forked from lix-project/lix
858 lines
24 KiB
C++
858 lines
24 KiB
C++
#pragma once
|
|
///@file
|
|
|
|
#include <cassert>
|
|
#include <climits>
|
|
#include <functional>
|
|
#include <ranges>
|
|
#include <span>
|
|
|
|
#include "gc-alloc.hh"
|
|
#include "symbol-table.hh"
|
|
#include "value/context.hh"
|
|
#include "input-accessor.hh"
|
|
#include "source-path.hh"
|
|
#include "print-options.hh"
|
|
#include "checked-arithmetic.hh"
|
|
#include "concepts.hh"
|
|
|
|
#include <nlohmann/json_fwd.hpp>
|
|
|
|
namespace nix {
|
|
|
|
class BindingsBuilder;
|
|
|
|
|
|
typedef enum {
|
|
tInt = 1,
|
|
tBool,
|
|
tString,
|
|
tPath,
|
|
tNull,
|
|
tAttrs,
|
|
tList1,
|
|
tList2,
|
|
tListN,
|
|
tThunk,
|
|
tApp,
|
|
tLambda,
|
|
tPrimOp,
|
|
tPrimOpApp,
|
|
tExternal,
|
|
tFloat
|
|
} InternalType;
|
|
|
|
/**
|
|
* This type abstracts over all actual value types in the language,
|
|
* grouping together implementation details like tList*, different function
|
|
* types, and types in non-normal form (so thunks and co.)
|
|
*/
|
|
typedef enum {
|
|
nThunk,
|
|
nInt,
|
|
nFloat,
|
|
nBool,
|
|
nString,
|
|
nPath,
|
|
nNull,
|
|
nAttrs,
|
|
nList,
|
|
nFunction,
|
|
nExternal
|
|
} ValueType;
|
|
|
|
class Bindings;
|
|
struct Env;
|
|
struct Expr;
|
|
struct ExprLambda;
|
|
struct ExprBlackHole;
|
|
struct PrimOp;
|
|
class Symbol;
|
|
class PosIdx;
|
|
struct Pos;
|
|
class StorePath;
|
|
class Store;
|
|
class EvalState;
|
|
class XMLWriter;
|
|
class Printer;
|
|
|
|
using NixInt = checked::Checked<int64_t>;
|
|
using NixFloat = double;
|
|
|
|
/**
|
|
* External values must descend from ExternalValueBase, so that
|
|
* type-agnostic nix functions (e.g. showType) can be implemented
|
|
*/
|
|
class ExternalValueBase
|
|
{
|
|
friend std::ostream & operator << (std::ostream & str, const ExternalValueBase & v);
|
|
friend class Printer;
|
|
protected:
|
|
/**
|
|
* Print out the value
|
|
*/
|
|
virtual std::ostream & print(std::ostream & str) const = 0;
|
|
|
|
public:
|
|
/**
|
|
* Return a simple string describing the type
|
|
*/
|
|
virtual std::string showType() const = 0;
|
|
|
|
/**
|
|
* Return a string to be used in builtins.typeOf
|
|
*/
|
|
virtual std::string typeOf() const = 0;
|
|
|
|
/**
|
|
* Coerce the value to a string. Defaults to uncoercable, i.e. throws an
|
|
* error.
|
|
*/
|
|
virtual std::string coerceToString(EvalState & state, const PosIdx & pos, NixStringContext & context, bool copyMore, bool copyToStore) const;
|
|
|
|
/**
|
|
* Compare to another value of the same type. Defaults to uncomparable,
|
|
* i.e. always false.
|
|
*/
|
|
virtual bool operator ==(const ExternalValueBase & b) const;
|
|
|
|
/**
|
|
* Print the value as JSON. Defaults to unconvertable, i.e. throws an error
|
|
*/
|
|
virtual nlohmann::json printValueAsJSON(EvalState & state, bool strict,
|
|
NixStringContext & context, bool copyToStore = true) const;
|
|
|
|
/**
|
|
* Print the value as XML. Defaults to unevaluated
|
|
*/
|
|
virtual void printValueAsXML(EvalState & state, bool strict, bool location,
|
|
XMLWriter & doc, NixStringContext & context, PathSet & drvsSeen,
|
|
const PosIdx pos) const;
|
|
|
|
virtual ~ExternalValueBase()
|
|
{
|
|
};
|
|
};
|
|
|
|
std::ostream & operator << (std::ostream & str, const ExternalValueBase & v);
|
|
|
|
extern ExprBlackHole eBlackHole;
|
|
|
|
struct NewValueAs
|
|
{
|
|
struct integer_t { };
|
|
constexpr static integer_t integer{};
|
|
|
|
struct floating_t { };
|
|
constexpr static floating_t floating{};
|
|
|
|
struct boolean_t { };
|
|
constexpr static boolean_t boolean{};
|
|
|
|
struct string_t { };
|
|
constexpr static string_t string{};
|
|
|
|
struct path_t { };
|
|
constexpr static path_t path{};
|
|
|
|
struct list_t { };
|
|
constexpr static list_t list{};
|
|
|
|
struct attrs_t { };
|
|
constexpr static attrs_t attrs{};
|
|
|
|
struct thunk_t { };
|
|
constexpr static thunk_t thunk{};
|
|
|
|
struct null_t { };
|
|
constexpr static null_t null{};
|
|
|
|
struct app_t { };
|
|
constexpr static app_t app{};
|
|
|
|
struct primop_t { };
|
|
constexpr static primop_t primop{};
|
|
|
|
struct primOpApp_t { };
|
|
constexpr static primOpApp_t primOpApp{};
|
|
|
|
struct lambda_t { };
|
|
constexpr static lambda_t lambda{};
|
|
|
|
struct external_t { };
|
|
constexpr static external_t external{};
|
|
|
|
struct blackhole_t { };
|
|
constexpr static blackhole_t blackhole{};
|
|
};
|
|
|
|
struct Value
|
|
{
|
|
private:
|
|
InternalType internalType;
|
|
|
|
friend std::string showType(const Value & v);
|
|
|
|
public:
|
|
|
|
// Discount `using NewValueAs::*;`
|
|
#define USING_VALUETYPE(name) using name = NewValueAs::name
|
|
USING_VALUETYPE(integer_t);
|
|
USING_VALUETYPE(floating_t);
|
|
USING_VALUETYPE(boolean_t);
|
|
USING_VALUETYPE(string_t);
|
|
USING_VALUETYPE(path_t);
|
|
USING_VALUETYPE(list_t);
|
|
USING_VALUETYPE(attrs_t);
|
|
USING_VALUETYPE(thunk_t);
|
|
USING_VALUETYPE(primop_t);
|
|
USING_VALUETYPE(app_t);
|
|
USING_VALUETYPE(null_t);
|
|
USING_VALUETYPE(primOpApp_t);
|
|
USING_VALUETYPE(lambda_t);
|
|
USING_VALUETYPE(external_t);
|
|
USING_VALUETYPE(blackhole_t);
|
|
#undef USING_VALUETYPE
|
|
|
|
/// Default constructor which is still used in the codebase but should not
|
|
/// be used in new code. Zero initializes its members.
|
|
[[deprecated]] Value()
|
|
: internalType(static_cast<InternalType>(0))
|
|
, _empty{ 0, 0 }
|
|
{ }
|
|
|
|
/// Constructs a nix language value of type "int", with the integral value
|
|
/// of @ref i.
|
|
Value(integer_t, NixInt i)
|
|
: internalType(tInt)
|
|
, _empty{ 0, 0 }
|
|
{
|
|
// the NixInt ctor here is is special because NixInt has a ctor too, so
|
|
// we're not allowed to have it as an anonymous aggreagte member. we do
|
|
// however still have the option to clear the data members using _empty
|
|
// and leaving the second word of data cleared by setting only integer.
|
|
integer = i;
|
|
}
|
|
|
|
/// Constructs a nix language value of type "float", with the floating
|
|
/// point value of @ref f.
|
|
Value(floating_t, NixFloat f)
|
|
: internalType(tFloat)
|
|
, fpoint(f)
|
|
, _float_pad(0)
|
|
{ }
|
|
|
|
/// Constructs a nix language value of type "bool", with the boolean
|
|
/// value of @ref b.
|
|
Value(boolean_t, bool b)
|
|
: internalType(tBool)
|
|
, boolean(b)
|
|
, _bool_pad(0)
|
|
{ }
|
|
|
|
/// Constructs a nix language value of type "string", with the value of the
|
|
/// C-string pointed to by @ref strPtr, and optionally with an array of
|
|
/// string context pointed to by @ref contextPtr.
|
|
///
|
|
/// Neither the C-string nor the context array are copied; this constructor
|
|
/// assumes suitable memory has already been allocated (with the GC if
|
|
/// enabled), and string and context data copied into that memory.
|
|
Value(string_t, char const * strPtr, char const ** contextPtr = nullptr)
|
|
: internalType(tString)
|
|
, string({ .s = strPtr, .context = contextPtr })
|
|
{ }
|
|
|
|
/// Constructx a nix language value of type "string", with a copy of the
|
|
/// string data viewed by @ref copyFrom.
|
|
///
|
|
/// The string data *is* copied from @ref copyFrom, and this constructor
|
|
/// performs a dynamic (GC) allocation to do so.
|
|
Value(string_t, std::string_view copyFrom, NixStringContext const & context = {})
|
|
: internalType(tString)
|
|
, string({ .s = gcCopyStringIfNeeded(copyFrom), .context = nullptr })
|
|
{
|
|
if (context.empty()) {
|
|
// It stays nullptr.
|
|
return;
|
|
}
|
|
|
|
// Copy the context.
|
|
this->string.context = gcAllocType<char const *>(context.size() + 1);
|
|
|
|
size_t n = 0;
|
|
for (NixStringContextElem const & contextElem : context) {
|
|
this->string.context[n] = gcCopyStringIfNeeded(contextElem.to_string());
|
|
n += 1;
|
|
}
|
|
|
|
// Terminator sentinel.
|
|
this->string.context[n] = nullptr;
|
|
}
|
|
|
|
/// Constructx a nix language value of type "string", with the value of the
|
|
/// C-string pointed to by @ref strPtr, and optionally with a set of string
|
|
/// context @ref context.
|
|
///
|
|
/// The C-string is not copied; this constructor assumes suitable memory
|
|
/// has already been allocated (with the GC if enabled), and string data
|
|
/// has been copied into that memory. The context data *is* copied from
|
|
/// @ref context, and this constructor performs a dynamic (GC) allocation
|
|
/// to do so.
|
|
Value(string_t, char const * strPtr, NixStringContext const & context)
|
|
: internalType(tString)
|
|
, string({ .s = strPtr, .context = nullptr })
|
|
{
|
|
if (context.empty()) {
|
|
// It stays nullptr
|
|
return;
|
|
}
|
|
|
|
// Copy the context.
|
|
this->string.context = gcAllocType<char const *>(context.size() + 1);
|
|
|
|
size_t n = 0;
|
|
for (NixStringContextElem const & contextElem : context) {
|
|
this->string.context[n] = gcCopyStringIfNeeded(contextElem.to_string());
|
|
n += 1;
|
|
}
|
|
|
|
// Terminator sentinel.
|
|
this->string.context[n] = nullptr;
|
|
}
|
|
|
|
/// Constructs a nix language value of type "path", with the value of the
|
|
/// C-string pointed to by @ref strPtr.
|
|
///
|
|
/// The C-string is not copied; this constructor assumes suitable memory
|
|
/// has already been allocated (with the GC if enabled), and string data
|
|
/// has been copied into that memory.
|
|
Value(path_t, char const * strPtr)
|
|
: internalType(tPath)
|
|
, _path(strPtr)
|
|
, _path_pad(0)
|
|
{ }
|
|
|
|
/// Constructs a nix language value of type "path", with the path
|
|
/// @ref path.
|
|
///
|
|
/// The data from @ref path *is* copied, and this constructor performs a
|
|
/// dynamic (GC) allocation to do so.
|
|
Value(path_t, SourcePath const & path)
|
|
: internalType(tPath)
|
|
, _path(gcCopyStringIfNeeded(path.path.abs()))
|
|
, _path_pad(0)
|
|
{ }
|
|
|
|
/// Constructs a nix language value of type "list", with element array
|
|
/// @ref items.
|
|
///
|
|
/// Generally, the data in @ref items is neither deep copied nor shallow
|
|
/// copied. This construct assumes the std::span @ref items is a region of
|
|
/// memory that has already been allocated (with the GC if enabled), and
|
|
/// an array of valid Value pointers has been copied into that memory.
|
|
///
|
|
/// Howver, as an implementation detail, if @ref items is only 2 items or
|
|
/// smaller, the list is stored inline, and the Value pointers in
|
|
/// @ref items are shallow copied into this structure, without dynamically
|
|
/// allocating memory.
|
|
Value(list_t, std::span<Value *> items)
|
|
{
|
|
if (items.size() == 1) {
|
|
this->internalType = tList1;
|
|
this->smallList[0] = items[0];
|
|
this->smallList[1] = nullptr;
|
|
} else if (items.size() == 2) {
|
|
this->internalType = tList2;
|
|
this->smallList[0] = items[0];
|
|
this->smallList[1] = items[1];
|
|
} else {
|
|
this->internalType = tListN;
|
|
this->bigList.size = items.size();
|
|
this->bigList.elems = items.data();
|
|
}
|
|
}
|
|
|
|
/// Constructs a nix language value of type "list", with an element array
|
|
/// initialized by applying @ref transformer to each element in @ref items.
|
|
///
|
|
/// This allows "in-place" construction of a nix list when some logic is
|
|
/// needed to get each Value pointer. This constructor dynamically (GC)
|
|
/// allocates memory for the size of @ref items, and the Value pointers
|
|
/// returned by @ref transformer are shallow copied into it.
|
|
template<
|
|
std::ranges::sized_range SizedIterableT,
|
|
InvocableR<Value *, typename SizedIterableT::value_type const &> TransformerT
|
|
>
|
|
Value(list_t, SizedIterableT & items, TransformerT const & transformer)
|
|
{
|
|
if (items.size() == 1) {
|
|
this->internalType = tList1;
|
|
this->smallList[0] = transformer(*items.begin());
|
|
this->smallList[1] = nullptr;
|
|
} else if (items.size() == 2) {
|
|
this->internalType = tList2;
|
|
auto it = items.begin();
|
|
this->smallList[0] = transformer(*it);
|
|
it++;
|
|
this->smallList[1] = transformer(*it);
|
|
} else {
|
|
this->internalType = tListN;
|
|
this->bigList.size = items.size();
|
|
this->bigList.elems = gcAllocType<Value *>(items.size());
|
|
auto it = items.begin();
|
|
for (size_t i = 0; i < items.size(); i++, it++) {
|
|
this->bigList.elems[i] = transformer(*it);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Constructs a nix language value of the singleton type "null".
|
|
Value(null_t)
|
|
: internalType(tNull)
|
|
, _empty{0, 0}
|
|
{ }
|
|
|
|
/// Constructs a nix language value of type "set", with the attribute
|
|
/// bindings pointed to by @ref bindings.
|
|
///
|
|
/// The bindings are not not copied; this constructor assumes @ref bindings
|
|
/// has already been suitably allocated by something like nix::buildBindings.
|
|
Value(attrs_t, Bindings * bindings)
|
|
: internalType(tAttrs)
|
|
, attrs(bindings)
|
|
, _attrs_pad(0)
|
|
{ }
|
|
|
|
/// Constructs a nix language lazy delayed computation, or "thunk".
|
|
///
|
|
/// The thunk stores the environment it will be computed in @ref env, and
|
|
/// the expression that will need to be evaluated @ref expr.
|
|
Value(thunk_t, Env & env, Expr & expr)
|
|
: internalType(tThunk)
|
|
, thunk({ .env = &env, .expr = &expr })
|
|
{ }
|
|
|
|
/// Constructs a nix language value of type "lambda", which represents
|
|
/// a builtin, primitive operation ("primop"), from the primop
|
|
/// implemented by @ref primop.
|
|
Value(primop_t, PrimOp & primop);
|
|
|
|
/// Constructs a nix language value of type "lambda", which represents a
|
|
/// partially applied primop.
|
|
Value(primOpApp_t, Value & lhs, Value & rhs)
|
|
: internalType(tPrimOpApp)
|
|
, primOpApp({ .left = &lhs, .right = &rhs })
|
|
{ }
|
|
|
|
/// Constructs a nix language value of type "lambda", which represents a
|
|
/// lazy partial application of another lambda.
|
|
Value(app_t, Value & lhs, Value & rhs)
|
|
: internalType(tApp)
|
|
, app({ .left = &lhs, .right = &rhs })
|
|
{ }
|
|
|
|
/// Constructs a nix language value of type "external", which is only used
|
|
/// by plugins. Do any existing plugins even use this mechanism?
|
|
Value(external_t, ExternalValueBase & external)
|
|
: internalType(tExternal)
|
|
, external(&external)
|
|
, _external_pad(0)
|
|
{ }
|
|
|
|
/// Constructs a nix language value of type "lambda", which represents a
|
|
/// run of the mill lambda defined in nix code.
|
|
///
|
|
/// This takes the environment the lambda is closed over @ref env, and
|
|
/// the lambda expression itself @ref lambda, which will not be evaluated
|
|
/// until it is applied.
|
|
Value(lambda_t, Env & env, ExprLambda & lambda)
|
|
: internalType(tLambda)
|
|
, lambda({ .env = &env, .fun = &lambda })
|
|
{ }
|
|
|
|
/// Constructs an evil thunk, whose evaluation represents infinite recursion.
|
|
explicit Value(blackhole_t)
|
|
: internalType(tThunk)
|
|
, thunk({ .env = nullptr, .expr = reinterpret_cast<Expr *>(&eBlackHole) })
|
|
{ }
|
|
|
|
Value(Value const & rhs) = default;
|
|
|
|
/// Move constructor. Does the same thing as the copy constructor, but
|
|
/// also zeroes out the other Value.
|
|
Value(Value && rhs)
|
|
: internalType(rhs.internalType)
|
|
, _empty{ 0, 0 }
|
|
{
|
|
*this = std::move(rhs);
|
|
}
|
|
|
|
Value & operator=(Value const & rhs) = default;
|
|
|
|
/// Move assignment operator.
|
|
/// Does the same thing as the copy assignment operator, but also zeroes out
|
|
/// the rhs.
|
|
inline Value & operator=(Value && rhs)
|
|
{
|
|
*this = static_cast<const Value &>(rhs);
|
|
if (this != &rhs) {
|
|
// Kill `rhs`, because non-destructive move lol.
|
|
rhs.internalType = static_cast<InternalType>(0);
|
|
rhs._empty[0] = 0;
|
|
rhs._empty[1] = 0;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
void print(EvalState &state, std::ostream &str, PrintOptions options = PrintOptions {});
|
|
|
|
// Functions needed to distinguish the type
|
|
// These should be removed eventually, by putting the functionality that's
|
|
// needed by callers into methods of this type
|
|
|
|
// type() == nThunk
|
|
inline bool isThunk() const { return internalType == tThunk; };
|
|
inline bool isApp() const { return internalType == tApp; };
|
|
inline bool isBlackhole() const;
|
|
|
|
// type() == nFunction
|
|
inline bool isLambda() const { return internalType == tLambda; };
|
|
inline bool isPrimOp() const { return internalType == tPrimOp; };
|
|
inline bool isPrimOpApp() const { return internalType == tPrimOpApp; };
|
|
|
|
union
|
|
{
|
|
/// Dummy field, which takes up as much space as the largest union variants
|
|
/// to set the union's memory to zeroed memory.
|
|
uintptr_t _empty[2];
|
|
|
|
NixInt integer;
|
|
struct {
|
|
bool boolean;
|
|
uintptr_t _bool_pad;
|
|
};
|
|
|
|
/**
|
|
* Strings in the evaluator carry a so-called `context` which
|
|
* is a list of strings representing store paths. This is to
|
|
* allow users to write things like
|
|
|
|
* "--with-freetype2-library=" + freetype + "/lib"
|
|
|
|
* where `freetype` is a derivation (or a source to be copied
|
|
* to the store). If we just concatenated the strings without
|
|
* keeping track of the referenced store paths, then if the
|
|
* string is used as a derivation attribute, the derivation
|
|
* will not have the correct dependencies in its inputDrvs and
|
|
* inputSrcs.
|
|
|
|
* The semantics of the context is as follows: when a string
|
|
* with context C is used as a derivation attribute, then the
|
|
* derivations in C will be added to the inputDrvs of the
|
|
* derivation, and the other store paths in C will be added to
|
|
* the inputSrcs of the derivations.
|
|
|
|
* For canonicity, the store paths should be in sorted order.
|
|
*/
|
|
struct {
|
|
const char * s;
|
|
const char * * context; // must be in sorted order
|
|
} string;
|
|
|
|
struct {
|
|
const char * _path;
|
|
uintptr_t _path_pad;
|
|
};
|
|
struct {
|
|
Bindings * attrs;
|
|
uintptr_t _attrs_pad;
|
|
};
|
|
struct {
|
|
size_t size;
|
|
Value * * elems;
|
|
} bigList;
|
|
Value * smallList[2];
|
|
struct {
|
|
Env * env;
|
|
Expr * expr;
|
|
} thunk;
|
|
struct {
|
|
Value * left, * right;
|
|
} app;
|
|
struct {
|
|
Env * env;
|
|
ExprLambda * fun;
|
|
} lambda;
|
|
struct {
|
|
PrimOp * primOp;
|
|
uintptr_t _primop_pad;
|
|
};
|
|
struct {
|
|
Value * left, * right;
|
|
} primOpApp;
|
|
struct {
|
|
ExternalValueBase * external;
|
|
uintptr_t _external_pad;
|
|
};
|
|
struct {
|
|
NixFloat fpoint;
|
|
uintptr_t _float_pad;
|
|
};
|
|
};
|
|
|
|
/**
|
|
* Returns the normal type of a Value. This only returns nThunk if
|
|
* the Value hasn't been forceValue'd
|
|
*
|
|
* @param invalidIsThunk Instead of aborting an an invalid (probably
|
|
* 0, so uninitialized) internal type, return `nThunk`.
|
|
*/
|
|
inline ValueType type(bool invalidIsThunk = false) const
|
|
{
|
|
switch (internalType) {
|
|
case tInt: return nInt;
|
|
case tBool: return nBool;
|
|
case tString: return nString;
|
|
case tPath: return nPath;
|
|
case tNull: return nNull;
|
|
case tAttrs: return nAttrs;
|
|
case tList1: case tList2: case tListN: return nList;
|
|
case tLambda: case tPrimOp: case tPrimOpApp: return nFunction;
|
|
case tExternal: return nExternal;
|
|
case tFloat: return nFloat;
|
|
case tThunk: case tApp: return nThunk;
|
|
}
|
|
if (invalidIsThunk)
|
|
return nThunk;
|
|
else
|
|
abort();
|
|
}
|
|
|
|
/**
|
|
* After overwriting an app node, be sure to clear pointers in the
|
|
* Value to ensure that the target isn't kept alive unnecessarily.
|
|
*/
|
|
inline void clearValue()
|
|
{
|
|
app.left = app.right = 0;
|
|
}
|
|
|
|
inline void mkInt(NixInt::Inner n)
|
|
{
|
|
mkInt(NixInt{n});
|
|
}
|
|
|
|
inline void mkInt(NixInt n)
|
|
{
|
|
clearValue();
|
|
internalType = tInt;
|
|
integer = n;
|
|
}
|
|
|
|
inline void mkBool(bool b)
|
|
{
|
|
clearValue();
|
|
internalType = tBool;
|
|
boolean = b;
|
|
}
|
|
|
|
inline void mkString(const char * s, const char * * context = 0)
|
|
{
|
|
internalType = tString;
|
|
string.s = s;
|
|
string.context = context;
|
|
}
|
|
|
|
void mkString(std::string_view s);
|
|
|
|
void mkString(std::string_view s, const NixStringContext & context);
|
|
|
|
void mkStringMove(const char * s, const NixStringContext & context);
|
|
|
|
inline void mkString(const Symbol & s)
|
|
{
|
|
mkString(((const std::string &) s).c_str());
|
|
}
|
|
|
|
void mkPath(const SourcePath & path);
|
|
|
|
inline void mkPath(const char * path)
|
|
{
|
|
clearValue();
|
|
internalType = tPath;
|
|
_path = path;
|
|
}
|
|
|
|
inline void mkNull()
|
|
{
|
|
clearValue();
|
|
internalType = tNull;
|
|
}
|
|
|
|
inline void mkAttrs(Bindings * a)
|
|
{
|
|
clearValue();
|
|
internalType = tAttrs;
|
|
attrs = a;
|
|
}
|
|
|
|
Value & mkAttrs(BindingsBuilder & bindings);
|
|
|
|
inline void mkList(size_t size)
|
|
{
|
|
clearValue();
|
|
if (size == 1)
|
|
internalType = tList1;
|
|
else if (size == 2)
|
|
internalType = tList2;
|
|
else {
|
|
internalType = tListN;
|
|
bigList.size = size;
|
|
}
|
|
}
|
|
|
|
inline void mkThunk(Env * e, Expr & ex)
|
|
{
|
|
internalType = tThunk;
|
|
thunk.env = e;
|
|
thunk.expr = &ex;
|
|
}
|
|
|
|
inline void mkApp(Value * l, Value * r)
|
|
{
|
|
internalType = tApp;
|
|
app.left = l;
|
|
app.right = r;
|
|
}
|
|
|
|
inline void mkLambda(Env * e, ExprLambda * f)
|
|
{
|
|
internalType = tLambda;
|
|
lambda.env = e;
|
|
lambda.fun = f;
|
|
}
|
|
|
|
inline void mkBlackhole();
|
|
|
|
void mkPrimOp(PrimOp * p);
|
|
|
|
inline void mkPrimOpApp(Value * l, Value * r)
|
|
{
|
|
internalType = tPrimOpApp;
|
|
primOpApp.left = l;
|
|
primOpApp.right = r;
|
|
}
|
|
|
|
/**
|
|
* For a `tPrimOpApp` value, get the original `PrimOp` value.
|
|
*/
|
|
PrimOp * primOpAppPrimOp() const;
|
|
|
|
inline void mkExternal(ExternalValueBase * e)
|
|
{
|
|
clearValue();
|
|
internalType = tExternal;
|
|
external = e;
|
|
}
|
|
|
|
inline void mkFloat(NixFloat n)
|
|
{
|
|
clearValue();
|
|
internalType = tFloat;
|
|
fpoint = n;
|
|
}
|
|
|
|
bool isList() const
|
|
{
|
|
return internalType == tList1 || internalType == tList2 || internalType == tListN;
|
|
}
|
|
|
|
Value * * listElems()
|
|
{
|
|
return internalType == tList1 || internalType == tList2 ? smallList : bigList.elems;
|
|
}
|
|
|
|
Value * const * listElems() const
|
|
{
|
|
return internalType == tList1 || internalType == tList2 ? smallList : bigList.elems;
|
|
}
|
|
|
|
size_t listSize() const
|
|
{
|
|
return internalType == tList1 ? 1 : internalType == tList2 ? 2 : bigList.size;
|
|
}
|
|
|
|
PosIdx determinePos(const PosIdx pos) const;
|
|
|
|
/**
|
|
* Check whether forcing this value requires a trivial amount of
|
|
* computation. In particular, function applications are
|
|
* non-trivial.
|
|
*/
|
|
bool isTrivial() const;
|
|
|
|
auto listItems()
|
|
{
|
|
struct ListIterable
|
|
{
|
|
typedef Value * const * iterator;
|
|
iterator _begin, _end;
|
|
iterator begin() const { return _begin; }
|
|
iterator end() const { return _end; }
|
|
};
|
|
assert(isList());
|
|
auto begin = listElems();
|
|
return ListIterable { begin, begin + listSize() };
|
|
}
|
|
|
|
auto listItems() const
|
|
{
|
|
struct ConstListIterable
|
|
{
|
|
typedef const Value * const * iterator;
|
|
iterator _begin, _end;
|
|
iterator begin() const { return _begin; }
|
|
iterator end() const { return _end; }
|
|
};
|
|
assert(isList());
|
|
auto begin = listElems();
|
|
return ConstListIterable { begin, begin + listSize() };
|
|
}
|
|
|
|
SourcePath path() const
|
|
{
|
|
assert(internalType == tPath);
|
|
return SourcePath{CanonPath(_path)};
|
|
}
|
|
|
|
std::string_view str() const
|
|
{
|
|
assert(internalType == tString);
|
|
return std::string_view(string.s);
|
|
}
|
|
};
|
|
|
|
|
|
bool Value::isBlackhole() const
|
|
{
|
|
return internalType == tThunk && thunk.expr == (Expr*) &eBlackHole;
|
|
}
|
|
|
|
void Value::mkBlackhole()
|
|
{
|
|
internalType = tThunk;
|
|
thunk.expr = (Expr*) &eBlackHole;
|
|
}
|
|
|
|
using ValueVector = GcVector<Value *>;
|
|
using ValueMap = GcMap<Symbol, Value *>;
|
|
using ValueVectorMap = std::map<Symbol, ValueVector>;
|
|
|
|
/**
|
|
* A value allocated in traceable memory.
|
|
*/
|
|
typedef std::shared_ptr<Value *> RootValue;
|
|
|
|
RootValue allocRootValue(Value * v);
|
|
|
|
}
|