s));
2010-03-30 18:05:54 +00:00
}
2013-10-08 12:24:53 +00:00
inline Value * EvalState::lookupVar(Env * env, const ExprVar & var, bool noEval)
{
2018-05-02 11:56:34 +00:00
for (size_t l = var.level; l; --l, env = env->up) ;
if (!var.fromWith) return env->values[var.displ];
while (1) {
if (env->type == Env::HasWithExpr) {
if (noEval) return 0;
Value * v = allocValue();
evalAttrs(*env->up, (Expr *) env->values[0], *v);
env->values[0] = v;
env->type = Env::HasWithAttrs;
}
Bindings::iterator j = env->values[0]->attrs->find(var.name);
if (j != env->values[0]->attrs->end()) {
if (countCalls && j->pos) attrSelects[*j->pos]++;
return j->value;
}
if (!env->prevWith)
throwUndefinedVarError(var.pos, "undefined variable '%1%'", var.name);
2018-05-02 11:56:34 +00:00
for (size_t l = env->prevWith; l; --l, env = env->up) ;
}
}
2018-06-11 14:10:50 +00:00
std::atomic<uint64_t> nrValuesFreed{0};
void finalizeValue(void * obj, void * data)
{
nrValuesFreed++;
}
Value * EvalState::allocValue()
{
nrValues++;
2018-06-11 14:10:50 +00:00
auto v = (Value *) allocBytes(sizeof(Value));
//GC_register_finalizer_no_order(v, finalizeValue, nullptr, nullptr, nullptr);
return v;
}
2018-05-02 11:56:34 +00:00
Env & EvalState::allocEnv(size_t size)
{
nrEnvs++;
2010-04-14 23:48:46 +00:00
nrValuesInEnvs += size;
2015-03-19 13:11:35 +00:00
Env * env = (Env *) allocBytes(sizeof(Env) + size * sizeof(Value *));
env->type = Env::Plain;
/* We assume that env->values has been cleared by the allocator; maybeThunk() and lookupVar fromWith expect this. */
2013-09-02 14:29:15 +00:00
return *env;
}
2018-05-02 11:56:34 +00:00
void EvalState::mkList(Value & v, size_t size)
2010-03-30 14:39:27 +00:00
{
clearValue(v);
if (size == 1)
v.type = tList1;
else if (size == 2)
v.type = tList2;
else {
v.type = tListN;
v.bigList.size = size;
v.bigList.elems = size ? (Value * *) allocBytes(size * sizeof(Value *)) : 0;
}
nrListElems += size;
2010-03-30 14:39:27 +00:00
}
unsigned long nrThunks = 0;
static inline void mkThunk(Value & v, Env & env, Expr * expr)
{
v.type = tThunk;
v.thunk.env = &env;
v.thunk.expr = expr;
nrThunks++;
}
void EvalState::mkThunk_(Value & v, Expr * expr)
{
mkThunk(v, baseEnv, expr);
}
void EvalState::mkPos(Value & v, Pos * pos)
{
if (pos && pos->file.set()) {
mkAttrs(v, 3);
mkString(*allocAttr(v, sFile), pos->file);
mkInt(*allocAttr(v, sLine), pos->line);
mkInt(*allocAttr(v, sColumn), pos->column);
v.attrs->sort();
} else
mkNull(v);
}
/* Create a thunk for the delayed computation of the given expression
in the given environment. But if the expression is a variable,
then look it up right away. This significantly reduces the number
of thunks allocated. */
Value * Expr::maybeThunk(EvalState & state, Env & env)
{
Value * v = state.allocValue();
mkThunk(*v, env, this);
return v;
}
unsigned long nrAvoided = 0;
Value * ExprVar::maybeThunk(EvalState & state, Env & env)
{
2013-10-08 12:24:53 +00:00
Value * v = state.lookupVar(&env, *this, true);
/* The value might not be initialised in the environment yet.
In that case, ignore it. */
if (v) { nrAvoided++; return v; }
return Expr::maybeThunk(state, env);
}
Value * ExprString::maybeThunk(EvalState & state, Env & env)
{
nrAvoided++;
return &v;
}
Value * ExprInt::maybeThunk(EvalState & state, Env & env)
{
nrAvoided++;
return &v;
}
Value * ExprFloat::maybeThunk(EvalState & state, Env & env)
{
nrAvoided++;
return &v;
}
Value * ExprPath::maybeThunk(EvalState & state, Env & env)
{
nrAvoided++;
return &v;
}
void EvalState::evalFile(const Path & path_, Value & v, bool mustBeTrivial)
2010-03-30 09:22:33 +00:00
{
auto path = checkSourcePath(path_);
FileEvalCache::iterator i;
if ((i = fileEvalCache.find(path)) != fileEvalCache.end()) {
v = i->second;
return;
}
Path path2 = resolveExprPath(path);
if ((i = fileEvalCache.find(path2)) != fileEvalCache.end()) {
v = i->second;
return;
}
printTalkative("evaluating file '%1%'", path2);
Expr * e = nullptr;
auto j = fileParseCache.find(path2);
if (j != fileParseCache.end())
e = j->second;
if (!e)
e = parseExprFromFile(checkSourcePath(path2));
fileParseCache[path2] = e;
try {
// Enforce that 'flake.nix' is a direct attrset, not a
// computation.
if (mustBeTrivial &&
!(dynamic_cast<ExprAttrs *>(e)))
throw Error("file '%s' must be an attribute set", path);
eval(e, v);
} catch (Error & e) {
2020-06-19 19:44:08 +00:00
addErrorTrace(e, "while evaluating the file '%1%':", path2);
throw;
}
fileEvalCache[path2] = v;
if (path != path2) fileEvalCache[path] = v;
2010-03-30 09:22:33 +00:00
}
2013-09-02 16:34:04 +00:00
void EvalState::resetFileCache()
{
fileEvalCache.clear();
fileParseCache.clear();
2013-09-02 16:34:04 +00:00
}
void EvalState::eval(Expr * e, Value & v)
{
e->eval(*this, baseEnv, v);
}
inline bool EvalState::evalBool(Env & env, Expr * e)
{
Value v;
e->eval(*this, env, v);
if (v.type != tBool)
throwTypeError("value is %1% while a Boolean was expected", v);
return v.boolean;
}
inline bool EvalState::evalBool(Env & env, Expr * e, const Pos & pos)
{
Value v;
e->eval(*this, env, v);
if (v.type != tBool)
throwTypeError(pos, "value is %1% while a Boolean was expected", v);
return v.boolean;
}
inline void EvalState::evalAttrs(Env & env, Expr * e, Value & v)
2010-04-16 15:13:47 +00:00
{
e->eval(*this, env, v);
2010-04-16 15:13:47 +00:00
if (v.type != tAttrs)
throwTypeError("value is %1% while a set was expected", v);
2010-04-16 15:13:47 +00:00
}
2010-04-12 22:03:27 +00:00
void Expr::eval(EvalState & state, Env & env, Value & v)
{
abort();
}
void ExprInt::eval(EvalState & state, Env & env, Value & v)
{
v = this->v;
}
void ExprFloat::eval(EvalState & state, Env & env, Value & v)
{
v = this->v;
}
void ExprString::eval(EvalState & state, Env & env, Value & v)
{
v = this->v;
}
void ExprPath::eval(EvalState & state, Env & env, Value & v)
{
v = this->v;
}
void ExprAttrs::eval(EvalState & state, Env & env, Value & v)
{
state.mkAttrs(v, attrs.size() + dynamicAttrs.size());
Dynamic attrs This adds new syntax for attribute names: * attrs."${name}" => getAttr name attrs * attrs ? "${name}" => isAttrs attrs && hasAttr attrs name * attrs."${name}" or def => if attrs ? "${name}" then attrs."${name}" else def * { "${name}" = value; } => listToAttrs [{ inherit name value; }] Of course, it's a bit more complicated than that. The attribute chains can be arbitrarily long and contain combinations of static and dynamic parts (e.g. attrs."${foo}".bar."${baz}" or qux), which is relatively straightforward for the getAttrs/hasAttrs cases but is more complex for the listToAttrs case due to rules about duplicate attribute definitions. For attribute sets with dynamic attribute names, duplicate static attributes are detected at parse time while duplicate dynamic attributes are detected when the attribute set is forced. So, for example, { a = null; a.b = null; "${"c"}" = true; } will be a parse-time error, while { a = {}; "${"a"}".b = null; c = true; } will be an eval-time error (technically that case could theoretically be detected at parse time, but the general case would require full evaluation). Moreover, duplicate dynamic attributes are not allowed even in cases where they would be with static attributes ({ a.b.d = true; a.b.c = false; } is legal, but { a."${"b"}".d = true; a."${"b"}".c = false; } is not). This restriction might be relaxed in the future in cases where the static variant would not be an error, but it is not obvious that that is desirable. Finally, recursive attribute sets with dynamic attributes have the static attributes in scope but not the dynamic ones. So rec { a = true; "${"b"}" = a; } is equivalent to { a = true; b = true; } but rec { "${"a"}" = true; b = a; } would be an error or use a from the surrounding scope if it exists. Note that the getAttr, getAttr or default, and hasAttr are all implemented purely in the parser as syntactic sugar, while attribute sets with dynamic attribute names required changes to the AST to be implemented cleanly. This is an alternative solution to and closes #167 Signed-off-by: Shea Levy <shea@shealevy.com>
2013-09-21 03:25:30 +00:00
Env *dynamicEnv = &env;
2010-04-14 23:25:05 +00:00
if (recursive) {
/* Create a new environment that contains the attributes in
this `rec'. */
Env & env2(state.allocEnv(attrs.size()));
env2.up = &env;
Dynamic attrs This adds new syntax for attribute names: * attrs."${name}" => getAttr name attrs * attrs ? "${name}" => isAttrs attrs && hasAttr attrs name * attrs."${name}" or def => if attrs ? "${name}" then attrs."${name}" else def * { "${name}" = value; } => listToAttrs [{ inherit name value; }] Of course, it's a bit more complicated than that. The attribute chains can be arbitrarily long and contain combinations of static and dynamic parts (e.g. attrs."${foo}".bar."${baz}" or qux), which is relatively straightforward for the getAttrs/hasAttrs cases but is more complex for the listToAttrs case due to rules about duplicate attribute definitions. For attribute sets with dynamic attribute names, duplicate static attributes are detected at parse time while duplicate dynamic attributes are detected when the attribute set is forced. So, for example, { a = null; a.b = null; "${"c"}" = true; } will be a parse-time error, while { a = {}; "${"a"}".b = null; c = true; } will be an eval-time error (technically that case could theoretically be detected at parse time, but the general case would require full evaluation). Moreover, duplicate dynamic attributes are not allowed even in cases where they would be with static attributes ({ a.b.d = true; a.b.c = false; } is legal, but { a."${"b"}".d = true; a."${"b"}".c = false; } is not). This restriction might be relaxed in the future in cases where the static variant would not be an error, but it is not obvious that that is desirable. Finally, recursive attribute sets with dynamic attributes have the static attributes in scope but not the dynamic ones. So rec { a = true; "${"b"}" = a; } is equivalent to { a = true; b = true; } but rec { "${"a"}" = true; b = a; } would be an error or use a from the surrounding scope if it exists. Note that the getAttr, getAttr or default, and hasAttr are all implemented purely in the parser as syntactic sugar, while attribute sets with dynamic attribute names required changes to the AST to be implemented cleanly. This is an alternative solution to and closes #167 Signed-off-by: Shea Levy <shea@shealevy.com>
2013-09-21 03:25:30 +00:00
dynamicEnv = &env2;
AttrDefs::iterator overrides = attrs.find(state.sOverrides);
bool hasOverrides = overrides != attrs.end();
/* The recursive attributes are evaluated in the new
environment, while the inherited attributes are evaluated
in the original environment. */
2018-05-02 11:56:34 +00:00
size_t displ = 0;
2015-07-17 17:24:28 +00:00
for (auto & i : attrs) {
Value * vAttr;
2015-07-17 17:24:28 +00:00
if (hasOverrides && !i.second.inherited) {
vAttr = state.allocValue();
2015-07-17 17:24:28 +00:00
mkThunk(*vAttr, env2, i.second.e);
} else
2015-07-17 17:24:28 +00:00
vAttr = i.second.e->maybeThunk(state, i.second.inherited ? env : env2);
env2.values[displ++] = vAttr;
2015-07-17 17:24:28 +00:00
v.attrs->push_back(Attr(i.first, vAttr, &i.second.pos));
}
/* If the rec contains an attribute called `__overrides', then
evaluate it, and add the attributes in that set to the rec.
This allows overriding of recursive attributes, which is
otherwise not possible. (You can use the // operator to
replace an attribute, but other attributes in the rec will
still reference the original value, because that value has
been substituted into the bodies of the other attributes.
Hence we need __overrides.) */
if (hasOverrides) {
Value * vOverrides = (*v.attrs)[overrides->second.displ].value;
state.forceAttrs(*vOverrides);
Bindings * newBnds = state.allocBindings(v.attrs->capacity() + vOverrides->attrs->size());
for (auto & i : *v.attrs)
newBnds->push_back(i);
for (auto & i : *vOverrides->attrs) {
AttrDefs::iterator j = attrs.find(i.name);
if (j != attrs.end()) {
(*newBnds)[j->second.displ] = i;
env2.values[j->second.displ] = i.value;
} else
newBnds->push_back(i);
}
newBnds->sort();
v.attrs = newBnds;
}
}
Dynamic attrs This adds new syntax for attribute names: * attrs."${name}" => getAttr name attrs * attrs ? "${name}" => isAttrs attrs && hasAttr attrs name * attrs."${name}" or def => if attrs ? "${name}" then attrs."${name}" else def * { "${name}" = value; } => listToAttrs [{ inherit name value; }] Of course, it's a bit more complicated than that. The attribute chains can be arbitrarily long and contain combinations of static and dynamic parts (e.g. attrs."${foo}".bar."${baz}" or qux), which is relatively straightforward for the getAttrs/hasAttrs cases but is more complex for the listToAttrs case due to rules about duplicate attribute definitions. For attribute sets with dynamic attribute names, duplicate static attributes are detected at parse time while duplicate dynamic attributes are detected when the attribute set is forced. So, for example, { a = null; a.b = null; "${"c"}" = true; } will be a parse-time error, while { a = {}; "${"a"}".b = null; c = true; } will be an eval-time error (technically that case could theoretically be detected at parse time, but the general case would require full evaluation). Moreover, duplicate dynamic attributes are not allowed even in cases where they would be with static attributes ({ a.b.d = true; a.b.c = false; } is legal, but { a."${"b"}".d = true; a."${"b"}".c = false; } is not). This restriction might be relaxed in the future in cases where the static variant would not be an error, but it is not obvious that that is desirable. Finally, recursive attribute sets with dynamic attributes have the static attributes in scope but not the dynamic ones. So rec { a = true; "${"b"}" = a; } is equivalent to { a = true; b = true; } but rec { "${"a"}" = true; b = a; } would be an error or use a from the surrounding scope if it exists. Note that the getAttr, getAttr or default, and hasAttr are all implemented purely in the parser as syntactic sugar, while attribute sets with dynamic attribute names required changes to the AST to be implemented cleanly. This is an alternative solution to and closes #167 Signed-off-by: Shea Levy <shea@shealevy.com>
2013-09-21 03:25:30 +00:00
else
2015-07-17 17:24:28 +00:00
for (auto & i : attrs)
v.attrs->push_back(Attr(i.first, i.second.e->maybeThunk(state, env), &i.second.pos));
Dynamic attrs This adds new syntax for attribute names: * attrs."${name}" => getAttr name attrs * attrs ? "${name}" => isAttrs attrs && hasAttr attrs name * attrs."${name}" or def => if attrs ? "${name}" then attrs."${name}" else def * { "${name}" = value; } => listToAttrs [{ inherit name value; }] Of course, it's a bit more complicated than that. The attribute chains can be arbitrarily long and contain combinations of static and dynamic parts (e.g. attrs."${foo}".bar."${baz}" or qux), which is relatively straightforward for the getAttrs/hasAttrs cases but is more complex for the listToAttrs case due to rules about duplicate attribute definitions. For attribute sets with dynamic attribute names, duplicate static attributes are detected at parse time while duplicate dynamic attributes are detected when the attribute set is forced. So, for example, { a = null; a.b = null; "${"c"}" = true; } will be a parse-time error, while { a = {}; "${"a"}".b = null; c = true; } will be an eval-time error (technically that case could theoretically be detected at parse time, but the general case would require full evaluation). Moreover, duplicate dynamic attributes are not allowed even in cases where they would be with static attributes ({ a.b.d = true; a.b.c = false; } is legal, but { a."${"b"}".d = true; a."${"b"}".c = false; } is not). This restriction might be relaxed in the future in cases where the static variant would not be an error, but it is not obvious that that is desirable. Finally, recursive attribute sets with dynamic attributes have the static attributes in scope but not the dynamic ones. So rec { a = true; "${"b"}" = a; } is equivalent to { a = true; b = true; } but rec { "${"a"}" = true; b = a; } would be an error or use a from the surrounding scope if it exists. Note that the getAttr, getAttr or default, and hasAttr are all implemented purely in the parser as syntactic sugar, while attribute sets with dynamic attribute names required changes to the AST to be implemented cleanly. This is an alternative solution to and closes #167 Signed-off-by: Shea Levy <shea@shealevy.com>
2013-09-21 03:25:30 +00:00
/* Dynamic attrs apply *after* rec and __overrides. */
2015-07-17 17:24:28 +00:00
for (auto & i : dynamicAttrs) {
Dynamic attrs This adds new syntax for attribute names: * attrs."${name}" => getAttr name attrs * attrs ? "${name}" => isAttrs attrs && hasAttr attrs name * attrs."${name}" or def => if attrs ? "${name}" then attrs."${name}" else def * { "${name}" = value; } => listToAttrs [{ inherit name value; }] Of course, it's a bit more complicated than that. The attribute chains can be arbitrarily long and contain combinations of static and dynamic parts (e.g. attrs."${foo}".bar."${baz}" or qux), which is relatively straightforward for the getAttrs/hasAttrs cases but is more complex for the listToAttrs case due to rules about duplicate attribute definitions. For attribute sets with dynamic attribute names, duplicate static attributes are detected at parse time while duplicate dynamic attributes are detected when the attribute set is forced. So, for example, { a = null; a.b = null; "${"c"}" = true; } will be a parse-time error, while { a = {}; "${"a"}".b = null; c = true; } will be an eval-time error (technically that case could theoretically be detected at parse time, but the general case would require full evaluation). Moreover, duplicate dynamic attributes are not allowed even in cases where they would be with static attributes ({ a.b.d = true; a.b.c = false; } is legal, but { a."${"b"}".d = true; a."${"b"}".c = false; } is not). This restriction might be relaxed in the future in cases where the static variant would not be an error, but it is not obvious that that is desirable. Finally, recursive attribute sets with dynamic attributes have the static attributes in scope but not the dynamic ones. So rec { a = true; "${"b"}" = a; } is equivalent to { a = true; b = true; } but rec { "${"a"}" = true; b = a; } would be an error or use a from the surrounding scope if it exists. Note that the getAttr, getAttr or default, and hasAttr are all implemented purely in the parser as syntactic sugar, while attribute sets with dynamic attribute names required changes to the AST to be implemented cleanly. This is an alternative solution to and closes #167 Signed-off-by: Shea Levy <shea@shealevy.com>
2013-09-21 03:25:30 +00:00
Value nameVal;
2015-07-17 17:24:28 +00:00
i.nameExpr->eval(state, *dynamicEnv, nameVal);
state.forceValue(nameVal, i.pos);
if (nameVal.type == tNull)
continue;
Dynamic attrs This adds new syntax for attribute names: * attrs."${name}" => getAttr name attrs * attrs ? "${name}" => isAttrs attrs && hasAttr attrs name * attrs."${name}" or def => if attrs ? "${name}" then attrs."${name}" else def * { "${name}" = value; } => listToAttrs [{ inherit name value; }] Of course, it's a bit more complicated than that. The attribute chains can be arbitrarily long and contain combinations of static and dynamic parts (e.g. attrs."${foo}".bar."${baz}" or qux), which is relatively straightforward for the getAttrs/hasAttrs cases but is more complex for the listToAttrs case due to rules about duplicate attribute definitions. For attribute sets with dynamic attribute names, duplicate static attributes are detected at parse time while duplicate dynamic attributes are detected when the attribute set is forced. So, for example, { a = null; a.b = null; "${"c"}" = true; } will be a parse-time error, while { a = {}; "${"a"}".b = null; c = true; } will be an eval-time error (technically that case could theoretically be detected at parse time, but the general case would require full evaluation). Moreover, duplicate dynamic attributes are not allowed even in cases where they would be with static attributes ({ a.b.d = true; a.b.c = false; } is legal, but { a."${"b"}".d = true; a."${"b"}".c = false; } is not). This restriction might be relaxed in the future in cases where the static variant would not be an error, but it is not obvious that that is desirable. Finally, recursive attribute sets with dynamic attributes have the static attributes in scope but not the dynamic ones. So rec { a = true; "${"b"}" = a; } is equivalent to { a = true; b = true; } but rec { "${"a"}" = true; b = a; } would be an error or use a from the surrounding scope if it exists. Note that the getAttr, getAttr or default, and hasAttr are all implemented purely in the parser as syntactic sugar, while attribute sets with dynamic attribute names required changes to the AST to be implemented cleanly. This is an alternative solution to and closes #167 Signed-off-by: Shea Levy <shea@shealevy.com>
2013-09-21 03:25:30 +00:00
state.forceStringNoCtx(nameVal);
Symbol nameSym = state.symbols.create(nameVal.string.s);
Bindings::iterator j = v.attrs->find(nameSym);
if (j != v.attrs->end())
throwEvalError(i.pos, "dynamic attribute '%1%' already defined at %2%", nameSym, *j->pos);
Dynamic attrs This adds new syntax for attribute names: * attrs."${name}" => getAttr name attrs * attrs ? "${name}" => isAttrs attrs && hasAttr attrs name * attrs."${name}" or def => if attrs ? "${name}" then attrs."${name}" else def * { "${name}" = value; } => listToAttrs [{ inherit name value; }] Of course, it's a bit more complicated than that. The attribute chains can be arbitrarily long and contain combinations of static and dynamic parts (e.g. attrs."${foo}".bar."${baz}" or qux), which is relatively straightforward for the getAttrs/hasAttrs cases but is more complex for the listToAttrs case due to rules about duplicate attribute definitions. For attribute sets with dynamic attribute names, duplicate static attributes are detected at parse time while duplicate dynamic attributes are detected when the attribute set is forced. So, for example, { a = null; a.b = null; "${"c"}" = true; } will be a parse-time error, while { a = {}; "${"a"}".b = null; c = true; } will be an eval-time error (technically that case could theoretically be detected at parse time, but the general case would require full evaluation). Moreover, duplicate dynamic attributes are not allowed even in cases where they would be with static attributes ({ a.b.d = true; a.b.c = false; } is legal, but { a."${"b"}".d = true; a."${"b"}".c = false; } is not). This restriction might be relaxed in the future in cases where the static variant would not be an error, but it is not obvious that that is desirable. Finally, recursive attribute sets with dynamic attributes have the static attributes in scope but not the dynamic ones. So rec { a = true; "${"b"}" = a; } is equivalent to { a = true; b = true; } but rec { "${"a"}" = true; b = a; } would be an error or use a from the surrounding scope if it exists. Note that the getAttr, getAttr or default, and hasAttr are all implemented purely in the parser as syntactic sugar, while attribute sets with dynamic attribute names required changes to the AST to be implemented cleanly. This is an alternative solution to and closes #167 Signed-off-by: Shea Levy <shea@shealevy.com>
2013-09-21 03:25:30 +00:00
2015-07-17 17:24:28 +00:00
i.valueExpr->setName(nameSym);
Dynamic attrs This adds new syntax for attribute names: * attrs."${name}" => getAttr name attrs * attrs ? "${name}" => isAttrs attrs && hasAttr attrs name * attrs."${name}" or def => if attrs ? "${name}" then attrs."${name}" else def * { "${name}" = value; } => listToAttrs [{ inherit name value; }] Of course, it's a bit more complicated than that. The attribute chains can be arbitrarily long and contain combinations of static and dynamic parts (e.g. attrs."${foo}".bar."${baz}" or qux), which is relatively straightforward for the getAttrs/hasAttrs cases but is more complex for the listToAttrs case due to rules about duplicate attribute definitions. For attribute sets with dynamic attribute names, duplicate static attributes are detected at parse time while duplicate dynamic attributes are detected when the attribute set is forced. So, for example, { a = null; a.b = null; "${"c"}" = true; } will be a parse-time error, while { a = {}; "${"a"}".b = null; c = true; } will be an eval-time error (technically that case could theoretically be detected at parse time, but the general case would require full evaluation). Moreover, duplicate dynamic attributes are not allowed even in cases where they would be with static attributes ({ a.b.d = true; a.b.c = false; } is legal, but { a."${"b"}".d = true; a."${"b"}".c = false; } is not). This restriction might be relaxed in the future in cases where the static variant would not be an error, but it is not obvious that that is desirable. Finally, recursive attribute sets with dynamic attributes have the static attributes in scope but not the dynamic ones. So rec { a = true; "${"b"}" = a; } is equivalent to { a = true; b = true; } but rec { "${"a"}" = true; b = a; } would be an error or use a from the surrounding scope if it exists. Note that the getAttr, getAttr or default, and hasAttr are all implemented purely in the parser as syntactic sugar, while attribute sets with dynamic attribute names required changes to the AST to be implemented cleanly. This is an alternative solution to and closes #167 Signed-off-by: Shea Levy <shea@shealevy.com>
2013-09-21 03:25:30 +00:00
/* Keep sorted order so find can catch duplicates */
2015-07-17 17:24:28 +00:00
v.attrs->push_back(Attr(nameSym, i.valueExpr->maybeThunk(state, *dynamicEnv), &i.pos));
v.attrs->sort(); // FIXME: inefficient
}
}
void ExprLet::eval(EvalState & state, Env & env, Value & v)
{
/* Create a new environment that contains the attributes in this
`let'. */
Env & env2(state.allocEnv(attrs->attrs.size()));
env2.up = &env;
/* The recursive attributes are evaluated in the new environment,
while the inherited attributes are evaluated in the original
environment. */
2018-05-02 11:56:34 +00:00
size_t displ = 0;
2015-07-17 17:24:28 +00:00
for (auto & i : attrs->attrs)
env2.values[displ++] = i.second.e->maybeThunk(state, i.second.inherited ? env : env2);
body->eval(state, env2, v);
}
void ExprList::eval(EvalState & state, Env & env, Value & v)
{
state.mkList(v, elems.size());
2018-05-02 11:56:34 +00:00
for (size_t n = 0; n < elems.size(); ++n)
v.listElems()[n] = elems[n]->maybeThunk(state, env);
}
void ExprVar::eval(EvalState & state, Env & env, Value & v)
{
2013-10-08 12:24:53 +00:00
Value * v2 = state.lookupVar(&env, *this, false);
state.forceValue(*v2, pos);
v = *v2;
}
2015-03-06 13:24:08 +00:00
static string showAttrPath(EvalState & state, Env & env, const AttrPath & attrPath)
{
std::ostringstream out;
bool first = true;
for (auto & i : attrPath) {
if (!first) out << '.'; else first = false;
try {
out << getName(i, state, env);
} catch (Error & e) {
assert(!i.symbol.set());
out << "\"${" << *i.expr << "}\"";
}
}
return out.str();
}
unsigned long nrLookups = 0;
void ExprSelect::eval(EvalState & state, Env & env, Value & v)
{
Value vTmp;
Pos * pos2 = 0;
Value * vAttrs = &vTmp;
e->eval(state, env, vTmp);
try {
2013-09-02 14:29:15 +00:00
2015-07-17 17:24:28 +00:00
for (auto & i : attrPath) {
nrLookups++;
Bindings::iterator j;
2015-07-17 17:24:28 +00:00
Symbol name = getName(i, state, env);
if (def) {
state.forceValue(*vAttrs, pos);
if (vAttrs->type != tAttrs ||
(j = vAttrs->attrs->find(name)) == vAttrs->attrs->end())
{
def->eval(state, env, v);
return;
}
} else {
state.forceAttrs(*vAttrs, pos);
2015-03-06 13:24:08 +00:00
if ((j = vAttrs->attrs->find(name)) == vAttrs->attrs->end())
throwEvalError(pos, "attribute '%1%' missing", name);
}
vAttrs = j->value;
pos2 = j->pos;
if (state.countCalls && pos2) state.attrSelects[*pos2]++;
}
2013-09-02 14:29:15 +00:00
state.forceValue(*vAttrs, ( pos2 != NULL ? *pos2 : this->pos ) );
2013-09-02 14:29:15 +00:00
} catch (Error & e) {
if (pos2 && pos2->file != state.sDerivationNix)
2020-06-19 19:44:08 +00:00
addErrorTrace(e, *pos2, "while evaluating the attribute '%1%'",
showAttrPath(state, env, attrPath));
throw;
}
2013-09-02 14:29:15 +00:00
v = *vAttrs;
}
2010-04-12 21:21:24 +00:00
void ExprOpHasAttr::eval(EvalState & state, Env & env, Value & v)
{
Value vTmp;
Value * vAttrs = &vTmp;
e->eval(state, env, vTmp);
2015-07-17 17:24:28 +00:00
for (auto & i : attrPath) {
state.forceValue(*vAttrs);
Bindings::iterator j;
2015-07-17 17:24:28 +00:00
Symbol name = getName(i, state, env);
if (vAttrs->type != tAttrs ||
(j = vAttrs->attrs->find(name)) == vAttrs->attrs->end())
{
mkBool(v, false);
return;
} else {
vAttrs = j->value;
}
}
2013-09-02 14:29:15 +00:00
mkBool(v, true);
2010-04-12 21:21:24 +00:00
}
void ExprLambda::eval(EvalState & state, Env & env, Value & v)
{
v.type = tLambda;
v.lambda.env = &env;
v.lambda.fun = this;
}
void ExprApp::eval(EvalState & state, Env & env, Value & v)
{
/* FIXME: vFun prevents GCC from doing tail call optimisation. */
Value vFun;
e1->eval(state, env, vFun);
state.callFunction(vFun, *(e2->maybeThunk(state, env)), v, pos);
2013-11-07 17:04:36 +00:00
}
void EvalState::callPrimOp(Value & fun, Value & arg, Value & v, const Pos & pos)
2013-11-07 17:04:36 +00:00
{
/* Figure out the number of arguments still needed. */
2018-05-02 11:56:34 +00:00
size_t argsDone = 0;
2013-11-07 17:04:36 +00:00
Value * primOp = &fun;
while (primOp->type == tPrimOpApp) {
argsDone++;
primOp = primOp->primOpApp.left;
}
assert(primOp->type == tPrimOp);
2018-05-02 11:56:34 +00:00
auto arity = primOp->primOp->arity;
auto argsLeft = arity - argsDone;
2013-11-07 17:04:36 +00:00
if (argsLeft == 1) {
/* We have all the arguments, so call the primop. */
/* Put all the arguments in an array. */
Value * vArgs[arity];
2018-05-02 11:56:34 +00:00
auto n = arity - 1;
2013-11-07 17:04:36 +00:00
vArgs[n--] = &arg;
for (Value * arg = &fun; arg->type == tPrimOpApp; arg = arg->primOpApp.left)
vArgs[n--] = arg->primOpApp.right;
/* And call the primop. */
nrPrimOpCalls++;
if (countCalls) primOpCalls[primOp->primOp->name]++;
primOp->primOp->fun(*this, pos, vArgs, v);
2013-11-07 17:04:36 +00:00
} else {
Value * fun2 = allocValue();
*fun2 = fun;
v.type = tPrimOpApp;
v.primOpApp.left = fun2;
v.primOpApp.right = &arg;
}
}
void EvalState::callFunction(Value & fun, Value & arg, Value & v, const Pos & pos)
2010-03-30 13:47:59 +00:00
{
auto trace = evalSettings.traceFunctionCalls ? std::make_unique<FunctionCallTrace>(pos) : nullptr;
forceValue(fun, pos);
2010-03-30 13:47:59 +00:00
if (fun.type == tPrimOp || fun.type == tPrimOpApp) {
callPrimOp(fun, arg, v, pos);
2010-03-30 13:47:59 +00:00
return;
}
2013-09-02 14:29:15 +00:00
if (fun.type == tAttrs) {
auto found = fun.attrs->find(sFunctor);
if (found != fun.attrs->end()) {
/* fun may be allocated on the stack of the calling function,
* but for functors we may keep a reference, so heap-allocate
* a copy and use that instead.
*/
auto & fun2 = *allocValue();
fun2 = fun;
/* !!! Should we use the attr pos here? */
Value v2;
callFunction(*found->value, fun2, v2, pos);
return callFunction(v2, arg, v, pos);
}
}
2010-03-30 13:47:59 +00:00
if (fun.type != tLambda)
throwTypeError(pos, "attempt to call something which is not a function but %1%", fun);
2010-03-30 13:47:59 +00:00
ExprLambda & lambda(*fun.lambda.fun);
2018-05-02 11:56:34 +00:00
auto size =
(lambda.arg.empty() ? 0 : 1) +
(lambda.matchAttrs ? lambda.formals->formals.size() : 0);
Env & env2(allocEnv(size));
2010-03-30 13:47:59 +00:00
env2.up = fun.lambda.env;
2018-05-02 11:56:34 +00:00
size_t displ = 0;
if (!lambda.matchAttrs)
env2.values[displ++] = &arg;
2010-03-30 13:47:59 +00:00
else {
2014-04-04 17:11:40 +00:00
forceAttrs(arg, pos);
2013-09-02 14:29:15 +00:00
if (!lambda.arg.empty())
env2.values[displ++] = &arg;
2010-03-30 13:47:59 +00:00
/* For each formal argument, get the actual argument. If
there is no matching actual argument but the formal
argument has a default, use the default. */
2018-05-02 11:56:34 +00:00
size_t attrsUsed = 0;
2015-07-17 17:24:28 +00:00
for (auto & i : lambda.formals->formals) {
Bindings::iterator j = arg.attrs->find(i.name);
2010-03-30 13:47:59 +00:00
if (j == arg.attrs->end()) {
if (!i.def) throwTypeError(pos, "%1% called without required argument '%2%'",
lambda, i.name);
2015-07-17 17:24:28 +00:00
env2.values[displ++] = i.def->maybeThunk(*this, env2);
2010-03-30 13:47:59 +00:00
} else {
attrsUsed++;
env2.values[displ++] = j->value;
2010-03-30 13:47:59 +00:00
}
}
/* Check that each actual argument is listed as a formal
argument (unless the attribute match specifies a `...'). */
if (!lambda.formals->ellipsis && attrsUsed != arg.attrs->size()) {
/* Nope, so show the first unexpected argument to the
user. */
2015-07-17 17:24:28 +00:00
for (auto & i : *arg.attrs)
if (lambda.formals->argNames.find(i.name) == lambda.formals->argNames.end())
throwTypeError(pos, "%1% called with unexpected argument '%2%'", lambda, i.name);
abort(); // can't happen
}
2010-03-30 13:47:59 +00:00
}
2012-08-13 03:41:48 +00:00
nrFunctionCalls++;
if (countCalls) incrFunctionCall(&lambda);
/* Evaluate the body. This is conditional on showTrace, because
catching exceptions makes this function not tail-recursive. */
2020-07-02 15:04:31 +00:00
if (loggerSettings.showTrace.get())
try {
lambda.body->eval(*this, env2, v);
} catch (Error & e) {
2020-08-05 13:41:51 +00:00
addErrorTrace(e, lambda.pos, "while evaluating %s",
(lambda.name.set()
? "'" + (string) lambda.name + "'"
: "anonymous lambda"));
2020-06-30 21:44:19 +00:00
addErrorTrace(e, pos, "from call site%s", "");
throw;
}
else
fun.lambda.fun->body->eval(*this, env2, v);
2013-11-07 17:04:36 +00:00
}
// Lifted out of callFunction() because it creates a temporary that
// prevents tail-call optimisation.
void EvalState::incrFunctionCall(ExprLambda * fun)
{
functionCalls[fun]++;
2010-03-30 13:47:59 +00:00
}
void EvalState::autoCallFunction(Bindings & args, Value & fun, Value & res)
{
forceValue(fun);
2015-11-25 16:56:14 +00:00
if (fun.type == tAttrs) {
auto found = fun.attrs->find(sFunctor);
if (found != fun.attrs->end()) {
Value * v = allocValue();
callFunction(*found->value, fun, *v, noPos);
forceValue(*v);
return autoCallFunction(args, *v, res);
}
}
if (fun.type != tLambda || !fun.lambda.fun->matchAttrs) {
res = fun;
return;
}
Value * actualArgs = allocValue();
mkAttrs(*actualArgs, std::max(static_cast<uint32_t>(fun.lambda.fun->formals->formals.size()), args.size()));
if (fun.lambda.fun->formals->ellipsis) {
// If the formals have an ellipsis (eg the function accepts extra args) pass
// all available automatic arguments (which includes arguments specified on
// the command line via --arg/--argstr)
for (auto& v : args) {
actualArgs->attrs->push_back(v);
}
} else {
// Otherwise, only pass the arguments that the function accepts
for (auto & i : fun.lambda.fun->formals->formals) {
Bindings::iterator j = args.find(i.name);
if (j != args.end()) {
actualArgs->attrs->push_back(*j);
} else if (!i.def) {
2020-11-10 00:04:52 +00:00
throwUndefinedVarError(i.pos, R"(cannot auto-call a function that has an argument without a default value ('%1%')
2020-11-09 23:48:35 +00:00
An 'auto-call' is when a nix expression is evaluated without any external arguments. If that
nix expression is a function, and that function's arguments all have default values, then all is well.
2020-11-10 00:04:52 +00:00
But if the function arguments don't have default values, evaluation fails.
2020-11-09 23:48:35 +00:00
The classic case for this error is evaluating a nix file with nix-build that expects to be evaluated by callPackage.
# in 'callPackage' format: expression is a function that takes an argument 'stdenv'.
# callPackage would implicitly pull 'stdenv' from nixpkgs, then call this function.
{ stdenv }:
stdenv.mkDerivation {
...
# in 'auto-call' format: nixpkgs is imported explicitly, and used directly.
let
nixpkgs = import <nixpkgs> {};
in
nixpkgs.stdenv.mkDerivation {
...
See this nix pill for more information re callPackage format:
https://nixos.org/guides/nix-pills/callpackage-design-pattern.html)", i.name);
}
}
}
actualArgs->attrs->sort();
callFunction(fun, *actualArgs, res, noPos);
}
void ExprWith::eval(EvalState & state, Env & env, Value & v)
{
2010-04-14 15:01:04 +00:00
Env & env2(state.allocEnv(1));
env2.up = &env;
env2.prevWith = prevWith;
env2.type = Env::HasWithExpr;
env2.values[0] = (Value *) attrs;
2010-04-14 15:01:04 +00:00
body->eval(state, env2, v);
}
void ExprIf::eval(EvalState & state, Env & env, Value & v)
{
2020-04-09 07:45:15 +00:00
(state.evalBool(env, cond, pos) ? then : else_)->eval(state, env, v);
}
2013-09-02 14:29:15 +00:00
2010-04-12 21:21:24 +00:00
void ExprAssert::eval(EvalState & state, Env & env, Value & v)
{
if (!state.evalBool(env, cond, pos)) {
std::ostringstream out;
cond->show(out);
throwAssertionError(pos, "assertion '%1%' failed at %2%", out.str());
}
body->eval(state, env, v);
2010-04-12 21:21:24 +00:00
}
2013-09-02 14:29:15 +00:00
2010-04-12 21:21:24 +00:00
void ExprOpNot::eval(EvalState & state, Env & env, Value & v)
{
mkBool(v, !state.evalBool(env, e));
}
void ExprOpEq::eval(EvalState & state, Env & env, Value & v)
{
Value v1; e1->eval(state, env, v1);
Value v2; e2->eval(state, env, v2);
mkBool(v, state.eqValues(v1, v2));
}
void ExprOpNEq::eval(EvalState & state, Env & env, Value & v)
{
Value v1; e1->eval(state, env, v1);
Value v2; e2->eval(state, env, v2);
mkBool(v, !state.eqValues(v1, v2));
}
void ExprOpAnd::eval(EvalState & state, Env & env, Value & v)
{
mkBool(v, state.evalBool(env, e1, pos) && state.evalBool(env, e2, pos));
}
void ExprOpOr::eval(EvalState & state, Env & env, Value & v)
{
mkBool(v, state.evalBool(env, e1, pos) || state.evalBool(env, e2, pos));
}
void ExprOpImpl::eval(EvalState & state, Env & env, Value & v)
{
mkBool(v, !state.evalBool(env, e1, pos) || state.evalBool(env, e2, pos));
}
void ExprOpUpdate::eval(EvalState & state, Env & env, Value & v)
{
Value v1, v2;
state.evalAttrs(env, e1, v1);
2010-04-16 15:13:47 +00:00
state.evalAttrs(env, e2, v2);
2010-10-20 15:48:00 +00:00
state.nrOpUpdates++;
if (v1.attrs->size() == 0) { v = v2; return; }
if (v2.attrs->size() == 0) { v = v1; return; }
state.mkAttrs(v, v1.attrs->size() + v2.attrs->size());
/* Merge the sets, preferring values from the second set. Make
sure to keep the resulting vector in sorted order. */
Bindings::iterator i = v1.attrs->begin();
Bindings::iterator j = v2.attrs->begin();
while (i != v1.attrs->end() && j != v2.attrs->end()) {
if (i->name == j->name) {
v.attrs->push_back(*j);
++i; ++j;
}
else if (i->name < j->name)
v.attrs->push_back(*i++);
else
v.attrs->push_back(*j++);
}
2010-10-20 15:48:00 +00:00
while (i != v1.attrs->end()) v.attrs->push_back(*i++);
while (j != v2.attrs->end()) v.attrs->push_back(*j++);
2013-09-02 14:29:15 +00:00
2010-10-20 15:48:00 +00:00
state.nrOpUpdateValuesCopied += v.attrs->size();
}
void ExprOpConcatLists::eval(EvalState & state, Env & env, Value & v)
{
Value v1; e1->eval(state, env, v1);
Value v2; e2->eval(state, env, v2);
Value * lists[2] = { &v1, &v2 };
state.concatLists(v, 2, lists, pos);
}
2018-05-02 11:56:34 +00:00
void EvalState::concatLists(Value & v, size_t nrLists, Value * * lists, const Pos & pos)
{
nrListConcats++;
Value * nonEmpty = 0;
2018-05-02 11:56:34 +00:00
size_t len = 0;
for (size_t n = 0; n < nrLists; ++n) {
forceList(*lists[n], pos);
2018-05-02 11:56:34 +00:00
auto l = lists[n]->listSize();
len += l;
if (l) nonEmpty = lists[n];
}
if (nonEmpty && len == nonEmpty->listSize()) {
v = *nonEmpty;
return;
}
mkList(v, len);
auto out = v.listElems();
2018-05-02 11:56:34 +00:00
for (size_t n = 0, pos = 0; n < nrLists; ++n) {
auto l = lists[n]->listSize();
if (l)
memcpy(out + pos, lists[n]->listElems(), l * sizeof(Value *));
pos += l;
}
}
2010-04-12 21:21:24 +00:00
void ExprConcatStrings::eval(EvalState & state, Env & env, Value & v)
{
PathSet context;
std::ostringstream s;
NixInt n = 0;
NixFloat nf = 0;
bool first = !forceString;
ValueType firstType = tString;
2010-04-12 21:21:24 +00:00
2015-07-17 17:24:28 +00:00
for (auto & i : *es) {
Value vTmp;
2015-07-17 17:24:28 +00:00
i->eval(state, env, vTmp);
2010-04-12 21:21:24 +00:00
/* If the first element is a path, then the result will also
be a path, we don't copy anything (yet - that's done later,
since paths are copied when they are used in a derivation),
and none of the strings are allowed to have contexts. */
if (first) {
firstType = vTmp.type;
2010-04-12 21:21:24 +00:00
first = false;
}
if (firstType == tInt) {
if (vTmp.type == tInt) {
n += vTmp.integer;
} else if (vTmp.type == tFloat) {
// Upgrade the type from int to float;
firstType = tFloat;
nf = n;
nf += vTmp.fpoint;
} else
throwEvalError(pos, "cannot add %1% to an integer", showType(vTmp));
} else if (firstType == tFloat) {
if (vTmp.type == tInt) {
nf += vTmp.integer;
} else if (vTmp.type == tFloat) {
nf += vTmp.fpoint;
} else
throwEvalError(pos, "cannot add %1% to a float", showType(vTmp));
} else
s << state.coerceToString(pos, vTmp, context, false, firstType == tString);
2010-04-12 21:21:24 +00:00
}
if (firstType == tInt)
mkInt(v, n);
else if (firstType == tFloat)
mkFloat(v, nf);
else if (firstType == tPath) {
if (!context.empty())
throwEvalError(pos, "a string that refers to a store path cannot be appended to a path");
auto path = canonPath(s.str());
mkPath(v, path.c_str());
} else
2010-04-12 21:21:24 +00:00
mkString(v, s.str(), context);
}
void ExprPos::eval(EvalState & state, Env & env, Value & v)
{
state.mkPos(v, &pos);
}
void EvalState::forceValueDeep(Value & v)
{
std::set<const Value *> seen;
2013-09-02 14:29:15 +00:00
std::function<void(Value & v)> recurse;
2013-09-02 14:29:15 +00:00
recurse = [&](Value & v) {
if (!seen.insert(&v).second) return;
forceValue(v);
if (v.type == tAttrs) {
2015-03-06 14:10:12 +00:00
for (auto & i : *v.attrs)
try {
recurse(*i.value);
} catch (Error & e) {
2020-06-19 19:44:08 +00:00
addErrorTrace(e, *i.pos, "while evaluating the attribute '%1%'", i.name);
2015-03-06 14:10:12 +00:00
throw;
}
}
else if (v.isList()) {
2018-05-02 11:56:34 +00:00
for (size_t n = 0; n < v.listSize(); ++n)
recurse(*v.listElems()[n]);
}
};
recurse(v);
}
2014-04-04 16:58:15 +00:00
NixInt EvalState::forceInt(Value & v, const Pos & pos)
{
forceValue(v, pos);
if (v.type != tInt)
throwTypeError(pos, "value is %1% while an integer was expected", v);
return v.integer;
}
NixFloat EvalState::forceFloat(Value & v, const Pos & pos)
{
forceValue(v, pos);
if (v.type == tInt)
return v.integer;
else if (v.type != tFloat)
throwTypeError(pos, "value is %1% while a float was expected", v);
return v.fpoint;
}
2016-08-29 15:56:35 +00:00
bool EvalState::forceBool(Value & v, const Pos & pos)
2010-03-31 15:38:03 +00:00
{
forceValue(v, pos);
2010-03-31 15:38:03 +00:00
if (v.type != tBool)
throwTypeError(pos, "value is %1% while a Boolean was expected", v);
2010-03-31 15:38:03 +00:00
return v.boolean;
}
2015-10-08 11:22:11 +00:00
bool EvalState::isFunctor(Value & fun)
{
return fun.type == tAttrs && fun.attrs->find(sFunctor) != fun.attrs->end();
}
2014-04-04 17:05:36 +00:00
void EvalState::forceFunction(Value & v, const Pos & pos)
2010-03-30 13:47:59 +00:00
{
forceValue(v, pos);
2015-09-06 23:03:23 +00:00
if (v.type != tLambda && v.type != tPrimOp && v.type != tPrimOpApp && !isFunctor(v))
throwTypeError(pos, "value is %1% while a function was expected", v);
2010-03-30 13:47:59 +00:00
}
2014-04-04 19:14:11 +00:00
string EvalState::forceString(Value & v, const Pos & pos)
2010-03-30 18:05:54 +00:00
{
forceValue(v, pos);
2014-04-04 19:14:11 +00:00
if (v.type != tString) {
if (pos)
throwTypeError(pos, "value is %1% while a string was expected", v);
2014-04-04 19:14:11 +00:00
else
throwTypeError("value is %1% while a string was expected", v);
}
2010-03-31 15:38:03 +00:00
return string(v.string.s);
}
2020-06-29 17:08:37 +00:00
/* Decode a context string !<name>!<path> into a pair <path,
name>. */
std::pair<string, string> decodeContext(std::string_view s)
{
if (s.at(0) == '!') {
size_t index = s.find("!", 1);
return {std::string(s.substr(index + 1)), std::string(s.substr(1, index - 1))};
} else
return {s.at(0) == '/' ? std::string(s) : std::string(s.substr(1)), ""};
}
void copyContext(const Value & v, PathSet & context)
{
if (v.string.context)
2013-09-02 14:29:15 +00:00
for (const char * * p = v.string.context; *p; ++p)
context.insert(*p);
}
2020-06-29 17:08:37 +00:00
std::vector<std::pair<Path, std::string>> Value::getContext()
{
std::vector<std::pair<Path, std::string>> res;
assert(type == tString);
if (string.context)
for (const char * * p = string.context; *p; ++p)
res.push_back(decodeContext(*p));
return res;
}
2014-11-25 09:23:36 +00:00
string EvalState::forceString(Value & v, PathSet & context, const Pos & pos)
{
2014-11-25 09:23:36 +00:00
string s = forceString(v, pos);
copyContext(v, context);
return s;
}
2014-04-04 19:14:11 +00:00
string EvalState::forceStringNoCtx(Value & v, const Pos & pos)
2010-03-31 15:38:03 +00:00
{
2014-04-04 19:14:11 +00:00
string s = forceString(v, pos);
if (v.string.context) {
if (pos)
throwEvalError(pos, "the string '%1%' is not allowed to refer to a store path (such as '%2%')",
v.string.s, v.string.context[0]);
2014-04-04 19:14:11 +00:00
else
throwEvalError("the string '%1%' is not allowed to refer to a store path (such as '%2%')",
2014-04-04 19:14:11 +00:00
v.string.s, v.string.context[0]);
}
2010-03-31 15:38:03 +00:00
return s;
2010-03-30 18:05:54 +00:00
}
bool EvalState::isDerivation(Value & v)
{
if (v.type != tAttrs) return false;
Bindings::iterator i = v.attrs->find(sType);
if (i == v.attrs->end()) return false;
forceValue(*i->value);
if (i->value->type != tString) return false;
return strcmp(i->value->string.s, "derivation") == 0;
}
2019-10-27 09:15:51 +00:00
std::optional<string> EvalState::tryAttrsToString(const Pos & pos, Value & v,
PathSet & context, bool coerceMore, bool copyToStore)
{
auto i = v.attrs->find(sToString);
if (i != v.attrs->end()) {
Value v1;
callFunction(*i->value, v, v1, pos);
return coerceToString(pos, v1, context, coerceMore, copyToStore);
}
return {};
}
string EvalState::coerceToString(const Pos & pos, Value & v, PathSet & context,
2010-03-30 09:22:33 +00:00
bool coerceMore, bool copyToStore)
{
forceValue(v, pos);
2010-03-30 09:22:33 +00:00
string s;
if (v.type == tString) {
copyContext(v, context);
return v.string.s;
}
2010-03-30 09:22:33 +00:00
if (v.type == tPath) {
Path path(canonPath(v.path));
2013-11-18 23:03:11 +00:00
return copyToStore ? copyPathToStore(context, path) : path;
2010-03-30 09:22:33 +00:00
}
if (v.type == tAttrs) {
2019-10-27 09:15:51 +00:00
auto maybeString = tryAttrsToString(pos, v, context, coerceMore, copyToStore);
if (maybeString) {
return *maybeString;
}
2019-10-27 09:15:51 +00:00
auto i = v.attrs->find(sOutPath);
if (i == v.attrs->end()) throwTypeError(pos, "cannot coerce a set to a string");
return coerceToString(pos, *i->value, context, coerceMore, copyToStore);
2010-03-30 09:22:33 +00:00
}
if (v.type == tExternal)
return v.external->coerceToString(pos, context, coerceMore, copyToStore);
2010-03-30 09:22:33 +00:00
if (coerceMore) {
/* Note that `false' is represented as an empty string for
shell scripting convenience, just like `null'. */
if (v.type == tBool && v.boolean) return "1";
if (v.type == tBool && !v.boolean) return "";
2015-10-29 12:26:55 +00:00
if (v.type == tInt) return std::to_string(v.integer);
if (v.type == tFloat) return std::to_string(v.fpoint);
2010-03-30 09:22:33 +00:00
if (v.type == tNull) return "";
if (v.isList()) {
2010-03-30 09:22:33 +00:00
string result;
2018-05-02 11:56:34 +00:00
for (size_t n = 0; n < v.listSize(); ++n) {
result += coerceToString(pos, *v.listElems()[n],
2010-03-30 09:22:33 +00:00
context, coerceMore, copyToStore);
if (n < v.listSize() - 1
/* !!! not quite correct */
&& (!v.listElems()[n]->isList() || v.listElems()[n]->listSize() != 0))
result += " ";
2010-03-30 09:22:33 +00:00
}
return result;
}
}
2013-09-02 14:29:15 +00:00
throwTypeError(pos, "cannot coerce %1% to a string", v);
2010-03-30 09:22:33 +00:00
}
2013-11-18 23:03:11 +00:00
string EvalState::copyPathToStore(PathSet & context, const Path & path)
{
if (nix::isDerivation(path))
throwEvalError("file names are not allowed to end in '%1%'", drvExtension);
2013-11-18 23:03:11 +00:00
Path dstPath;
auto i = srcToStore.find(path);
if (i != srcToStore.end())
dstPath = store->printStorePath(i->second);
2013-11-18 23:03:11 +00:00
else {
auto p = settings.readOnlyMode
? store->computeStorePathForPath(std::string(baseNameOf(path)), checkSourcePath(path)).first
: store->addToStore(std::string(baseNameOf(path)), checkSourcePath(path), FileIngestionMethod::Recursive, htSHA256, defaultPathFilter, repair);
dstPath = store->printStorePath(p);
srcToStore.insert_or_assign(path, std::move(p));
printMsg(lvlChatty, "copied source '%1%' -> '%2%'", path, dstPath);
2013-11-18 23:03:11 +00:00
}
context.insert(dstPath);
return dstPath;
}
Path EvalState::coerceToPath(const Pos & pos, Value & v, PathSet & context)
2010-03-30 09:22:33 +00:00
{
string path = coerceToString(pos, v, context, false, false);
2010-03-30 09:22:33 +00:00
if (path == "" || path[0] != '/')
throwEvalError(pos, "string '%1%' doesn't represent an absolute path", path);
2010-03-30 09:22:33 +00:00
return path;
}
bool EvalState::eqValues(Value & v1, Value & v2)
{
forceValue(v1);
forceValue(v2);
/* !!! Hack to support some old broken code that relies on pointer
equality tests between sets. (Specifically, builderDefs calls
uniqList on a list of sets.) Will remove this eventually. */
if (&v1 == &v2) return true;
// Special case type-compatibility between float and int
if (v1.type == tInt && v2.type == tFloat)
return v1.integer == v2.fpoint;
if (v1.type == tFloat && v2.type == tInt)
return v1.fpoint == v2.integer;
// All other types are not compatible with each other.
if (v1.type != v2.type) return false;
switch (v1.type) {
case tInt:
return v1.integer == v2.integer;
case tBool:
return v1.boolean == v2.boolean;
case tString:
return strcmp(v1.string.s, v2.string.s) == 0;
case tPath:
return strcmp(v1.path, v2.path) == 0;
2010-03-31 09:54:12 +00:00
case tNull:
return true;
case tList1:
case tList2:
case tListN:
if (v1.listSize() != v2.listSize()) return false;
2018-05-02 11:56:34 +00:00
for (size_t n = 0; n < v1.listSize(); ++n)
if (!eqValues(*v1.listElems()[n], *v2.listElems()[n])) return false;
return true;
case tAttrs: {
/* If both sets denote a derivation (type = "derivation"),
then compare their outPaths. */
if (isDerivation(v1) && isDerivation(v2)) {
Bindings::iterator i = v1.attrs->find(sOutPath);
Bindings::iterator j = v2.attrs->find(sOutPath);
if (i != v1.attrs->end() && j != v2.attrs->end())
return eqValues(*i->value, *j->value);
}
2010-04-16 13:51:01 +00:00
if (v1.attrs->size() != v2.attrs->size()) return false;
/* Otherwise, compare the attributes one by one. */
Bindings::iterator i, j;
for (i = v1.attrs->begin(), j = v2.attrs->begin(); i != v1.attrs->end(); ++i, ++j)
if (i->name != j->name || !eqValues(*i->value, *j->value))
return false;
2013-09-02 14:29:15 +00:00
return true;
}
2010-04-01 10:55:36 +00:00
/* Functions are incomparable. */
case tLambda:
case tPrimOp:
case tPrimOpApp:
return false;
case tExternal:
return *v1.external == *v2.external;
case tFloat:
return v1.fpoint == v2.fpoint;
default:
throwEvalError("cannot compare %1% with %2%", showType(v1), showType(v2));
}
}
2010-03-30 15:18:20 +00:00
void EvalState::printStats()
{
bool showStats = getEnv("NIX_SHOW_STATS").value_or("0") != "0";
2012-02-04 13:27:11 +00:00
struct rusage buf;
getrusage(RUSAGE_SELF, &buf);
float cpuTime = buf.ru_utime.tv_sec + ((float) buf.ru_utime.tv_usec / 1000000);
2014-10-04 22:39:28 +00:00
uint64_t bEnvs = nrEnvs * sizeof(Env) + nrValuesInEnvs * sizeof(Value *);
uint64_t bLists = nrListElems * sizeof(Value *);
uint64_t bValues = nrValues * sizeof(Value);
uint64_t bAttrsets = nrAttrsets * sizeof(Bindings) + nrAttrsInAttrsets * sizeof(Attr);
2015-03-18 15:24:54 +00:00
#if HAVE_BOEHMGC
GC_word heapSize, totalBytes;
GC_get_heap_usage_safe(&heapSize, 0, 0, 0, &totalBytes);
#endif
2018-09-02 21:20:18 +00:00
if (showStats) {
auto outPath = getEnv("NIX_SHOW_STATS_PATH").value_or("-");
2018-09-01 22:50:22 +00:00
std::fstream fs;
if (outPath != "-")
2018-09-01 22:50:22 +00:00
fs.open(outPath, std::fstream::out);
JSONObject topObj(outPath == "-" ? std::cerr : fs, true);
2018-09-01 22:50:22 +00:00
topObj.attr("cpuTime",cpuTime);
{
auto envs = topObj.object("envs");
envs.attr("number", nrEnvs);
2018-09-02 21:20:18 +00:00
envs.attr("elements", nrValuesInEnvs);
2018-09-01 22:50:22 +00:00
envs.attr("bytes", bEnvs);
}
{
auto lists = topObj.object("list");
lists.attr("elements", nrListElems);
lists.attr("bytes", bLists);
lists.attr("concats", nrListConcats);
}
{
auto values = topObj.object("values");
values.attr("number", nrValues);
values.attr("bytes", bValues);
}
{
auto syms = topObj.object("symbols");
syms.attr("number", symbols.size());
syms.attr("bytes", symbols.totalSize());
}
{
auto sets = topObj.object("sets");
sets.attr("number", nrAttrsets);
sets.attr("bytes", bAttrsets);
2018-09-02 21:20:18 +00:00
sets.attr("elements", nrAttrsInAttrsets);
2018-09-01 22:50:22 +00:00
}
{
2018-09-05 19:57:54 +00:00
auto sizes = topObj.object("sizes");
2018-09-01 22:50:22 +00:00
sizes.attr("Env", sizeof(Env));
sizes.attr("Value", sizeof(Value));
sizes.attr("Bindings", sizeof(Bindings));
sizes.attr("Attr", sizeof(Attr));
}
topObj.attr("nrOpUpdates", nrOpUpdates);
topObj.attr("nrOpUpdateValuesCopied", nrOpUpdateValuesCopied);
topObj.attr("nrThunks", nrThunks);
topObj.attr("nrAvoided", nrAvoided);
topObj.attr("nrLookups", nrLookups);
topObj.attr("nrPrimOpCalls", nrPrimOpCalls);
topObj.attr("nrFunctionCalls", nrFunctionCalls);
#if HAVE_BOEHMGC
2018-09-05 19:57:54 +00:00
{
auto gc = topObj.object("gc");
gc.attr("heapSize", heapSize);
gc.attr("totalBytes", totalBytes);
}
2018-09-01 22:50:22 +00:00
#endif
2018-09-05 19:57:54 +00:00
if (countCalls) {
{
auto obj = topObj.object("primops");
for (auto & i : primOpCalls)
obj.attr(i.first, i.second);
}
{
auto list = topObj.list("functions");
for (auto & i : functionCalls) {
auto obj = list.object();
if (i.first->name.set())
obj.attr("name", (const string &) i.first->name);
else
obj.attr("name", nullptr);
if (i.first->pos) {
obj.attr("file", (const string &) i.first->pos.file);
obj.attr("line", i.first->pos.line);
obj.attr("column", i.first->pos.column);
}
obj.attr("count", i.second);
}
}
{
auto list = topObj.list("attributes");
for (auto & i : attrSelects) {
auto obj = list.object();
if (i.first) {
obj.attr("file", (const string &) i.first.file);
obj.attr("line", i.first.line);
obj.attr("column", i.first.column);
}
obj.attr("count", i.second);
}
}
}
if (getEnv("NIX_SHOW_SYMBOLS").value_or("0") != "0") {
auto list = topObj.list("symbols");
symbols.dump([&](const std::string & s) { list.elem(s); });
}
}
}
string ExternalValueBase::coerceToString(const Pos & pos, PathSet & context, bool copyMore, bool copyToStore) const
{
throw TypeError({
.hint = hintfmt("cannot coerce %1% to a string", showType()),
.errPos = pos
});
}
bool ExternalValueBase::operator==(const ExternalValueBase & b) const
{
return false;
}
std::ostream & operator << (std::ostream & str, const ExternalValueBase & v) {
return v.print(str);
}
EvalSettings::EvalSettings()
{
auto var = getEnv("NIX_PATH");
if (var) nixPath = parseNixPath(*var);
}
Strings EvalSettings::getDefaultNixPath()
{
Strings res;
auto add = [&](const Path & p) { if (pathExists(p)) { res.push_back(p); } };
add(getHome() + "/.nix-defexpr/channels");
add("nixpkgs=" + settings.nixStateDir + "/nix/profiles/per-user/root/channels/nixpkgs");
add(settings.nixStateDir + "/nix/profiles/per-user/root/channels");
return res;
}
EvalSettings evalSettings;
static GlobalConfig::Register rEvalSettings(&evalSettings);
}