lix/src/libexpr/primops.cc
Eelco Dolstra ec07a70979
Style fix
2022-05-27 11:25:05 +02:00

3977 lines
127 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "archive.hh"
#include "derivations.hh"
#include "eval-inline.hh"
#include "eval.hh"
#include "globals.hh"
#include "json-to-value.hh"
#include "names.hh"
#include "store-api.hh"
#include "util.hh"
#include "json.hh"
#include "value-to-json.hh"
#include "value-to-xml.hh"
#include "primops.hh"
#include <boost/container/small_vector.hpp>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <algorithm>
#include <cstring>
#include <regex>
#include <dlfcn.h>
#include <cmath>
namespace nix {
/*************************************************************
* Miscellaneous
*************************************************************/
InvalidPathError::InvalidPathError(const Path & path) :
EvalError("path '%s' is not valid", path), path(path) {}
StringMap EvalState::realiseContext(const PathSet & context)
{
std::vector<DerivedPath::Built> drvs;
StringMap res;
for (auto & i : context) {
auto [ctx, outputName] = decodeContext(*store, i);
auto ctxS = store->printStorePath(ctx);
if (!store->isValidPath(ctx))
debugThrowLastTrace(InvalidPathError(store->printStorePath(ctx)));
if (!outputName.empty() && ctx.isDerivation()) {
drvs.push_back({ctx, {outputName}});
} else {
res.insert_or_assign(ctxS, ctxS);
}
}
if (drvs.empty()) return {};
if (!evalSettings.enableImportFromDerivation)
debugThrowLastTrace(Error(
"cannot build '%1%' during evaluation because the option 'allow-import-from-derivation' is disabled",
store->printStorePath(drvs.begin()->drvPath)));
/* Build/substitute the context. */
std::vector<DerivedPath> buildReqs;
for (auto & d : drvs) buildReqs.emplace_back(DerivedPath { d });
store->buildPaths(buildReqs);
/* Get all the output paths corresponding to the placeholders we had */
for (auto & [drvPath, outputs] : drvs) {
const auto outputPaths = store->queryDerivationOutputMap(drvPath);
for (auto & outputName : outputs) {
auto outputPath = get(outputPaths, outputName);
if (!outputPath)
debugThrowLastTrace(Error("derivation '%s' does not have an output named '%s'",
store->printStorePath(drvPath), outputName));
res.insert_or_assign(
downstreamPlaceholder(*store, drvPath, outputName),
store->printStorePath(*outputPath)
);
}
}
/* Add the output of this derivations to the allowed
paths. */
if (allowedPaths) {
for (auto & [_placeholder, outputPath] : res) {
allowPath(store->toRealPath(outputPath));
}
}
return res;
}
struct RealisePathFlags {
// Whether to check that the path is allowed in pure eval mode
bool checkForPureEval = true;
};
static Path realisePath(EvalState & state, const PosIdx pos, Value & v, const RealisePathFlags flags = {})
{
PathSet context;
auto path = [&]()
{
try {
return state.coerceToPath(pos, v, context);
} catch (Error & e) {
e.addTrace(state.positions[pos], "while realising the context of a path");
throw;
}
}();
try {
StringMap rewrites = state.realiseContext(context);
auto realPath = state.toRealPath(rewriteStrings(path, rewrites), context);
return flags.checkForPureEval
? state.checkSourcePath(realPath)
: realPath;
} catch (Error & e) {
e.addTrace(state.positions[pos], "while realising the context of path '%s'", path);
throw;
}
}
/* Add and attribute to the given attribute map from the output name to
the output path, or a placeholder.
Where possible the path is used, but for floating CA derivations we
may not know it. For sake of determinism we always assume we don't
and instead put in a place holder. In either case, however, the
string context will contain the drv path and output name, so
downstream derivations will have the proper dependency, and in
addition, before building, the placeholder will be rewritten to be
the actual path.
The 'drv' and 'drvPath' outputs must correspond. */
static void mkOutputString(
EvalState & state,
BindingsBuilder & attrs,
const StorePath & drvPath,
const BasicDerivation & drv,
const std::pair<std::string, DerivationOutput> & o)
{
auto optOutputPath = o.second.path(*state.store, drv.name, o.first);
attrs.alloc(o.first).mkString(
optOutputPath
? state.store->printStorePath(*optOutputPath)
/* Downstream we would substitute this for an actual path once
we build the floating CA derivation */
/* FIXME: we need to depend on the basic derivation, not
derivation */
: downstreamPlaceholder(*state.store, drvPath, o.first),
{"!" + o.first + "!" + state.store->printStorePath(drvPath)});
}
/* Load and evaluate an expression from path specified by the
argument. */
static void import(EvalState & state, const PosIdx pos, Value & vPath, Value * vScope, Value & v)
{
auto path = realisePath(state, pos, vPath);
// FIXME
auto isValidDerivationInStore = [&]() -> std::optional<StorePath> {
if (!state.store->isStorePath(path))
return std::nullopt;
auto storePath = state.store->parseStorePath(path);
if (!(state.store->isValidPath(storePath) && isDerivation(path)))
return std::nullopt;
return storePath;
};
if (auto optStorePath = isValidDerivationInStore()) {
auto storePath = *optStorePath;
Derivation drv = state.store->readDerivation(storePath);
auto attrs = state.buildBindings(3 + drv.outputs.size());
attrs.alloc(state.sDrvPath).mkString(path, {"=" + path});
attrs.alloc(state.sName).mkString(drv.env["name"]);
auto & outputsVal = attrs.alloc(state.sOutputs);
state.mkList(outputsVal, drv.outputs.size());
for (const auto & [i, o] : enumerate(drv.outputs)) {
mkOutputString(state, attrs, storePath, drv, o);
(outputsVal.listElems()[i] = state.allocValue())->mkString(o.first);
}
auto w = state.allocValue();
w->mkAttrs(attrs);
if (!state.vImportedDrvToDerivation) {
state.vImportedDrvToDerivation = allocRootValue(state.allocValue());
state.eval(state.parseExprFromString(
#include "imported-drv-to-derivation.nix.gen.hh"
, "/"), **state.vImportedDrvToDerivation);
}
state.forceFunction(**state.vImportedDrvToDerivation, pos);
v.mkApp(*state.vImportedDrvToDerivation, w);
state.forceAttrs(v, pos);
}
else if (path == corepkgsPrefix + "fetchurl.nix") {
state.eval(state.parseExprFromString(
#include "fetchurl.nix.gen.hh"
, "/"), v);
}
else {
if (!vScope)
state.evalFile(path, v);
else {
state.forceAttrs(*vScope, pos);
Env * env = &state.allocEnv(vScope->attrs->size());
env->up = &state.baseEnv;
auto staticEnv = std::make_shared<StaticEnv>(false, state.staticBaseEnv.get(), vScope->attrs->size());
unsigned int displ = 0;
for (auto & attr : *vScope->attrs) {
staticEnv->vars.emplace_back(attr.name, displ);
env->values[displ++] = attr.value;
}
// No need to call staticEnv.sort(), because
// args[0]->attrs is already sorted.
printTalkative("evaluating file '%1%'", path);
Expr * e = state.parseExprFromFile(resolveExprPath(path), staticEnv);
e->eval(state, *env, v);
}
}
}
static RegisterPrimOp primop_scopedImport(RegisterPrimOp::Info {
.name = "scopedImport",
.arity = 2,
.fun = [](EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
import(state, pos, *args[1], args[0], v);
}
});
static RegisterPrimOp primop_import({
.name = "import",
.args = {"path"},
.doc = R"(
Load, parse and return the Nix expression in the file *path*. If
*path* is a directory, the file ` default.nix ` in that directory
is loaded. Evaluation aborts if the file doesnt exist or contains
an incorrect Nix expression. `import` implements Nixs module
system: you can put any Nix expression (such as a set or a
function) in a separate file, and use it from Nix expressions in
other files.
> **Note**
>
> Unlike some languages, `import` is a regular function in Nix.
> Paths using the angle bracket syntax (e.g., `import` *\<foo\>*)
> are [normal path values](language-values.md).
A Nix expression loaded by `import` must not contain any *free
variables* (identifiers that are not defined in the Nix expression
itself and are not built-in). Therefore, it cannot refer to
variables that are in scope at the call site. For instance, if you
have a calling expression
```nix
rec {
x = 123;
y = import ./foo.nix;
}
```
then the following `foo.nix` will give an error:
```nix
x + 456
```
since `x` is not in scope in `foo.nix`. If you want `x` to be
available in `foo.nix`, you should pass it as a function argument:
```nix
rec {
x = 123;
y = import ./foo.nix x;
}
```
and
```nix
x: x + 456
```
(The function argument doesnt have to be called `x` in `foo.nix`;
any name would work.)
)",
.fun = [](EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
import(state, pos, *args[0], nullptr, v);
}
});
/* Want reasonable symbol names, so extern C */
/* !!! Should we pass the Pos or the file name too? */
extern "C" typedef void (*ValueInitializer)(EvalState & state, Value & v);
/* Load a ValueInitializer from a DSO and return whatever it initializes */
void prim_importNative(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
auto path = realisePath(state, pos, *args[0]);
std::string sym(state.forceStringNoCtx(*args[1], pos));
void *handle = dlopen(path.c_str(), RTLD_LAZY | RTLD_LOCAL);
if (!handle)
state.debugThrowLastTrace(EvalError("could not open '%1%': %2%", path, dlerror()));
dlerror();
ValueInitializer func = (ValueInitializer) dlsym(handle, sym.c_str());
if(!func) {
char *message = dlerror();
if (message)
state.debugThrowLastTrace(EvalError("could not load symbol '%1%' from '%2%': %3%", sym, path, message));
else
state.debugThrowLastTrace(EvalError("symbol '%1%' from '%2%' resolved to NULL when a function pointer was expected", sym, path));
}
(func)(state, v);
/* We don't dlclose because v may be a primop referencing a function in the shared object file */
}
/* Execute a program and parse its output */
void prim_exec(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceList(*args[0], pos);
auto elems = args[0]->listElems();
auto count = args[0]->listSize();
if (count == 0)
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("at least one argument to 'exec' required"),
.errPos = state.positions[pos]
}));
PathSet context;
auto program = state.coerceToString(pos, *elems[0], context, false, false).toOwned();
Strings commandArgs;
for (unsigned int i = 1; i < args[0]->listSize(); ++i) {
commandArgs.push_back(state.coerceToString(pos, *elems[i], context, false, false).toOwned());
}
try {
auto _ = state.realiseContext(context); // FIXME: Handle CA derivations
} catch (InvalidPathError & e) {
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("cannot execute '%1%', since path '%2%' is not valid",
program, e.path),
.errPos = state.positions[pos]
}));
}
auto output = runProgram(program, true, commandArgs);
Expr * parsed;
try {
auto base = state.positions[pos];
parsed = state.parseExprFromString(std::move(output), base.file);
} catch (Error & e) {
e.addTrace(state.positions[pos], "While parsing the output from '%1%'", program);
throw;
}
try {
state.eval(parsed, v);
} catch (Error & e) {
e.addTrace(state.positions[pos], "While evaluating the output from '%1%'", program);
throw;
}
}
/* Return a string representing the type of the expression. */
static void prim_typeOf(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
std::string t;
switch (args[0]->type()) {
case nInt: t = "int"; break;
case nBool: t = "bool"; break;
case nString: t = "string"; break;
case nPath: t = "path"; break;
case nNull: t = "null"; break;
case nAttrs: t = "set"; break;
case nList: t = "list"; break;
case nFunction: t = "lambda"; break;
case nExternal:
t = args[0]->external->typeOf();
break;
case nFloat: t = "float"; break;
case nThunk: abort();
}
v.mkString(t);
}
static RegisterPrimOp primop_typeOf({
.name = "__typeOf",
.args = {"e"},
.doc = R"(
Return a string representing the type of the value *e*, namely
`"int"`, `"bool"`, `"string"`, `"path"`, `"null"`, `"set"`,
`"list"`, `"lambda"` or `"float"`.
)",
.fun = prim_typeOf,
});
/* Determine whether the argument is the null value. */
static void prim_isNull(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
v.mkBool(args[0]->type() == nNull);
}
static RegisterPrimOp primop_isNull({
.name = "isNull",
.args = {"e"},
.doc = R"(
Return `true` if *e* evaluates to `null`, and `false` otherwise.
> **Warning**
>
> This function is *deprecated*; just write `e == null` instead.
)",
.fun = prim_isNull,
});
/* Determine whether the argument is a function. */
static void prim_isFunction(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
v.mkBool(args[0]->type() == nFunction);
}
static RegisterPrimOp primop_isFunction({
.name = "__isFunction",
.args = {"e"},
.doc = R"(
Return `true` if *e* evaluates to a function, and `false` otherwise.
)",
.fun = prim_isFunction,
});
/* Determine whether the argument is an integer. */
static void prim_isInt(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
v.mkBool(args[0]->type() == nInt);
}
static RegisterPrimOp primop_isInt({
.name = "__isInt",
.args = {"e"},
.doc = R"(
Return `true` if *e* evaluates to an integer, and `false` otherwise.
)",
.fun = prim_isInt,
});
/* Determine whether the argument is a float. */
static void prim_isFloat(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
v.mkBool(args[0]->type() == nFloat);
}
static RegisterPrimOp primop_isFloat({
.name = "__isFloat",
.args = {"e"},
.doc = R"(
Return `true` if *e* evaluates to a float, and `false` otherwise.
)",
.fun = prim_isFloat,
});
/* Determine whether the argument is a string. */
static void prim_isString(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
v.mkBool(args[0]->type() == nString);
}
static RegisterPrimOp primop_isString({
.name = "__isString",
.args = {"e"},
.doc = R"(
Return `true` if *e* evaluates to a string, and `false` otherwise.
)",
.fun = prim_isString,
});
/* Determine whether the argument is a Boolean. */
static void prim_isBool(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
v.mkBool(args[0]->type() == nBool);
}
static RegisterPrimOp primop_isBool({
.name = "__isBool",
.args = {"e"},
.doc = R"(
Return `true` if *e* evaluates to a bool, and `false` otherwise.
)",
.fun = prim_isBool,
});
/* Determine whether the argument is a path. */
static void prim_isPath(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
v.mkBool(args[0]->type() == nPath);
}
static RegisterPrimOp primop_isPath({
.name = "__isPath",
.args = {"e"},
.doc = R"(
Return `true` if *e* evaluates to a path, and `false` otherwise.
)",
.fun = prim_isPath,
});
struct CompareValues
{
EvalState & state;
CompareValues(EvalState & state) : state(state) { };
bool operator () (Value * v1, Value * v2) const
{
if (v1->type() == nFloat && v2->type() == nInt)
return v1->fpoint < v2->integer;
if (v1->type() == nInt && v2->type() == nFloat)
return v1->integer < v2->fpoint;
if (v1->type() != v2->type())
state.debugThrowLastTrace(EvalError("cannot compare %1% with %2%", showType(*v1), showType(*v2)));
switch (v1->type()) {
case nInt:
return v1->integer < v2->integer;
case nFloat:
return v1->fpoint < v2->fpoint;
case nString:
return strcmp(v1->string.s, v2->string.s) < 0;
case nPath:
return strcmp(v1->path, v2->path) < 0;
case nList:
// Lexicographic comparison
for (size_t i = 0;; i++) {
if (i == v2->listSize()) {
return false;
} else if (i == v1->listSize()) {
return true;
} else if (!state.eqValues(*v1->listElems()[i], *v2->listElems()[i])) {
return (*this)(v1->listElems()[i], v2->listElems()[i]);
}
}
default:
state.debugThrowLastTrace(EvalError("cannot compare %1% with %2%", showType(*v1), showType(*v2)));
}
}
};
#if HAVE_BOEHMGC
typedef std::list<Value *, gc_allocator<Value *>> ValueList;
#else
typedef std::list<Value *> ValueList;
#endif
static Bindings::iterator getAttr(
EvalState & state,
std::string_view funcName,
Symbol attrSym,
Bindings * attrSet,
const PosIdx pos)
{
Bindings::iterator value = attrSet->find(attrSym);
if (value == attrSet->end()) {
hintformat errorMsg = hintfmt(
"attribute '%s' missing for call to '%s'",
state.symbols[attrSym],
funcName
);
auto aPos = attrSet->pos;
if (!aPos) {
state.debugThrowLastTrace(TypeError({
.msg = errorMsg,
.errPos = state.positions[pos],
}));
} else {
auto e = TypeError({
.msg = errorMsg,
.errPos = state.positions[aPos],
});
// Adding another trace for the function name to make it clear
// which call received wrong arguments.
e.addTrace(state.positions[pos], hintfmt("while invoking '%s'", funcName));
state.debugThrowLastTrace(e);
}
}
return value;
}
static void prim_genericClosure(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceAttrs(*args[0], pos);
/* Get the start set. */
Bindings::iterator startSet = getAttr(
state,
"genericClosure",
state.sStartSet,
args[0]->attrs,
pos
);
state.forceList(*startSet->value, pos);
ValueList workSet;
for (auto elem : startSet->value->listItems())
workSet.push_back(elem);
/* Get the operator. */
Bindings::iterator op = getAttr(
state,
"genericClosure",
state.sOperator,
args[0]->attrs,
pos
);
state.forceValue(*op->value, pos);
/* Construct the closure by applying the operator to element of
`workSet', adding the result to `workSet', continuing until
no new elements are found. */
ValueList res;
// `doneKeys' doesn't need to be a GC root, because its values are
// reachable from res.
auto cmp = CompareValues(state);
std::set<Value *, decltype(cmp)> doneKeys(cmp);
while (!workSet.empty()) {
Value * e = *(workSet.begin());
workSet.pop_front();
state.forceAttrs(*e, pos);
Bindings::iterator key =
e->attrs->find(state.sKey);
if (key == e->attrs->end())
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("attribute 'key' required"),
.errPos = state.positions[pos]
}));
state.forceValue(*key->value, pos);
if (!doneKeys.insert(key->value).second) continue;
res.push_back(e);
/* Call the `operator' function with `e' as argument. */
Value call;
call.mkApp(op->value, e);
state.forceList(call, pos);
/* Add the values returned by the operator to the work set. */
for (auto elem : call.listItems()) {
state.forceValue(*elem, pos);
workSet.push_back(elem);
}
}
/* Create the result list. */
state.mkList(v, res.size());
unsigned int n = 0;
for (auto & i : res)
v.listElems()[n++] = i;
}
static RegisterPrimOp primop_genericClosure(RegisterPrimOp::Info {
.name = "__genericClosure",
.args = {"attrset"},
.arity = 1,
.doc = R"(
Take an *attrset* with values named `startSet` and `operator` in order to
return a *list of attrsets* by starting with the `startSet`, recursively
applying the `operator` function to each element. The *attrsets* in the
`startSet` and produced by the `operator` must each contain value named
`key` which are comparable to each other. The result is produced by
repeatedly calling the operator for each element encountered with a
unique key, terminating when no new elements are produced. For example,
```
builtins.genericClosure {
startSet = [ {key = 5;} ];
operator = item: [{
key = if (item.key / 2 ) * 2 == item.key
then item.key / 2
else 3 * item.key + 1;
}];
}
```
evaluates to
```
[ { key = 5; } { key = 16; } { key = 8; } { key = 4; } { key = 2; } { key = 1; } ]
```
)",
.fun = prim_genericClosure,
});
static RegisterPrimOp primop_break({
.name = "break",
.args = {"v"},
.doc = R"(
In debug mode (enabled using `--debugger`), pause Nix expression evaluation and enter the REPL.
Otherwise, return the argument `v`.
)",
.fun = [](EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
if (state.debugRepl && !state.debugTraces.empty()) {
auto error = Error(ErrorInfo {
.level = lvlInfo,
.msg = hintfmt("breakpoint reached"),
.errPos = state.positions[pos],
});
auto & dt = state.debugTraces.front();
state.runDebugRepl(&error, dt.env, dt.expr);
if (state.debugQuit) {
// If the user elects to quit the repl, throw an exception.
throw Error(ErrorInfo{
.level = lvlInfo,
.msg = hintfmt("quit the debugger"),
.errPos = state.positions[noPos],
});
}
}
// Return the value we were passed.
v = *args[0];
}
});
static RegisterPrimOp primop_abort({
.name = "abort",
.args = {"s"},
.doc = R"(
Abort Nix expression evaluation and print the error message *s*.
)",
.fun = [](EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
PathSet context;
auto s = state.coerceToString(pos, *args[0], context).toOwned();
state.debugThrowLastTrace(Abort("evaluation aborted with the following error message: '%1%'", s));
}
});
static RegisterPrimOp primop_throw({
.name = "throw",
.args = {"s"},
.doc = R"(
Throw an error message *s*. This usually aborts Nix expression
evaluation, but in `nix-env -qa` and other commands that try to
evaluate a set of derivations to get information about those
derivations, a derivation that throws an error is silently skipped
(which is not the case for `abort`).
)",
.fun = [](EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
PathSet context;
auto s = state.coerceToString(pos, *args[0], context).toOwned();
state.debugThrowLastTrace(ThrownError(s));
}
});
static void prim_addErrorContext(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
try {
state.forceValue(*args[1], pos);
v = *args[1];
} catch (Error & e) {
PathSet context;
e.addTrace(std::nullopt, state.coerceToString(pos, *args[0], context).toOwned());
throw;
}
}
static RegisterPrimOp primop_addErrorContext(RegisterPrimOp::Info {
.name = "__addErrorContext",
.arity = 2,
.fun = prim_addErrorContext,
});
static void prim_ceil(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
auto value = state.forceFloat(*args[0], args[0]->determinePos(pos));
v.mkInt(ceil(value));
}
static RegisterPrimOp primop_ceil({
.name = "__ceil",
.args = {"double"},
.doc = R"(
Converts an IEEE-754 double-precision floating-point number (*double*) to
the next higher integer.
If the datatype is neither an integer nor a "float", an evaluation error will be
thrown.
)",
.fun = prim_ceil,
});
static void prim_floor(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
auto value = state.forceFloat(*args[0], args[0]->determinePos(pos));
v.mkInt(floor(value));
}
static RegisterPrimOp primop_floor({
.name = "__floor",
.args = {"double"},
.doc = R"(
Converts an IEEE-754 double-precision floating-point number (*double*) to
the next lower integer.
If the datatype is neither an integer nor a "float", an evaluation error will be
thrown.
)",
.fun = prim_floor,
});
/* Try evaluating the argument. Success => {success=true; value=something;},
* else => {success=false; value=false;} */
static void prim_tryEval(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
auto attrs = state.buildBindings(2);
try {
state.forceValue(*args[0], pos);
attrs.insert(state.sValue, args[0]);
attrs.alloc("success").mkBool(true);
} catch (AssertionError & e) {
attrs.alloc(state.sValue).mkBool(false);
attrs.alloc("success").mkBool(false);
}
v.mkAttrs(attrs);
}
static RegisterPrimOp primop_tryEval({
.name = "__tryEval",
.args = {"e"},
.doc = R"(
Try to shallowly evaluate *e*. Return a set containing the
attributes `success` (`true` if *e* evaluated successfully,
`false` if an error was thrown) and `value`, equalling *e* if
successful and `false` otherwise. `tryEval` will only prevent
errors created by `throw` or `assert` from being thrown.
Errors `tryEval` will not catch are for example those created
by `abort` and type errors generated by builtins. Also note that
this doesn't evaluate *e* deeply, so `let e = { x = throw ""; };
in (builtins.tryEval e).success` will be `true`. Using
`builtins.deepSeq` one can get the expected result:
`let e = { x = throw ""; }; in
(builtins.tryEval (builtins.deepSeq e e)).success` will be
`false`.
)",
.fun = prim_tryEval,
});
/* Return an environment variable. Use with care. */
static void prim_getEnv(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
std::string name(state.forceStringNoCtx(*args[0], pos));
v.mkString(evalSettings.restrictEval || evalSettings.pureEval ? "" : getEnv(name).value_or(""));
}
static RegisterPrimOp primop_getEnv({
.name = "__getEnv",
.args = {"s"},
.doc = R"(
`getEnv` returns the value of the environment variable *s*, or an
empty string if the variable doesnt exist. This function should be
used with care, as it can introduce all sorts of nasty environment
dependencies in your Nix expression.
`getEnv` is used in Nix Packages to locate the file
`~/.nixpkgs/config.nix`, which contains user-local settings for Nix
Packages. (That is, it does a `getEnv "HOME"` to locate the users
home directory.)
)",
.fun = prim_getEnv,
});
/* Evaluate the first argument, then return the second argument. */
static void prim_seq(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
state.forceValue(*args[1], pos);
v = *args[1];
}
static RegisterPrimOp primop_seq({
.name = "__seq",
.args = {"e1", "e2"},
.doc = R"(
Evaluate *e1*, then evaluate and return *e2*. This ensures that a
computation is strict in the value of *e1*.
)",
.fun = prim_seq,
});
/* Evaluate the first argument deeply (i.e. recursing into lists and
attrsets), then return the second argument. */
static void prim_deepSeq(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValueDeep(*args[0]);
state.forceValue(*args[1], pos);
v = *args[1];
}
static RegisterPrimOp primop_deepSeq({
.name = "__deepSeq",
.args = {"e1", "e2"},
.doc = R"(
This is like `seq e1 e2`, except that *e1* is evaluated *deeply*:
if its a list or set, its elements or attributes are also
evaluated recursively.
)",
.fun = prim_deepSeq,
});
/* Evaluate the first expression and print it on standard error. Then
return the second expression. Useful for debugging. */
static void prim_trace(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
if (args[0]->type() == nString)
printError("trace: %1%", args[0]->string.s);
else
printError("trace: %1%", printValue(state, *args[0]));
state.forceValue(*args[1], pos);
v = *args[1];
}
static RegisterPrimOp primop_trace({
.name = "__trace",
.args = {"e1", "e2"},
.doc = R"(
Evaluate *e1* and print its abstract syntax representation on
standard error. Then return *e2*. This function is useful for
debugging.
)",
.fun = prim_trace,
});
/*************************************************************
* Derivations
*************************************************************/
/* Construct (as a unobservable side effect) a Nix derivation
expression that performs the derivation described by the argument
set. Returns the original set extended with the following
attributes: `outPath' containing the primary output path of the
derivation; `drvPath' containing the path of the Nix expression;
and `type' set to `derivation' to indicate that this is a
derivation. */
static void prim_derivationStrict(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceAttrs(*args[0], pos);
/* Figure out the name first (for stack backtraces). */
Bindings::iterator attr = getAttr(
state,
"derivationStrict",
state.sName,
args[0]->attrs,
pos
);
std::string drvName;
const auto posDrvName = attr->pos;
try {
drvName = state.forceStringNoCtx(*attr->value, pos);
} catch (Error & e) {
e.addTrace(state.positions[posDrvName], "while evaluating the derivation attribute 'name'");
throw;
}
/* Check whether attributes should be passed as a JSON file. */
std::ostringstream jsonBuf;
std::unique_ptr<JSONObject> jsonObject;
attr = args[0]->attrs->find(state.sStructuredAttrs);
if (attr != args[0]->attrs->end() && state.forceBool(*attr->value, pos))
jsonObject = std::make_unique<JSONObject>(jsonBuf);
/* Check whether null attributes should be ignored. */
bool ignoreNulls = false;
attr = args[0]->attrs->find(state.sIgnoreNulls);
if (attr != args[0]->attrs->end())
ignoreNulls = state.forceBool(*attr->value, pos);
/* Build the derivation expression by processing the attributes. */
Derivation drv;
drv.name = drvName;
PathSet context;
bool contentAddressed = false;
bool isImpure = false;
std::optional<std::string> outputHash;
std::string outputHashAlgo;
std::optional<FileIngestionMethod> ingestionMethod;
StringSet outputs;
outputs.insert("out");
for (auto & i : args[0]->attrs->lexicographicOrder(state.symbols)) {
if (i->name == state.sIgnoreNulls) continue;
const std::string & key = state.symbols[i->name];
vomit("processing attribute '%1%'", key);
auto handleHashMode = [&](const std::string_view s) {
if (s == "recursive") ingestionMethod = FileIngestionMethod::Recursive;
else if (s == "flat") ingestionMethod = FileIngestionMethod::Flat;
else
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("invalid value '%s' for 'outputHashMode' attribute", s),
.errPos = state.positions[posDrvName]
}));
};
auto handleOutputs = [&](const Strings & ss) {
outputs.clear();
for (auto & j : ss) {
if (outputs.find(j) != outputs.end())
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("duplicate derivation output '%1%'", j),
.errPos = state.positions[posDrvName]
}));
/* !!! Check whether j is a valid attribute
name. */
/* Derivations cannot be named drv, because
then we'd have an attribute drvPath in
the resulting set. */
if (j == "drv")
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("invalid derivation output name 'drv'" ),
.errPos = state.positions[posDrvName]
}));
outputs.insert(j);
}
if (outputs.empty())
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("derivation cannot have an empty set of outputs"),
.errPos = state.positions[posDrvName]
}));
};
try {
if (ignoreNulls) {
state.forceValue(*i->value, pos);
if (i->value->type() == nNull) continue;
}
if (i->name == state.sContentAddressed) {
contentAddressed = state.forceBool(*i->value, pos);
if (contentAddressed)
settings.requireExperimentalFeature(Xp::CaDerivations);
}
else if (i->name == state.sImpure) {
isImpure = state.forceBool(*i->value, pos);
if (isImpure)
settings.requireExperimentalFeature(Xp::ImpureDerivations);
}
/* The `args' attribute is special: it supplies the
command-line arguments to the builder. */
else if (i->name == state.sArgs) {
state.forceList(*i->value, pos);
for (auto elem : i->value->listItems()) {
auto s = state.coerceToString(posDrvName, *elem, context, true).toOwned();
drv.args.push_back(s);
}
}
/* All other attributes are passed to the builder through
the environment. */
else {
if (jsonObject) {
if (i->name == state.sStructuredAttrs) continue;
auto placeholder(jsonObject->placeholder(key));
printValueAsJSON(state, true, *i->value, pos, placeholder, context);
if (i->name == state.sBuilder)
drv.builder = state.forceString(*i->value, context, posDrvName);
else if (i->name == state.sSystem)
drv.platform = state.forceStringNoCtx(*i->value, posDrvName);
else if (i->name == state.sOutputHash)
outputHash = state.forceStringNoCtx(*i->value, posDrvName);
else if (i->name == state.sOutputHashAlgo)
outputHashAlgo = state.forceStringNoCtx(*i->value, posDrvName);
else if (i->name == state.sOutputHashMode)
handleHashMode(state.forceStringNoCtx(*i->value, posDrvName));
else if (i->name == state.sOutputs) {
/* Require outputs to be a list of strings. */
state.forceList(*i->value, posDrvName);
Strings ss;
for (auto elem : i->value->listItems())
ss.emplace_back(state.forceStringNoCtx(*elem, posDrvName));
handleOutputs(ss);
}
} else {
auto s = state.coerceToString(i->pos, *i->value, context, true).toOwned();
drv.env.emplace(key, s);
if (i->name == state.sBuilder) drv.builder = std::move(s);
else if (i->name == state.sSystem) drv.platform = std::move(s);
else if (i->name == state.sOutputHash) outputHash = std::move(s);
else if (i->name == state.sOutputHashAlgo) outputHashAlgo = std::move(s);
else if (i->name == state.sOutputHashMode) handleHashMode(s);
else if (i->name == state.sOutputs)
handleOutputs(tokenizeString<Strings>(s));
}
}
} catch (Error & e) {
e.addTrace(state.positions[posDrvName],
"while evaluating the attribute '%1%' of the derivation '%2%'",
key, drvName);
throw;
}
}
if (jsonObject) {
jsonObject.reset();
drv.env.emplace("__json", jsonBuf.str());
}
/* Everything in the context of the strings in the derivation
attributes should be added as dependencies of the resulting
derivation. */
for (auto & path : context) {
/* Paths marked with `=' denote that the path of a derivation
is explicitly passed to the builder. Since that allows the
builder to gain access to every path in the dependency
graph of the derivation (including all outputs), all paths
in the graph must be added to this derivation's list of
inputs to ensure that they are available when the builder
runs. */
if (path.at(0) == '=') {
/* !!! This doesn't work if readOnlyMode is set. */
StorePathSet refs;
state.store->computeFSClosure(state.store->parseStorePath(std::string_view(path).substr(1)), refs);
for (auto & j : refs) {
drv.inputSrcs.insert(j);
if (j.isDerivation())
drv.inputDrvs[j] = state.store->readDerivation(j).outputNames();
}
}
/* Handle derivation outputs of the form !<name>!<path>. */
else if (path.at(0) == '!') {
auto ctx = decodeContext(*state.store, path);
drv.inputDrvs[ctx.first].insert(ctx.second);
}
/* Otherwise it's a source file. */
else
drv.inputSrcs.insert(state.store->parseStorePath(path));
}
/* Do we have all required attributes? */
if (drv.builder == "")
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("required attribute 'builder' missing"),
.errPos = state.positions[posDrvName]
}));
if (drv.platform == "")
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("required attribute 'system' missing"),
.errPos = state.positions[posDrvName]
}));
/* Check whether the derivation name is valid. */
if (isDerivation(drvName))
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("derivation names are not allowed to end in '%s'", drvExtension),
.errPos = state.positions[posDrvName]
}));
if (outputHash) {
/* Handle fixed-output derivations.
Ignore `__contentAddressed` because fixed output derivations are
already content addressed. */
if (outputs.size() != 1 || *(outputs.begin()) != "out")
state.debugThrowLastTrace(Error({
.msg = hintfmt("multiple outputs are not supported in fixed-output derivations"),
.errPos = state.positions[posDrvName]
}));
auto h = newHashAllowEmpty(*outputHash, parseHashTypeOpt(outputHashAlgo));
auto method = ingestionMethod.value_or(FileIngestionMethod::Flat);
auto outPath = state.store->makeFixedOutputPath(method, h, drvName);
drv.env["out"] = state.store->printStorePath(outPath);
drv.outputs.insert_or_assign("out",
DerivationOutput::CAFixed {
.hash = FixedOutputHash {
.method = method,
.hash = std::move(h),
},
});
}
else if (contentAddressed || isImpure) {
if (contentAddressed && isImpure)
throw EvalError({
.msg = hintfmt("derivation cannot be both content-addressed and impure"),
.errPos = state.positions[posDrvName]
});
auto ht = parseHashTypeOpt(outputHashAlgo).value_or(htSHA256);
auto method = ingestionMethod.value_or(FileIngestionMethod::Recursive);
for (auto & i : outputs) {
drv.env[i] = hashPlaceholder(i);
if (isImpure)
drv.outputs.insert_or_assign(i,
DerivationOutput::Impure {
.method = method,
.hashType = ht,
});
else
drv.outputs.insert_or_assign(i,
DerivationOutput::CAFloating {
.method = method,
.hashType = ht,
});
}
}
else {
/* Compute a hash over the "masked" store derivation, which is
the final one except that in the list of outputs, the
output paths are empty strings, and the corresponding
environment variables have an empty value. This ensures
that changes in the set of output names do get reflected in
the hash. */
for (auto & i : outputs) {
drv.env[i] = "";
drv.outputs.insert_or_assign(i,
DerivationOutput::Deferred { });
}
auto hashModulo = hashDerivationModulo(*state.store, Derivation(drv), true);
switch (hashModulo.kind) {
case DrvHash::Kind::Regular:
for (auto & i : outputs) {
auto h = get(hashModulo.hashes, i);
if (!h)
throw AssertionError({
.msg = hintfmt("derivation produced no hash for output '%s'", i),
.errPos = state.positions[posDrvName],
});
auto outPath = state.store->makeOutputPath(i, *h, drvName);
drv.env[i] = state.store->printStorePath(outPath);
drv.outputs.insert_or_assign(
i,
DerivationOutputInputAddressed {
.path = std::move(outPath),
});
}
break;
;
case DrvHash::Kind::Deferred:
for (auto & i : outputs) {
drv.outputs.insert_or_assign(i, DerivationOutputDeferred {});
}
}
}
/* Write the resulting term into the Nix store directory. */
auto drvPath = writeDerivation(*state.store, drv, state.repair);
auto drvPathS = state.store->printStorePath(drvPath);
printMsg(lvlChatty, "instantiated '%1%' -> '%2%'", drvName, drvPathS);
/* Optimisation, but required in read-only mode! because in that
case we don't actually write store derivations, so we can't
read them later. */
{
auto h = hashDerivationModulo(*state.store, drv, false);
drvHashes.lock()->insert_or_assign(drvPath, h);
}
auto attrs = state.buildBindings(1 + drv.outputs.size());
attrs.alloc(state.sDrvPath).mkString(drvPathS, {"=" + drvPathS});
for (auto & i : drv.outputs)
mkOutputString(state, attrs, drvPath, drv, i);
v.mkAttrs(attrs);
}
static RegisterPrimOp primop_derivationStrict(RegisterPrimOp::Info {
.name = "derivationStrict",
.arity = 1,
.fun = prim_derivationStrict,
});
/* Return a placeholder string for the specified output that will be
substituted by the corresponding output path at build time. For
example, 'placeholder "out"' returns the string
/1rz4g4znpzjwh1xymhjpm42vipw92pr73vdgl6xs1hycac8kf2n9. At build
time, any occurrence of this string in an derivation attribute will
be replaced with the concrete path in the Nix store of the output
out. */
static void prim_placeholder(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
v.mkString(hashPlaceholder(state.forceStringNoCtx(*args[0], pos)));
}
static RegisterPrimOp primop_placeholder({
.name = "placeholder",
.args = {"output"},
.doc = R"(
Return a placeholder string for the specified *output* that will be
substituted by the corresponding output path at build time. Typical
outputs would be `"out"`, `"bin"` or `"dev"`.
)",
.fun = prim_placeholder,
});
/*************************************************************
* Paths
*************************************************************/
/* Convert the argument to a path. !!! obsolete? */
static void prim_toPath(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
PathSet context;
Path path = state.coerceToPath(pos, *args[0], context);
v.mkString(canonPath(path), context);
}
static RegisterPrimOp primop_toPath({
.name = "__toPath",
.args = {"s"},
.doc = R"(
**DEPRECATED.** Use `/. + "/path"` to convert a string into an absolute
path. For relative paths, use `./. + "/path"`.
)",
.fun = prim_toPath,
});
/* Allow a valid store path to be used in an expression. This is
useful in some generated expressions such as in nix-push, which
generates a call to a function with an already existing store path
as argument. You don't want to use `toPath' here because it copies
the path to the Nix store, which yields a copy like
/nix/store/newhash-oldhash-oldname. In the past, `toPath' had
special case behaviour for store paths, but that created weird
corner cases. */
static void prim_storePath(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
if (evalSettings.pureEval)
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("'%s' is not allowed in pure evaluation mode", "builtins.storePath"),
.errPos = state.positions[pos]
}));
PathSet context;
Path path = state.checkSourcePath(state.coerceToPath(pos, *args[0], context));
/* Resolve symlinks in path, unless path itself is a symlink
directly in the store. The latter condition is necessary so
e.g. nix-push does the right thing. */
if (!state.store->isStorePath(path)) path = canonPath(path, true);
if (!state.store->isInStore(path))
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("path '%1%' is not in the Nix store", path),
.errPos = state.positions[pos]
}));
auto path2 = state.store->toStorePath(path).first;
if (!settings.readOnlyMode)
state.store->ensurePath(path2);
context.insert(state.store->printStorePath(path2));
v.mkString(path, context);
}
static RegisterPrimOp primop_storePath({
.name = "__storePath",
.args = {"path"},
.doc = R"(
This function allows you to define a dependency on an already
existing store path. For example, the derivation attribute `src
= builtins.storePath /nix/store/f1d18v1y-source` causes the
derivation to depend on the specified path, which must exist or
be substitutable. Note that this differs from a plain path
(e.g. `src = /nix/store/f1d18v1y-source`) in that the latter
causes the path to be *copied* again to the Nix store, resulting
in a new path (e.g. `/nix/store/ld01dnzc-source-source`).
This function is not available in pure evaluation mode.
)",
.fun = prim_storePath,
});
static void prim_pathExists(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
/* We dont check the path right now, because we dont want to
throw if the path isnt allowed, but just return false (and we
cant just catch the exception here because we still want to
throw if something in the evaluation of `*args[0]` tries to
access an unauthorized path). */
auto path = realisePath(state, pos, *args[0], { .checkForPureEval = false });
try {
v.mkBool(pathExists(state.checkSourcePath(path)));
} catch (SysError & e) {
/* Don't give away info from errors while canonicalising
path in restricted mode. */
v.mkBool(false);
} catch (RestrictedPathError & e) {
v.mkBool(false);
}
}
static RegisterPrimOp primop_pathExists({
.name = "__pathExists",
.args = {"path"},
.doc = R"(
Return `true` if the path *path* exists at evaluation time, and
`false` otherwise.
)",
.fun = prim_pathExists,
});
/* Return the base name of the given string, i.e., everything
following the last slash. */
static void prim_baseNameOf(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
PathSet context;
v.mkString(baseNameOf(*state.coerceToString(pos, *args[0], context, false, false)), context);
}
static RegisterPrimOp primop_baseNameOf({
.name = "baseNameOf",
.args = {"s"},
.doc = R"(
Return the *base name* of the string *s*, that is, everything
following the final slash in the string. This is similar to the GNU
`basename` command.
)",
.fun = prim_baseNameOf,
});
/* Return the directory of the given path, i.e., everything before the
last slash. Return either a path or a string depending on the type
of the argument. */
static void prim_dirOf(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
PathSet context;
auto path = state.coerceToString(pos, *args[0], context, false, false);
auto dir = dirOf(*path);
if (args[0]->type() == nPath) v.mkPath(dir); else v.mkString(dir, context);
}
static RegisterPrimOp primop_dirOf({
.name = "dirOf",
.args = {"s"},
.doc = R"(
Return the directory part of the string *s*, that is, everything
before the final slash in the string. This is similar to the GNU
`dirname` command.
)",
.fun = prim_dirOf,
});
/* Return the contents of a file as a string. */
static void prim_readFile(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
auto path = realisePath(state, pos, *args[0]);
auto s = readFile(path);
if (s.find((char) 0) != std::string::npos)
state.debugThrowLastTrace(Error("the contents of the file '%1%' cannot be represented as a Nix string", path));
StorePathSet refs;
if (state.store->isInStore(path)) {
try {
refs = state.store->queryPathInfo(state.store->toStorePath(path).first)->references;
} catch (Error &) { // FIXME: should be InvalidPathError
}
}
auto context = state.store->printStorePathSet(refs);
v.mkString(s, context);
}
static RegisterPrimOp primop_readFile({
.name = "__readFile",
.args = {"path"},
.doc = R"(
Return the contents of the file *path* as a string.
)",
.fun = prim_readFile,
});
/* Find a file in the Nix search path. Used to implement <x> paths,
which are desugared to 'findFile __nixPath "x"'. */
static void prim_findFile(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceList(*args[0], pos);
SearchPath searchPath;
for (auto v2 : args[0]->listItems()) {
state.forceAttrs(*v2, pos);
std::string prefix;
Bindings::iterator i = v2->attrs->find(state.sPrefix);
if (i != v2->attrs->end())
prefix = state.forceStringNoCtx(*i->value, pos);
i = getAttr(
state,
"findFile",
state.sPath,
v2->attrs,
pos
);
PathSet context;
auto path = state.coerceToString(pos, *i->value, context, false, false).toOwned();
try {
auto rewrites = state.realiseContext(context);
path = rewriteStrings(path, rewrites);
} catch (InvalidPathError & e) {
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("cannot find '%1%', since path '%2%' is not valid", path, e.path),
.errPos = state.positions[pos]
}));
}
searchPath.emplace_back(prefix, path);
}
auto path = state.forceStringNoCtx(*args[1], pos);
v.mkPath(state.checkSourcePath(state.findFile(searchPath, path, pos)));
}
static RegisterPrimOp primop_findFile(RegisterPrimOp::Info {
.name = "__findFile",
.arity = 2,
.fun = prim_findFile,
});
/* Return the cryptographic hash of a file in base-16. */
static void prim_hashFile(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
auto type = state.forceStringNoCtx(*args[0], pos);
std::optional<HashType> ht = parseHashType(type);
if (!ht)
state.debugThrowLastTrace(Error({
.msg = hintfmt("unknown hash type '%1%'", type),
.errPos = state.positions[pos]
}));
auto path = realisePath(state, pos, *args[1]);
v.mkString(hashFile(*ht, path).to_string(Base16, false));
}
static RegisterPrimOp primop_hashFile({
.name = "__hashFile",
.args = {"type", "p"},
.doc = R"(
Return a base-16 representation of the cryptographic hash of the
file at path *p*. The hash algorithm specified by *type* must be one
of `"md5"`, `"sha1"`, `"sha256"` or `"sha512"`.
)",
.fun = prim_hashFile,
});
/* Read a directory (without . or ..) */
static void prim_readDir(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
auto path = realisePath(state, pos, *args[0]);
DirEntries entries = readDirectory(path);
auto attrs = state.buildBindings(entries.size());
for (auto & ent : entries) {
if (ent.type == DT_UNKNOWN)
ent.type = getFileType(path + "/" + ent.name);
attrs.alloc(ent.name).mkString(
ent.type == DT_REG ? "regular" :
ent.type == DT_DIR ? "directory" :
ent.type == DT_LNK ? "symlink" :
"unknown");
}
v.mkAttrs(attrs);
}
static RegisterPrimOp primop_readDir({
.name = "__readDir",
.args = {"path"},
.doc = R"(
Return the contents of the directory *path* as a set mapping
directory entries to the corresponding file type. For instance, if
directory `A` contains a regular file `B` and another directory
`C`, then `builtins.readDir ./A` will return the set
```nix
{ B = "regular"; C = "directory"; }
```
The possible values for the file type are `"regular"`,
`"directory"`, `"symlink"` and `"unknown"`.
)",
.fun = prim_readDir,
});
/*************************************************************
* Creating files
*************************************************************/
/* Convert the argument (which can be any Nix expression) to an XML
representation returned in a string. Not all Nix expressions can
be sensibly or completely represented (e.g., functions). */
static void prim_toXML(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
std::ostringstream out;
PathSet context;
printValueAsXML(state, true, false, *args[0], out, context, pos);
v.mkString(out.str(), context);
}
static RegisterPrimOp primop_toXML({
.name = "__toXML",
.args = {"e"},
.doc = R"(
Return a string containing an XML representation of *e*. The main
application for `toXML` is to communicate information with the
builder in a more structured format than plain environment
variables.
Here is an example where this is the case:
```nix
{ stdenv, fetchurl, libxslt, jira, uberwiki }:
stdenv.mkDerivation (rec {
name = "web-server";
buildInputs = [ libxslt ];
builder = builtins.toFile "builder.sh" "
source $stdenv/setup
mkdir $out
echo "$servlets" | xsltproc ${stylesheet} - > $out/server-conf.xml
";
stylesheet = builtins.toFile "stylesheet.xsl"
"<?xml version='1.0' encoding='UTF-8'?>
<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' version='1.0'>
<xsl:template match='/'>
<Configure>
<xsl:for-each select='/expr/list/attrs'>
<Call name='addWebApplication'>
<Arg><xsl:value-of select=\"attr[@name = 'path']/string/@value\" /></Arg>
<Arg><xsl:value-of select=\"attr[@name = 'war']/path/@value\" /></Arg>
</Call>
</xsl:for-each>
</Configure>
</xsl:template>
</xsl:stylesheet>
";
servlets = builtins.toXML [
{ path = "/bugtracker"; war = jira + "/lib/atlassian-jira.war"; }
{ path = "/wiki"; war = uberwiki + "/uberwiki.war"; }
];
})
```
The builder is supposed to generate the configuration file for a
[Jetty servlet container](http://jetty.mortbay.org/). A servlet
container contains a number of servlets (`*.war` files) each
exported under a specific URI prefix. So the servlet configuration
is a list of sets containing the `path` and `war` of the servlet
(). This kind of information is difficult to communicate with the
normal method of passing information through an environment
variable, which just concatenates everything together into a
string (which might just work in this case, but wouldnt work if
fields are optional or contain lists themselves). Instead the Nix
expression is converted to an XML representation with `toXML`,
which is unambiguous and can easily be processed with the
appropriate tools. For instance, in the example an XSLT stylesheet
(at point ) is applied to it (at point ) to generate the XML
configuration file for the Jetty server. The XML representation
produced at point by `toXML` is as follows:
```xml
<?xml version='1.0' encoding='utf-8'?>
<expr>
<list>
<attrs>
<attr name="path">
<string value="/bugtracker" />
</attr>
<attr name="war">
<path value="/nix/store/d1jh9pasa7k2...-jira/lib/atlassian-jira.war" />
</attr>
</attrs>
<attrs>
<attr name="path">
<string value="/wiki" />
</attr>
<attr name="war">
<path value="/nix/store/y6423b1yi4sx...-uberwiki/uberwiki.war" />
</attr>
</attrs>
</list>
</expr>
```
Note that we used the `toFile` built-in to write the builder and
the stylesheet inline in the Nix expression. The path of the
stylesheet is spliced into the builder using the syntax `xsltproc
${stylesheet}`.
)",
.fun = prim_toXML,
});
/* Convert the argument (which can be any Nix expression) to a JSON
string. Not all Nix expressions can be sensibly or completely
represented (e.g., functions). */
static void prim_toJSON(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
std::ostringstream out;
PathSet context;
printValueAsJSON(state, true, *args[0], pos, out, context);
v.mkString(out.str(), context);
}
static RegisterPrimOp primop_toJSON({
.name = "__toJSON",
.args = {"e"},
.doc = R"(
Return a string containing a JSON representation of *e*. Strings,
integers, floats, booleans, nulls and lists are mapped to their JSON
equivalents. Sets (except derivations) are represented as objects.
Derivations are translated to a JSON string containing the
derivations output path. Paths are copied to the store and
represented as a JSON string of the resulting store path.
)",
.fun = prim_toJSON,
});
/* Parse a JSON string to a value. */
static void prim_fromJSON(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
auto s = state.forceStringNoCtx(*args[0], pos);
try {
parseJSON(state, s, v);
} catch (JSONParseError &e) {
e.addTrace(state.positions[pos], "while decoding a JSON string");
throw;
}
}
static RegisterPrimOp primop_fromJSON({
.name = "__fromJSON",
.args = {"e"},
.doc = R"(
Convert a JSON string to a Nix value. For example,
```nix
builtins.fromJSON ''{"x": [1, 2, 3], "y": null}''
```
returns the value `{ x = [ 1 2 3 ]; y = null; }`.
)",
.fun = prim_fromJSON,
});
/* Store a string in the Nix store as a source file that can be used
as an input by derivations. */
static void prim_toFile(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
PathSet context;
std::string name(state.forceStringNoCtx(*args[0], pos));
std::string contents(state.forceString(*args[1], context, pos));
StorePathSet refs;
for (auto path : context) {
if (path.at(0) != '/')
state.debugThrowLastTrace(EvalError({
.msg = hintfmt(
"in 'toFile': the file named '%1%' must not contain a reference "
"to a derivation but contains (%2%)",
name, path),
.errPos = state.positions[pos]
}));
refs.insert(state.store->parseStorePath(path));
}
auto storePath = settings.readOnlyMode
? state.store->computeStorePathForText(name, contents, refs)
: state.store->addTextToStore(name, contents, refs, state.repair);
/* Note: we don't need to add `context' to the context of the
result, since `storePath' itself has references to the paths
used in args[1]. */
/* Add the output of this to the allowed paths. */
state.allowAndSetStorePathString(storePath, v);
}
static RegisterPrimOp primop_toFile({
.name = "__toFile",
.args = {"name", "s"},
.doc = R"(
Store the string *s* in a file in the Nix store and return its
path. The file has suffix *name*. This file can be used as an
input to derivations. One application is to write builders
inline. For instance, the following Nix expression combines the
[Nix expression for GNU Hello](expression-syntax.md) and its
[build script](build-script.md) into one file:
```nix
{ stdenv, fetchurl, perl }:
stdenv.mkDerivation {
name = "hello-2.1.1";
builder = builtins.toFile "builder.sh" "
source $stdenv/setup
PATH=$perl/bin:$PATH
tar xvfz $src
cd hello-*
./configure --prefix=$out
make
make install
";
src = fetchurl {
url = "http://ftp.nluug.nl/pub/gnu/hello/hello-2.1.1.tar.gz";
sha256 = "1md7jsfd8pa45z73bz1kszpp01yw6x5ljkjk2hx7wl800any6465";
};
inherit perl;
}
```
It is even possible for one file to refer to another, e.g.,
```nix
builder = let
configFile = builtins.toFile "foo.conf" "
# This is some dummy configuration file.
...
";
in builtins.toFile "builder.sh" "
source $stdenv/setup
...
cp ${configFile} $out/etc/foo.conf
";
```
Note that `${configFile}` is an
[antiquotation](language-values.md), so the result of the
expression `configFile`
(i.e., a path like `/nix/store/m7p7jfny445k...-foo.conf`) will be
spliced into the resulting string.
It is however *not* allowed to have files mutually referring to each
other, like so:
```nix
let
foo = builtins.toFile "foo" "...${bar}...";
bar = builtins.toFile "bar" "...${foo}...";
in foo
```
This is not allowed because it would cause a cyclic dependency in
the computation of the cryptographic hashes for `foo` and `bar`.
It is also not possible to reference the result of a derivation. If
you are using Nixpkgs, the `writeTextFile` function is able to do
that.
)",
.fun = prim_toFile,
});
static void addPath(
EvalState & state,
const PosIdx pos,
const std::string & name,
Path path,
Value * filterFun,
FileIngestionMethod method,
const std::optional<Hash> expectedHash,
Value & v,
const PathSet & context)
{
try {
// FIXME: handle CA derivation outputs (where path needs to
// be rewritten to the actual output).
auto rewrites = state.realiseContext(context);
path = state.toRealPath(rewriteStrings(path, rewrites), context);
StorePathSet refs;
if (state.store->isInStore(path)) {
try {
auto [storePath, subPath] = state.store->toStorePath(path);
// FIXME: we should scanForReferences on the path before adding it
refs = state.store->queryPathInfo(storePath)->references;
path = state.store->toRealPath(storePath) + subPath;
} catch (Error &) { // FIXME: should be InvalidPathError
}
}
path = evalSettings.pureEval && expectedHash
? path
: state.checkSourcePath(path);
PathFilter filter = filterFun ? ([&](const Path & path) {
auto st = lstat(path);
/* Call the filter function. The first argument is the path,
the second is a string indicating the type of the file. */
Value arg1;
arg1.mkString(path);
Value arg2;
arg2.mkString(
S_ISREG(st.st_mode) ? "regular" :
S_ISDIR(st.st_mode) ? "directory" :
S_ISLNK(st.st_mode) ? "symlink" :
"unknown" /* not supported, will fail! */);
Value * args []{&arg1, &arg2};
Value res;
state.callFunction(*filterFun, 2, args, res, pos);
return state.forceBool(res, pos);
}) : defaultPathFilter;
std::optional<StorePath> expectedStorePath;
if (expectedHash)
expectedStorePath = state.store->makeFixedOutputPath(method, *expectedHash, name);
if (!expectedHash || !state.store->isValidPath(*expectedStorePath)) {
StorePath dstPath = settings.readOnlyMode
? state.store->computeStorePathForPath(name, path, method, htSHA256, filter).first
: state.store->addToStore(name, path, method, htSHA256, filter, state.repair, refs);
if (expectedHash && expectedStorePath != dstPath)
state.debugThrowLastTrace(Error("store path mismatch in (possibly filtered) path added from '%s'", path));
state.allowAndSetStorePathString(dstPath, v);
} else
state.allowAndSetStorePathString(*expectedStorePath, v);
} catch (Error & e) {
e.addTrace(state.positions[pos], "while adding path '%s'", path);
throw;
}
}
static void prim_filterSource(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
PathSet context;
Path path = state.coerceToPath(pos, *args[1], context);
state.forceValue(*args[0], pos);
if (args[0]->type() != nFunction)
state.debugThrowLastTrace(TypeError({
.msg = hintfmt(
"first argument in call to 'filterSource' is not a function but %1%",
showType(*args[0])),
.errPos = state.positions[pos]
}));
addPath(state, pos, std::string(baseNameOf(path)), path, args[0], FileIngestionMethod::Recursive, std::nullopt, v, context);
}
static RegisterPrimOp primop_filterSource({
.name = "__filterSource",
.args = {"e1", "e2"},
.doc = R"(
> **Warning**
>
> `filterSource` should not be used to filter store paths. Since
> `filterSource` uses the name of the input directory while naming
> the output directory, doing so will produce a directory name in
> the form of `<hash2>-<hash>-<name>`, where `<hash>-<name>` is
> the name of the input directory. Since `<hash>` depends on the
> unfiltered directory, the name of the output directory will
> indirectly depend on files that are filtered out by the
> function. This will trigger a rebuild even when a filtered out
> file is changed. Use `builtins.path` instead, which allows
> specifying the name of the output directory.
This function allows you to copy sources into the Nix store while
filtering certain files. For instance, suppose that you want to use
the directory `source-dir` as an input to a Nix expression, e.g.
```nix
stdenv.mkDerivation {
...
src = ./source-dir;
}
```
However, if `source-dir` is a Subversion working copy, then all
those annoying `.svn` subdirectories will also be copied to the
store. Worse, the contents of those directories may change a lot,
causing lots of spurious rebuilds. With `filterSource` you can
filter out the `.svn` directories:
```nix
src = builtins.filterSource
(path: type: type != "directory" || baseNameOf path != ".svn")
./source-dir;
```
Thus, the first argument *e1* must be a predicate function that is
called for each regular file, directory or symlink in the source
tree *e2*. If the function returns `true`, the file is copied to the
Nix store, otherwise it is omitted. The function is called with two
arguments. The first is the full path of the file. The second is a
string that identifies the type of the file, which is either
`"regular"`, `"directory"`, `"symlink"` or `"unknown"` (for other
kinds of files such as device nodes or fifos but note that those
cannot be copied to the Nix store, so if the predicate returns
`true` for them, the copy will fail). If you exclude a directory,
the entire corresponding subtree of *e2* will be excluded.
)",
.fun = prim_filterSource,
});
static void prim_path(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceAttrs(*args[0], pos);
Path path;
std::string name;
Value * filterFun = nullptr;
auto method = FileIngestionMethod::Recursive;
std::optional<Hash> expectedHash;
PathSet context;
for (auto & attr : *args[0]->attrs) {
auto n = state.symbols[attr.name];
if (n == "path")
path = state.coerceToPath(attr.pos, *attr.value, context);
else if (attr.name == state.sName)
name = state.forceStringNoCtx(*attr.value, attr.pos);
else if (n == "filter") {
state.forceValue(*attr.value, pos);
filterFun = attr.value;
} else if (n == "recursive")
method = FileIngestionMethod { state.forceBool(*attr.value, attr.pos) };
else if (n == "sha256")
expectedHash = newHashAllowEmpty(state.forceStringNoCtx(*attr.value, attr.pos), htSHA256);
else
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("unsupported argument '%1%' to 'addPath'", state.symbols[attr.name]),
.errPos = state.positions[attr.pos]
}));
}
if (path.empty())
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("'path' required"),
.errPos = state.positions[pos]
}));
if (name.empty())
name = baseNameOf(path);
addPath(state, pos, name, path, filterFun, method, expectedHash, v, context);
}
static RegisterPrimOp primop_path({
.name = "__path",
.args = {"args"},
.doc = R"(
An enrichment of the built-in path type, based on the attributes
present in *args*. All are optional except `path`:
- path\
The underlying path.
- name\
The name of the path when added to the store. This can used to
reference paths that have nix-illegal characters in their names,
like `@`.
- filter\
A function of the type expected by `builtins.filterSource`,
with the same semantics.
- recursive\
When `false`, when `path` is added to the store it is with a
flat hash, rather than a hash of the NAR serialization of the
file. Thus, `path` must refer to a regular file, not a
directory. This allows similar behavior to `fetchurl`. Defaults
to `true`.
- sha256\
When provided, this is the expected hash of the file at the
path. Evaluation will fail if the hash is incorrect, and
providing a hash allows `builtins.path` to be used even when the
`pure-eval` nix config option is on.
)",
.fun = prim_path,
});
/*************************************************************
* Sets
*************************************************************/
/* Return the names of the attributes in a set as a sorted list of
strings. */
static void prim_attrNames(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceAttrs(*args[0], pos);
state.mkList(v, args[0]->attrs->size());
size_t n = 0;
for (auto & i : *args[0]->attrs)
(v.listElems()[n++] = state.allocValue())->mkString(state.symbols[i.name]);
std::sort(v.listElems(), v.listElems() + n,
[](Value * v1, Value * v2) { return strcmp(v1->string.s, v2->string.s) < 0; });
}
static RegisterPrimOp primop_attrNames({
.name = "__attrNames",
.args = {"set"},
.doc = R"(
Return the names of the attributes in the set *set* in an
alphabetically sorted list. For instance, `builtins.attrNames { y
= 1; x = "foo"; }` evaluates to `[ "x" "y" ]`.
)",
.fun = prim_attrNames,
});
/* Return the values of the attributes in a set as a list, in the same
order as attrNames. */
static void prim_attrValues(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceAttrs(*args[0], pos);
state.mkList(v, args[0]->attrs->size());
unsigned int n = 0;
for (auto & i : *args[0]->attrs)
v.listElems()[n++] = (Value *) &i;
std::sort(v.listElems(), v.listElems() + n,
[&](Value * v1, Value * v2) {
std::string_view s1 = state.symbols[((Attr *) v1)->name],
s2 = state.symbols[((Attr *) v2)->name];
return s1 < s2;
});
for (unsigned int i = 0; i < n; ++i)
v.listElems()[i] = ((Attr *) v.listElems()[i])->value;
}
static RegisterPrimOp primop_attrValues({
.name = "__attrValues",
.args = {"set"},
.doc = R"(
Return the values of the attributes in the set *set* in the order
corresponding to the sorted attribute names.
)",
.fun = prim_attrValues,
});
/* Dynamic version of the `.' operator. */
void prim_getAttr(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
auto attr = state.forceStringNoCtx(*args[0], pos);
state.forceAttrs(*args[1], pos);
Bindings::iterator i = getAttr(
state,
"getAttr",
state.symbols.create(attr),
args[1]->attrs,
pos
);
// !!! add to stack trace?
if (state.countCalls && i->pos) state.attrSelects[i->pos]++;
state.forceValue(*i->value, pos);
v = *i->value;
}
static RegisterPrimOp primop_getAttr({
.name = "__getAttr",
.args = {"s", "set"},
.doc = R"(
`getAttr` returns the attribute named *s* from *set*. Evaluation
aborts if the attribute doesnt exist. This is a dynamic version of
the `.` operator, since *s* is an expression rather than an
identifier.
)",
.fun = prim_getAttr,
});
/* Return position information of the specified attribute. */
static void prim_unsafeGetAttrPos(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
auto attr = state.forceStringNoCtx(*args[0], pos);
state.forceAttrs(*args[1], pos);
Bindings::iterator i = args[1]->attrs->find(state.symbols.create(attr));
if (i == args[1]->attrs->end())
v.mkNull();
else
state.mkPos(v, i->pos);
}
static RegisterPrimOp primop_unsafeGetAttrPos(RegisterPrimOp::Info {
.name = "__unsafeGetAttrPos",
.arity = 2,
.fun = prim_unsafeGetAttrPos,
});
/* Dynamic version of the `?' operator. */
static void prim_hasAttr(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
auto attr = state.forceStringNoCtx(*args[0], pos);
state.forceAttrs(*args[1], pos);
v.mkBool(args[1]->attrs->find(state.symbols.create(attr)) != args[1]->attrs->end());
}
static RegisterPrimOp primop_hasAttr({
.name = "__hasAttr",
.args = {"s", "set"},
.doc = R"(
`hasAttr` returns `true` if *set* has an attribute named *s*, and
`false` otherwise. This is a dynamic version of the `?` operator,
since *s* is an expression rather than an identifier.
)",
.fun = prim_hasAttr,
});
/* Determine whether the argument is a set. */
static void prim_isAttrs(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
v.mkBool(args[0]->type() == nAttrs);
}
static RegisterPrimOp primop_isAttrs({
.name = "__isAttrs",
.args = {"e"},
.doc = R"(
Return `true` if *e* evaluates to a set, and `false` otherwise.
)",
.fun = prim_isAttrs,
});
static void prim_removeAttrs(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceAttrs(*args[0], pos);
state.forceList(*args[1], pos);
/* Get the attribute names to be removed.
We keep them as Attrs instead of Symbols so std::set_difference
can be used to remove them from attrs[0]. */
boost::container::small_vector<Attr, 64> names;
names.reserve(args[1]->listSize());
for (auto elem : args[1]->listItems()) {
state.forceStringNoCtx(*elem, pos);
names.emplace_back(state.symbols.create(elem->string.s), nullptr);
}
std::sort(names.begin(), names.end());
/* Copy all attributes not in that set. Note that we don't need
to sort v.attrs because it's a subset of an already sorted
vector. */
auto attrs = state.buildBindings(args[0]->attrs->size());
std::set_difference(
args[0]->attrs->begin(), args[0]->attrs->end(),
names.begin(), names.end(),
std::back_inserter(attrs));
v.mkAttrs(attrs.alreadySorted());
}
static RegisterPrimOp primop_removeAttrs({
.name = "removeAttrs",
.args = {"set", "list"},
.doc = R"(
Remove the attributes listed in *list* from *set*. The attributes
dont have to exist in *set*. For instance,
```nix
removeAttrs { x = 1; y = 2; z = 3; } [ "a" "x" "z" ]
```
evaluates to `{ y = 2; }`.
)",
.fun = prim_removeAttrs,
});
/* Builds a set from a list specifying (name, value) pairs. To be
precise, a list [{name = "name1"; value = value1;} ... {name =
"nameN"; value = valueN;}] is transformed to {name1 = value1;
... nameN = valueN;}. In case of duplicate occurrences of the same
name, the first takes precedence. */
static void prim_listToAttrs(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceList(*args[0], pos);
auto attrs = state.buildBindings(args[0]->listSize());
std::set<Symbol> seen;
for (auto v2 : args[0]->listItems()) {
state.forceAttrs(*v2, pos);
Bindings::iterator j = getAttr(
state,
"listToAttrs",
state.sName,
v2->attrs,
pos
);
auto name = state.forceStringNoCtx(*j->value, j->pos);
auto sym = state.symbols.create(name);
if (seen.insert(sym).second) {
Bindings::iterator j2 = getAttr(
state,
"listToAttrs",
state.sValue,
v2->attrs,
pos
);
attrs.insert(sym, j2->value, j2->pos);
}
}
v.mkAttrs(attrs);
}
static RegisterPrimOp primop_listToAttrs({
.name = "__listToAttrs",
.args = {"e"},
.doc = R"(
Construct a set from a list specifying the names and values of each
attribute. Each element of the list should be a set consisting of a
string-valued attribute `name` specifying the name of the attribute,
and an attribute `value` specifying its value. Example:
```nix
builtins.listToAttrs
[ { name = "foo"; value = 123; }
{ name = "bar"; value = 456; }
]
```
evaluates to
```nix
{ foo = 123; bar = 456; }
```
)",
.fun = prim_listToAttrs,
});
static void prim_intersectAttrs(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceAttrs(*args[0], pos);
state.forceAttrs(*args[1], pos);
auto attrs = state.buildBindings(std::min(args[0]->attrs->size(), args[1]->attrs->size()));
for (auto & i : *args[0]->attrs) {
Bindings::iterator j = args[1]->attrs->find(i.name);
if (j != args[1]->attrs->end())
attrs.insert(*j);
}
v.mkAttrs(attrs.alreadySorted());
}
static RegisterPrimOp primop_intersectAttrs({
.name = "__intersectAttrs",
.args = {"e1", "e2"},
.doc = R"(
Return a set consisting of the attributes in the set *e2* that also
exist in the set *e1*.
)",
.fun = prim_intersectAttrs,
});
static void prim_catAttrs(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
auto attrName = state.symbols.create(state.forceStringNoCtx(*args[0], pos));
state.forceList(*args[1], pos);
Value * res[args[1]->listSize()];
unsigned int found = 0;
for (auto v2 : args[1]->listItems()) {
state.forceAttrs(*v2, pos);
Bindings::iterator i = v2->attrs->find(attrName);
if (i != v2->attrs->end())
res[found++] = i->value;
}
state.mkList(v, found);
for (unsigned int n = 0; n < found; ++n)
v.listElems()[n] = res[n];
}
static RegisterPrimOp primop_catAttrs({
.name = "__catAttrs",
.args = {"attr", "list"},
.doc = R"(
Collect each attribute named *attr* from a list of attribute
sets. Attrsets that don't contain the named attribute are
ignored. For example,
```nix
builtins.catAttrs "a" [{a = 1;} {b = 0;} {a = 2;}]
```
evaluates to `[1 2]`.
)",
.fun = prim_catAttrs,
});
static void prim_functionArgs(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
if (args[0]->isPrimOpApp() || args[0]->isPrimOp()) {
v.mkAttrs(&state.emptyBindings);
return;
}
if (!args[0]->isLambda())
state.debugThrowLastTrace(TypeError({
.msg = hintfmt("'functionArgs' requires a function"),
.errPos = state.positions[pos]
}));
if (!args[0]->lambda.fun->hasFormals()) {
v.mkAttrs(&state.emptyBindings);
return;
}
auto attrs = state.buildBindings(args[0]->lambda.fun->formals->formals.size());
for (auto & i : args[0]->lambda.fun->formals->formals)
// !!! should optimise booleans (allocate only once)
attrs.alloc(i.name, i.pos).mkBool(i.def);
v.mkAttrs(attrs);
}
static RegisterPrimOp primop_functionArgs({
.name = "__functionArgs",
.args = {"f"},
.doc = R"(
Return a set containing the names of the formal arguments expected
by the function *f*. The value of each attribute is a Boolean
denoting whether the corresponding argument has a default value. For
instance, `functionArgs ({ x, y ? 123}: ...) = { x = false; y =
true; }`.
"Formal argument" here refers to the attributes pattern-matched by
the function. Plain lambdas are not included, e.g. `functionArgs (x:
...) = { }`.
)",
.fun = prim_functionArgs,
});
/* */
static void prim_mapAttrs(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceAttrs(*args[1], pos);
auto attrs = state.buildBindings(args[1]->attrs->size());
for (auto & i : *args[1]->attrs) {
Value * vName = state.allocValue();
Value * vFun2 = state.allocValue();
vName->mkString(state.symbols[i.name]);
vFun2->mkApp(args[0], vName);
attrs.alloc(i.name).mkApp(vFun2, i.value);
}
v.mkAttrs(attrs.alreadySorted());
}
static RegisterPrimOp primop_mapAttrs({
.name = "__mapAttrs",
.args = {"f", "attrset"},
.doc = R"(
Apply function *f* to every element of *attrset*. For example,
```nix
builtins.mapAttrs (name: value: value * 10) { a = 1; b = 2; }
```
evaluates to `{ a = 10; b = 20; }`.
)",
.fun = prim_mapAttrs,
});
static void prim_zipAttrsWith(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
// we will first count how many values are present for each given key.
// we then allocate a single attrset and pre-populate it with lists of
// appropriate sizes, stash the pointers to the list elements of each,
// and populate the lists. after that we replace the list in the every
// attribute with the merge function application. this way we need not
// use (slightly slower) temporary storage the GC does not know about.
std::map<Symbol, std::pair<size_t, Value * *>> attrsSeen;
state.forceFunction(*args[0], pos);
state.forceList(*args[1], pos);
const auto listSize = args[1]->listSize();
const auto listElems = args[1]->listElems();
for (unsigned int n = 0; n < listSize; ++n) {
Value * vElem = listElems[n];
try {
state.forceAttrs(*vElem, noPos);
for (auto & attr : *vElem->attrs)
attrsSeen[attr.name].first++;
} catch (TypeError & e) {
e.addTrace(state.positions[pos], hintfmt("while invoking '%s'", "zipAttrsWith"));
state.debugThrowLastTrace(e);
}
}
auto attrs = state.buildBindings(attrsSeen.size());
for (auto & [sym, elem] : attrsSeen) {
auto & list = attrs.alloc(sym);
state.mkList(list, elem.first);
elem.second = list.listElems();
}
v.mkAttrs(attrs.alreadySorted());
for (unsigned int n = 0; n < listSize; ++n) {
Value * vElem = listElems[n];
for (auto & attr : *vElem->attrs)
*attrsSeen[attr.name].second++ = attr.value;
}
for (auto & attr : *v.attrs) {
auto name = state.allocValue();
name->mkString(state.symbols[attr.name]);
auto call1 = state.allocValue();
call1->mkApp(args[0], name);
auto call2 = state.allocValue();
call2->mkApp(call1, attr.value);
attr.value = call2;
}
}
static RegisterPrimOp primop_zipAttrsWith({
.name = "__zipAttrsWith",
.args = {"f", "list"},
.doc = R"(
Transpose a list of attribute sets into an attribute set of lists,
then apply `mapAttrs`.
`f` receives two arguments: the attribute name and a non-empty
list of all values encountered for that attribute name.
The result is an attribute set where the attribute names are the
union of the attribute names in each element of `list`. The attribute
values are the return values of `f`.
```nix
builtins.zipAttrsWith
(name: values: { inherit name values; })
[ { a = "x"; } { a = "y"; b = "z"; } ]
```
evaluates to
```
{
a = { name = "a"; values = [ "x" "y" ]; };
b = { name = "b"; values = [ "z" ]; };
}
```
)",
.fun = prim_zipAttrsWith,
});
/*************************************************************
* Lists
*************************************************************/
/* Determine whether the argument is a list. */
static void prim_isList(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
v.mkBool(args[0]->type() == nList);
}
static RegisterPrimOp primop_isList({
.name = "__isList",
.args = {"e"},
.doc = R"(
Return `true` if *e* evaluates to a list, and `false` otherwise.
)",
.fun = prim_isList,
});
static void elemAt(EvalState & state, const PosIdx pos, Value & list, int n, Value & v)
{
state.forceList(list, pos);
if (n < 0 || (unsigned int) n >= list.listSize())
state.debugThrowLastTrace(Error({
.msg = hintfmt("list index %1% is out of bounds", n),
.errPos = state.positions[pos]
}));
state.forceValue(*list.listElems()[n], pos);
v = *list.listElems()[n];
}
/* Return the n-1'th element of a list. */
static void prim_elemAt(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
elemAt(state, pos, *args[0], state.forceInt(*args[1], pos), v);
}
static RegisterPrimOp primop_elemAt({
.name = "__elemAt",
.args = {"xs", "n"},
.doc = R"(
Return element *n* from the list *xs*. Elements are counted starting
from 0. A fatal error occurs if the index is out of bounds.
)",
.fun = prim_elemAt,
});
/* Return the first element of a list. */
static void prim_head(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
elemAt(state, pos, *args[0], 0, v);
}
static RegisterPrimOp primop_head({
.name = "__head",
.args = {"list"},
.doc = R"(
Return the first element of a list; abort evaluation if the argument
isnt a list or is an empty list. You can test whether a list is
empty by comparing it with `[]`.
)",
.fun = prim_head,
});
/* Return a list consisting of everything but the first element of
a list. Warning: this function takes O(n) time, so you probably
don't want to use it! */
static void prim_tail(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceList(*args[0], pos);
if (args[0]->listSize() == 0)
state.debugThrowLastTrace(Error({
.msg = hintfmt("'tail' called on an empty list"),
.errPos = state.positions[pos]
}));
state.mkList(v, args[0]->listSize() - 1);
for (unsigned int n = 0; n < v.listSize(); ++n)
v.listElems()[n] = args[0]->listElems()[n + 1];
}
static RegisterPrimOp primop_tail({
.name = "__tail",
.args = {"list"},
.doc = R"(
Return the second to last elements of a list; abort evaluation if
the argument isnt a list or is an empty list.
> **Warning**
>
> This function should generally be avoided since it's inefficient:
> unlike Haskell's `tail`, it takes O(n) time, so recursing over a
> list by repeatedly calling `tail` takes O(n^2) time.
)",
.fun = prim_tail,
});
/* Apply a function to every element of a list. */
static void prim_map(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceList(*args[1], pos);
state.mkList(v, args[1]->listSize());
for (unsigned int n = 0; n < v.listSize(); ++n)
(v.listElems()[n] = state.allocValue())->mkApp(
args[0], args[1]->listElems()[n]);
}
static RegisterPrimOp primop_map({
.name = "map",
.args = {"f", "list"},
.doc = R"(
Apply the function *f* to each element in the list *list*. For
example,
```nix
map (x: "foo" + x) [ "bar" "bla" "abc" ]
```
evaluates to `[ "foobar" "foobla" "fooabc" ]`.
)",
.fun = prim_map,
});
/* Filter a list using a predicate; that is, return a list containing
every element from the list for which the predicate function
returns true. */
static void prim_filter(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceFunction(*args[0], pos);
state.forceList(*args[1], pos);
// FIXME: putting this on the stack is risky.
Value * vs[args[1]->listSize()];
unsigned int k = 0;
bool same = true;
for (unsigned int n = 0; n < args[1]->listSize(); ++n) {
Value res;
state.callFunction(*args[0], *args[1]->listElems()[n], res, noPos);
if (state.forceBool(res, pos))
vs[k++] = args[1]->listElems()[n];
else
same = false;
}
if (same)
v = *args[1];
else {
state.mkList(v, k);
for (unsigned int n = 0; n < k; ++n) v.listElems()[n] = vs[n];
}
}
static RegisterPrimOp primop_filter({
.name = "__filter",
.args = {"f", "list"},
.doc = R"(
Return a list consisting of the elements of *list* for which the
function *f* returns `true`.
)",
.fun = prim_filter,
});
/* Return true if a list contains a given element. */
static void prim_elem(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
bool res = false;
state.forceList(*args[1], pos);
for (auto elem : args[1]->listItems())
if (state.eqValues(*args[0], *elem)) {
res = true;
break;
}
v.mkBool(res);
}
static RegisterPrimOp primop_elem({
.name = "__elem",
.args = {"x", "xs"},
.doc = R"(
Return `true` if a value equal to *x* occurs in the list *xs*, and
`false` otherwise.
)",
.fun = prim_elem,
});
/* Concatenate a list of lists. */
static void prim_concatLists(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceList(*args[0], pos);
state.concatLists(v, args[0]->listSize(), args[0]->listElems(), pos);
}
static RegisterPrimOp primop_concatLists({
.name = "__concatLists",
.args = {"lists"},
.doc = R"(
Concatenate a list of lists into a single list.
)",
.fun = prim_concatLists,
});
/* Return the length of a list. This is an O(1) time operation. */
static void prim_length(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceList(*args[0], pos);
v.mkInt(args[0]->listSize());
}
static RegisterPrimOp primop_length({
.name = "__length",
.args = {"e"},
.doc = R"(
Return the length of the list *e*.
)",
.fun = prim_length,
});
/* Reduce a list by applying a binary operator, from left to
right. The operator is applied strictly. */
static void prim_foldlStrict(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceFunction(*args[0], pos);
state.forceList(*args[2], pos);
if (args[2]->listSize()) {
Value * vCur = args[1];
for (auto [n, elem] : enumerate(args[2]->listItems())) {
Value * vs []{vCur, elem};
vCur = n == args[2]->listSize() - 1 ? &v : state.allocValue();
state.callFunction(*args[0], 2, vs, *vCur, pos);
}
state.forceValue(v, pos);
} else {
state.forceValue(*args[1], pos);
v = *args[1];
}
}
static RegisterPrimOp primop_foldlStrict({
.name = "__foldl'",
.args = {"op", "nul", "list"},
.doc = R"(
Reduce a list by applying a binary operator, from left to right,
e.g. `foldl' op nul [x0 x1 x2 ...] = op (op (op nul x0) x1) x2)
...`. The operator is applied strictly, i.e., its arguments are
evaluated first. For example, `foldl' (x: y: x + y) 0 [1 2 3]`
evaluates to 6.
)",
.fun = prim_foldlStrict,
});
static void anyOrAll(bool any, EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceFunction(*args[0], pos);
state.forceList(*args[1], pos);
Value vTmp;
for (auto elem : args[1]->listItems()) {
state.callFunction(*args[0], *elem, vTmp, pos);
bool res = state.forceBool(vTmp, pos);
if (res == any) {
v.mkBool(any);
return;
}
}
v.mkBool(!any);
}
static void prim_any(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
anyOrAll(true, state, pos, args, v);
}
static RegisterPrimOp primop_any({
.name = "__any",
.args = {"pred", "list"},
.doc = R"(
Return `true` if the function *pred* returns `true` for at least one
element of *list*, and `false` otherwise.
)",
.fun = prim_any,
});
static void prim_all(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
anyOrAll(false, state, pos, args, v);
}
static RegisterPrimOp primop_all({
.name = "__all",
.args = {"pred", "list"},
.doc = R"(
Return `true` if the function *pred* returns `true` for all elements
of *list*, and `false` otherwise.
)",
.fun = prim_all,
});
static void prim_genList(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
auto len = state.forceInt(*args[1], pos);
if (len < 0)
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("cannot create list of size %1%", len),
.errPos = state.positions[pos]
}));
state.mkList(v, len);
for (unsigned int n = 0; n < (unsigned int) len; ++n) {
auto arg = state.allocValue();
arg->mkInt(n);
(v.listElems()[n] = state.allocValue())->mkApp(args[0], arg);
}
}
static RegisterPrimOp primop_genList({
.name = "__genList",
.args = {"generator", "length"},
.doc = R"(
Generate list of size *length*, with each element *i* equal to the
value returned by *generator* `i`. For example,
```nix
builtins.genList (x: x * x) 5
```
returns the list `[ 0 1 4 9 16 ]`.
)",
.fun = prim_genList,
});
static void prim_lessThan(EvalState & state, const PosIdx pos, Value * * args, Value & v);
static void prim_sort(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceFunction(*args[0], pos);
state.forceList(*args[1], pos);
auto len = args[1]->listSize();
state.mkList(v, len);
for (unsigned int n = 0; n < len; ++n) {
state.forceValue(*args[1]->listElems()[n], pos);
v.listElems()[n] = args[1]->listElems()[n];
}
auto comparator = [&](Value * a, Value * b) {
/* Optimization: if the comparator is lessThan, bypass
callFunction. */
if (args[0]->isPrimOp() && args[0]->primOp->fun == prim_lessThan)
return CompareValues(state)(a, b);
Value * vs[] = {a, b};
Value vBool;
state.callFunction(*args[0], 2, vs, vBool, pos);
return state.forceBool(vBool, pos);
};
/* FIXME: std::sort can segfault if the comparator is not a strict
weak ordering. What to do? std::stable_sort() seems more
resilient, but no guarantees... */
std::stable_sort(v.listElems(), v.listElems() + len, comparator);
}
static RegisterPrimOp primop_sort({
.name = "__sort",
.args = {"comparator", "list"},
.doc = R"(
Return *list* in sorted order. It repeatedly calls the function
*comparator* with two elements. The comparator should return `true`
if the first element is less than the second, and `false` otherwise.
For example,
```nix
builtins.sort builtins.lessThan [ 483 249 526 147 42 77 ]
```
produces the list `[ 42 77 147 249 483 526 ]`.
This is a stable sort: it preserves the relative order of elements
deemed equal by the comparator.
)",
.fun = prim_sort,
});
static void prim_partition(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceFunction(*args[0], pos);
state.forceList(*args[1], pos);
auto len = args[1]->listSize();
ValueVector right, wrong;
for (unsigned int n = 0; n < len; ++n) {
auto vElem = args[1]->listElems()[n];
state.forceValue(*vElem, pos);
Value res;
state.callFunction(*args[0], *vElem, res, pos);
if (state.forceBool(res, pos))
right.push_back(vElem);
else
wrong.push_back(vElem);
}
auto attrs = state.buildBindings(2);
auto & vRight = attrs.alloc(state.sRight);
auto rsize = right.size();
state.mkList(vRight, rsize);
if (rsize)
memcpy(vRight.listElems(), right.data(), sizeof(Value *) * rsize);
auto & vWrong = attrs.alloc(state.sWrong);
auto wsize = wrong.size();
state.mkList(vWrong, wsize);
if (wsize)
memcpy(vWrong.listElems(), wrong.data(), sizeof(Value *) * wsize);
v.mkAttrs(attrs);
}
static RegisterPrimOp primop_partition({
.name = "__partition",
.args = {"pred", "list"},
.doc = R"(
Given a predicate function *pred*, this function returns an
attrset containing a list named `right`, containing the elements
in *list* for which *pred* returned `true`, and a list named
`wrong`, containing the elements for which it returned
`false`. For example,
```nix
builtins.partition (x: x > 10) [1 23 9 3 42]
```
evaluates to
```nix
{ right = [ 23 42 ]; wrong = [ 1 9 3 ]; }
```
)",
.fun = prim_partition,
});
static void prim_groupBy(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceFunction(*args[0], pos);
state.forceList(*args[1], pos);
ValueVectorMap attrs;
for (auto vElem : args[1]->listItems()) {
Value res;
state.callFunction(*args[0], *vElem, res, pos);
auto name = state.forceStringNoCtx(res, pos);
auto sym = state.symbols.create(name);
auto vector = attrs.try_emplace(sym, ValueVector()).first;
vector->second.push_back(vElem);
}
auto attrs2 = state.buildBindings(attrs.size());
for (auto & i : attrs) {
auto & list = attrs2.alloc(i.first);
auto size = i.second.size();
state.mkList(list, size);
memcpy(list.listElems(), i.second.data(), sizeof(Value *) * size);
}
v.mkAttrs(attrs2.alreadySorted());
}
static RegisterPrimOp primop_groupBy({
.name = "__groupBy",
.args = {"f", "list"},
.doc = R"(
Groups elements of *list* together by the string returned from the
function *f* called on each element. It returns an attribute set
where each attribute value contains the elements of *list* that are
mapped to the same corresponding attribute name returned by *f*.
For example,
```nix
builtins.groupBy (builtins.substring 0 1) ["foo" "bar" "baz"]
```
evaluates to
```nix
{ b = [ "bar" "baz" ]; f = [ "foo" ]; }
```
)",
.fun = prim_groupBy,
});
static void prim_concatMap(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceFunction(*args[0], pos);
state.forceList(*args[1], pos);
auto nrLists = args[1]->listSize();
Value lists[nrLists];
size_t len = 0;
for (unsigned int n = 0; n < nrLists; ++n) {
Value * vElem = args[1]->listElems()[n];
state.callFunction(*args[0], *vElem, lists[n], pos);
try {
state.forceList(lists[n], lists[n].determinePos(args[0]->determinePos(pos)));
} catch (TypeError &e) {
e.addTrace(state.positions[pos], hintfmt("while invoking '%s'", "concatMap"));
state.debugThrowLastTrace(e);
}
len += lists[n].listSize();
}
state.mkList(v, len);
auto out = v.listElems();
for (unsigned int n = 0, pos = 0; n < nrLists; ++n) {
auto l = lists[n].listSize();
if (l)
memcpy(out + pos, lists[n].listElems(), l * sizeof(Value *));
pos += l;
}
}
static RegisterPrimOp primop_concatMap({
.name = "__concatMap",
.args = {"f", "list"},
.doc = R"(
This function is equivalent to `builtins.concatLists (map f list)`
but is more efficient.
)",
.fun = prim_concatMap,
});
/*************************************************************
* Integer arithmetic
*************************************************************/
static void prim_add(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
state.forceValue(*args[1], pos);
if (args[0]->type() == nFloat || args[1]->type() == nFloat)
v.mkFloat(state.forceFloat(*args[0], pos) + state.forceFloat(*args[1], pos));
else
v.mkInt(state.forceInt(*args[0], pos) + state.forceInt(*args[1], pos));
}
static RegisterPrimOp primop_add({
.name = "__add",
.args = {"e1", "e2"},
.doc = R"(
Return the sum of the numbers *e1* and *e2*.
)",
.fun = prim_add,
});
static void prim_sub(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
state.forceValue(*args[1], pos);
if (args[0]->type() == nFloat || args[1]->type() == nFloat)
v.mkFloat(state.forceFloat(*args[0], pos) - state.forceFloat(*args[1], pos));
else
v.mkInt(state.forceInt(*args[0], pos) - state.forceInt(*args[1], pos));
}
static RegisterPrimOp primop_sub({
.name = "__sub",
.args = {"e1", "e2"},
.doc = R"(
Return the difference between the numbers *e1* and *e2*.
)",
.fun = prim_sub,
});
static void prim_mul(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
state.forceValue(*args[1], pos);
if (args[0]->type() == nFloat || args[1]->type() == nFloat)
v.mkFloat(state.forceFloat(*args[0], pos) * state.forceFloat(*args[1], pos));
else
v.mkInt(state.forceInt(*args[0], pos) * state.forceInt(*args[1], pos));
}
static RegisterPrimOp primop_mul({
.name = "__mul",
.args = {"e1", "e2"},
.doc = R"(
Return the product of the numbers *e1* and *e2*.
)",
.fun = prim_mul,
});
static void prim_div(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
state.forceValue(*args[1], pos);
NixFloat f2 = state.forceFloat(*args[1], pos);
if (f2 == 0)
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("division by zero"),
.errPos = state.positions[pos]
}));
if (args[0]->type() == nFloat || args[1]->type() == nFloat) {
v.mkFloat(state.forceFloat(*args[0], pos) / state.forceFloat(*args[1], pos));
} else {
NixInt i1 = state.forceInt(*args[0], pos);
NixInt i2 = state.forceInt(*args[1], pos);
/* Avoid division overflow as it might raise SIGFPE. */
if (i1 == std::numeric_limits<NixInt>::min() && i2 == -1)
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("overflow in integer division"),
.errPos = state.positions[pos]
}));
v.mkInt(i1 / i2);
}
}
static RegisterPrimOp primop_div({
.name = "__div",
.args = {"e1", "e2"},
.doc = R"(
Return the quotient of the numbers *e1* and *e2*.
)",
.fun = prim_div,
});
static void prim_bitAnd(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
v.mkInt(state.forceInt(*args[0], pos) & state.forceInt(*args[1], pos));
}
static RegisterPrimOp primop_bitAnd({
.name = "__bitAnd",
.args = {"e1", "e2"},
.doc = R"(
Return the bitwise AND of the integers *e1* and *e2*.
)",
.fun = prim_bitAnd,
});
static void prim_bitOr(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
v.mkInt(state.forceInt(*args[0], pos) | state.forceInt(*args[1], pos));
}
static RegisterPrimOp primop_bitOr({
.name = "__bitOr",
.args = {"e1", "e2"},
.doc = R"(
Return the bitwise OR of the integers *e1* and *e2*.
)",
.fun = prim_bitOr,
});
static void prim_bitXor(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
v.mkInt(state.forceInt(*args[0], pos) ^ state.forceInt(*args[1], pos));
}
static RegisterPrimOp primop_bitXor({
.name = "__bitXor",
.args = {"e1", "e2"},
.doc = R"(
Return the bitwise XOR of the integers *e1* and *e2*.
)",
.fun = prim_bitXor,
});
static void prim_lessThan(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceValue(*args[0], pos);
state.forceValue(*args[1], pos);
CompareValues comp{state};
v.mkBool(comp(args[0], args[1]));
}
static RegisterPrimOp primop_lessThan({
.name = "__lessThan",
.args = {"e1", "e2"},
.doc = R"(
Return `true` if the number *e1* is less than the number *e2*, and
`false` otherwise. Evaluation aborts if either *e1* or *e2* does not
evaluate to a number.
)",
.fun = prim_lessThan,
});
/*************************************************************
* String manipulation
*************************************************************/
/* Convert the argument to a string. Paths are *not* copied to the
store, so `toString /foo/bar' yields `"/foo/bar"', not
`"/nix/store/whatever..."'. */
static void prim_toString(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
PathSet context;
auto s = state.coerceToString(pos, *args[0], context, true, false);
v.mkString(*s, context);
}
static RegisterPrimOp primop_toString({
.name = "toString",
.args = {"e"},
.doc = R"(
Convert the expression *e* to a string. *e* can be:
- A string (in which case the string is returned unmodified).
- A path (e.g., `toString /foo/bar` yields `"/foo/bar"`.
- A set containing `{ __toString = self: ...; }` or `{ outPath = ...; }`.
- An integer.
- A list, in which case the string representations of its elements
are joined with spaces.
- A Boolean (`false` yields `""`, `true` yields `"1"`).
- `null`, which yields the empty string.
)",
.fun = prim_toString,
});
/* `substring start len str' returns the substring of `str' starting
at character position `min(start, stringLength str)' inclusive and
ending at `min(start + len, stringLength str)'. `start' must be
non-negative. */
static void prim_substring(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
int start = state.forceInt(*args[0], pos);
int len = state.forceInt(*args[1], pos);
PathSet context;
auto s = state.coerceToString(pos, *args[2], context);
if (start < 0)
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("negative start position in 'substring'"),
.errPos = state.positions[pos]
}));
v.mkString((unsigned int) start >= s->size() ? "" : s->substr(start, len), context);
}
static RegisterPrimOp primop_substring({
.name = "__substring",
.args = {"start", "len", "s"},
.doc = R"(
Return the substring of *s* from character position *start*
(zero-based) up to but not including *start + len*. If *start* is
greater than the length of the string, an empty string is returned,
and if *start + len* lies beyond the end of the string, only the
substring up to the end of the string is returned. *start* must be
non-negative. For example,
```nix
builtins.substring 0 3 "nixos"
```
evaluates to `"nix"`.
)",
.fun = prim_substring,
});
static void prim_stringLength(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
PathSet context;
auto s = state.coerceToString(pos, *args[0], context);
v.mkInt(s->size());
}
static RegisterPrimOp primop_stringLength({
.name = "__stringLength",
.args = {"e"},
.doc = R"(
Return the length of the string *e*. If *e* is not a string,
evaluation is aborted.
)",
.fun = prim_stringLength,
});
/* Return the cryptographic hash of a string in base-16. */
static void prim_hashString(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
auto type = state.forceStringNoCtx(*args[0], pos);
std::optional<HashType> ht = parseHashType(type);
if (!ht)
state.debugThrowLastTrace(Error({
.msg = hintfmt("unknown hash type '%1%'", type),
.errPos = state.positions[pos]
}));
PathSet context; // discarded
auto s = state.forceString(*args[1], context, pos);
v.mkString(hashString(*ht, s).to_string(Base16, false));
}
static RegisterPrimOp primop_hashString({
.name = "__hashString",
.args = {"type", "s"},
.doc = R"(
Return a base-16 representation of the cryptographic hash of string
*s*. The hash algorithm specified by *type* must be one of `"md5"`,
`"sha1"`, `"sha256"` or `"sha512"`.
)",
.fun = prim_hashString,
});
struct RegexCache
{
// TODO use C++20 transparent comparison when available
std::unordered_map<std::string_view, std::regex> cache;
std::list<std::string> keys;
std::regex get(std::string_view re)
{
auto it = cache.find(re);
if (it != cache.end())
return it->second;
keys.emplace_back(re);
return cache.emplace(keys.back(), std::regex(keys.back(), std::regex::extended)).first->second;
}
};
std::shared_ptr<RegexCache> makeRegexCache()
{
return std::make_shared<RegexCache>();
}
void prim_match(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
auto re = state.forceStringNoCtx(*args[0], pos);
try {
auto regex = state.regexCache->get(re);
PathSet context;
const auto str = state.forceString(*args[1], context, pos);
std::cmatch match;
if (!std::regex_match(str.begin(), str.end(), match, regex)) {
v.mkNull();
return;
}
// the first match is the whole string
const size_t len = match.size() - 1;
state.mkList(v, len);
for (size_t i = 0; i < len; ++i) {
if (!match[i+1].matched)
(v.listElems()[i] = state.allocValue())->mkNull();
else
(v.listElems()[i] = state.allocValue())->mkString(match[i + 1].str());
}
} catch (std::regex_error & e) {
if (e.code() == std::regex_constants::error_space) {
// limit is _GLIBCXX_REGEX_STATE_LIMIT for libstdc++
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("memory limit exceeded by regular expression '%s'", re),
.errPos = state.positions[pos]
}));
} else
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("invalid regular expression '%s'", re),
.errPos = state.positions[pos]
}));
}
}
static RegisterPrimOp primop_match({
.name = "__match",
.args = {"regex", "str"},
.doc = R"s(
Returns a list if the [extended POSIX regular
expression](http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09_04)
*regex* matches *str* precisely, otherwise returns `null`. Each item
in the list is a regex group.
```nix
builtins.match "ab" "abc"
```
Evaluates to `null`.
```nix
builtins.match "abc" "abc"
```
Evaluates to `[ ]`.
```nix
builtins.match "a(b)(c)" "abc"
```
Evaluates to `[ "b" "c" ]`.
```nix
builtins.match "[[:space:]]+([[:upper:]]+)[[:space:]]+" " FOO "
```
Evaluates to `[ "FOO" ]`.
)s",
.fun = prim_match,
});
/* Split a string with a regular expression, and return a list of the
non-matching parts interleaved by the lists of the matching groups. */
void prim_split(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
auto re = state.forceStringNoCtx(*args[0], pos);
try {
auto regex = state.regexCache->get(re);
PathSet context;
const auto str = state.forceString(*args[1], context, pos);
auto begin = std::cregex_iterator(str.begin(), str.end(), regex);
auto end = std::cregex_iterator();
// Any matches results are surrounded by non-matching results.
const size_t len = std::distance(begin, end);
state.mkList(v, 2 * len + 1);
size_t idx = 0;
if (len == 0) {
v.listElems()[idx++] = args[1];
return;
}
for (auto i = begin; i != end; ++i) {
assert(idx <= 2 * len + 1 - 3);
auto match = *i;
// Add a string for non-matched characters.
(v.listElems()[idx++] = state.allocValue())->mkString(match.prefix().str());
// Add a list for matched substrings.
const size_t slen = match.size() - 1;
auto elem = v.listElems()[idx++] = state.allocValue();
// Start at 1, beacause the first match is the whole string.
state.mkList(*elem, slen);
for (size_t si = 0; si < slen; ++si) {
if (!match[si + 1].matched)
(elem->listElems()[si] = state.allocValue())->mkNull();
else
(elem->listElems()[si] = state.allocValue())->mkString(match[si + 1].str());
}
// Add a string for non-matched suffix characters.
if (idx == 2 * len)
(v.listElems()[idx++] = state.allocValue())->mkString(match.suffix().str());
}
assert(idx == 2 * len + 1);
} catch (std::regex_error & e) {
if (e.code() == std::regex_constants::error_space) {
// limit is _GLIBCXX_REGEX_STATE_LIMIT for libstdc++
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("memory limit exceeded by regular expression '%s'", re),
.errPos = state.positions[pos]
}));
} else
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("invalid regular expression '%s'", re),
.errPos = state.positions[pos]
}));
}
}
static RegisterPrimOp primop_split({
.name = "__split",
.args = {"regex", "str"},
.doc = R"s(
Returns a list composed of non matched strings interleaved with the
lists of the [extended POSIX regular
expression](http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09_04)
*regex* matches of *str*. Each item in the lists of matched
sequences is a regex group.
```nix
builtins.split "(a)b" "abc"
```
Evaluates to `[ "" [ "a" ] "c" ]`.
```nix
builtins.split "([ac])" "abc"
```
Evaluates to `[ "" [ "a" ] "b" [ "c" ] "" ]`.
```nix
builtins.split "(a)|(c)" "abc"
```
Evaluates to `[ "" [ "a" null ] "b" [ null "c" ] "" ]`.
```nix
builtins.split "([[:upper:]]+)" " FOO "
```
Evaluates to `[ " " [ "FOO" ] " " ]`.
)s",
.fun = prim_split,
});
static void prim_concatStringsSep(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
PathSet context;
auto sep = state.forceString(*args[0], context, pos);
state.forceList(*args[1], pos);
std::string res;
res.reserve((args[1]->listSize() + 32) * sep.size());
bool first = true;
for (auto elem : args[1]->listItems()) {
if (first) first = false; else res += sep;
res += *state.coerceToString(pos, *elem, context);
}
v.mkString(res, context);
}
static RegisterPrimOp primop_concatStringsSep({
.name = "__concatStringsSep",
.args = {"separator", "list"},
.doc = R"(
Concatenate a list of strings with a separator between each
element, e.g. `concatStringsSep "/" ["usr" "local" "bin"] ==
"usr/local/bin"`.
)",
.fun = prim_concatStringsSep,
});
static void prim_replaceStrings(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
state.forceList(*args[0], pos);
state.forceList(*args[1], pos);
if (args[0]->listSize() != args[1]->listSize())
state.debugThrowLastTrace(EvalError({
.msg = hintfmt("'from' and 'to' arguments to 'replaceStrings' have different lengths"),
.errPos = state.positions[pos]
}));
std::vector<std::string> from;
from.reserve(args[0]->listSize());
for (auto elem : args[0]->listItems())
from.emplace_back(state.forceString(*elem, pos));
std::vector<std::pair<std::string, PathSet>> to;
to.reserve(args[1]->listSize());
for (auto elem : args[1]->listItems()) {
PathSet ctx;
auto s = state.forceString(*elem, ctx, pos);
to.emplace_back(s, std::move(ctx));
}
PathSet context;
auto s = state.forceString(*args[2], context, pos);
std::string res;
// Loops one past last character to handle the case where 'from' contains an empty string.
for (size_t p = 0; p <= s.size(); ) {
bool found = false;
auto i = from.begin();
auto j = to.begin();
for (; i != from.end(); ++i, ++j)
if (s.compare(p, i->size(), *i) == 0) {
found = true;
res += j->first;
if (i->empty()) {
if (p < s.size())
res += s[p];
p++;
} else {
p += i->size();
}
for (auto& path : j->second)
context.insert(path);
j->second.clear();
break;
}
if (!found) {
if (p < s.size())
res += s[p];
p++;
}
}
v.mkString(res, context);
}
static RegisterPrimOp primop_replaceStrings({
.name = "__replaceStrings",
.args = {"from", "to", "s"},
.doc = R"(
Given string *s*, replace every occurrence of the strings in *from*
with the corresponding string in *to*. For example,
```nix
builtins.replaceStrings ["oo" "a"] ["a" "i"] "foobar"
```
evaluates to `"fabir"`.
)",
.fun = prim_replaceStrings,
});
/*************************************************************
* Versions
*************************************************************/
static void prim_parseDrvName(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
auto name = state.forceStringNoCtx(*args[0], pos);
DrvName parsed(name);
auto attrs = state.buildBindings(2);
attrs.alloc(state.sName).mkString(parsed.name);
attrs.alloc("version").mkString(parsed.version);
v.mkAttrs(attrs);
}
static RegisterPrimOp primop_parseDrvName({
.name = "__parseDrvName",
.args = {"s"},
.doc = R"(
Split the string *s* into a package name and version. The package
name is everything up to but not including the first dash followed
by a digit, and the version is everything following that dash. The
result is returned in a set `{ name, version }`. Thus,
`builtins.parseDrvName "nix-0.12pre12876"` returns `{ name =
"nix"; version = "0.12pre12876"; }`.
)",
.fun = prim_parseDrvName,
});
static void prim_compareVersions(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
auto version1 = state.forceStringNoCtx(*args[0], pos);
auto version2 = state.forceStringNoCtx(*args[1], pos);
v.mkInt(compareVersions(version1, version2));
}
static RegisterPrimOp primop_compareVersions({
.name = "__compareVersions",
.args = {"s1", "s2"},
.doc = R"(
Compare two strings representing versions and return `-1` if
version *s1* is older than version *s2*, `0` if they are the same,
and `1` if *s1* is newer than *s2*. The version comparison
algorithm is the same as the one used by [`nix-env
-u`](../command-ref/nix-env.md#operation---upgrade).
)",
.fun = prim_compareVersions,
});
static void prim_splitVersion(EvalState & state, const PosIdx pos, Value * * args, Value & v)
{
auto version = state.forceStringNoCtx(*args[0], pos);
auto iter = version.cbegin();
Strings components;
while (iter != version.cend()) {
auto component = nextComponent(iter, version.cend());
if (component.empty())
break;
components.emplace_back(component);
}
state.mkList(v, components.size());
for (const auto & [n, component] : enumerate(components))
(v.listElems()[n] = state.allocValue())->mkString(std::move(component));
}
static RegisterPrimOp primop_splitVersion({
.name = "__splitVersion",
.args = {"s"},
.doc = R"(
Split a string representing a version into its components, by the
same version splitting logic underlying the version comparison in
[`nix-env -u`](../command-ref/nix-env.md#operation---upgrade).
)",
.fun = prim_splitVersion,
});
/*************************************************************
* Primop registration
*************************************************************/
RegisterPrimOp::PrimOps * RegisterPrimOp::primOps;
RegisterPrimOp::RegisterPrimOp(std::string name, size_t arity, PrimOpFun fun)
{
if (!primOps) primOps = new PrimOps;
primOps->push_back({
.name = name,
.args = {},
.arity = arity,
.fun = fun,
});
}
RegisterPrimOp::RegisterPrimOp(Info && info)
{
if (!primOps) primOps = new PrimOps;
primOps->push_back(std::move(info));
}
void EvalState::createBaseEnv()
{
baseEnv.up = 0;
/* Add global constants such as `true' to the base environment. */
Value v;
/* `builtins' must be first! */
v.mkAttrs(buildBindings(128).finish());
addConstant("builtins", v);
v.mkBool(true);
addConstant("true", v);
v.mkBool(false);
addConstant("false", v);
v.mkNull();
addConstant("null", v);
if (!evalSettings.pureEval) {
v.mkInt(time(0));
addConstant("__currentTime", v);
v.mkString(settings.thisSystem.get());
addConstant("__currentSystem", v);
}
v.mkString(nixVersion);
addConstant("__nixVersion", v);
v.mkString(store->storeDir);
addConstant("__storeDir", v);
/* Language version. This should be increased every time a new
language feature gets added. It's not necessary to increase it
when primops get added, because you can just use `builtins ?
primOp' to check. */
v.mkInt(6);
addConstant("__langVersion", v);
// Miscellaneous
if (evalSettings.enableNativeCode) {
addPrimOp("__importNative", 2, prim_importNative);
addPrimOp("__exec", 1, prim_exec);
}
/* Add a value containing the current Nix expression search path. */
mkList(v, searchPath.size());
int n = 0;
for (auto & i : searchPath) {
auto attrs = buildBindings(2);
attrs.alloc("path").mkString(i.second);
attrs.alloc("prefix").mkString(i.first);
(v.listElems()[n++] = allocValue())->mkAttrs(attrs);
}
addConstant("__nixPath", v);
if (RegisterPrimOp::primOps)
for (auto & primOp : *RegisterPrimOp::primOps)
if (!primOp.experimentalFeature
|| settings.isExperimentalFeatureEnabled(*primOp.experimentalFeature))
{
addPrimOp({
.fun = primOp.fun,
.arity = std::max(primOp.args.size(), primOp.arity),
.name = primOp.name,
.args = primOp.args,
.doc = primOp.doc,
});
}
/* Add a wrapper around the derivation primop that computes the
`drvPath' and `outPath' attributes lazily. */
sDerivationNix = symbols.create(derivationNixPath);
auto vDerivation = allocValue();
addConstant("derivation", vDerivation);
/* Now that we've added all primops, sort the `builtins' set,
because attribute lookups expect it to be sorted. */
baseEnv.values[0]->attrs->sort();
staticBaseEnv->sort();
/* Note: we have to initialize the 'derivation' constant *after*
building baseEnv/staticBaseEnv because it uses 'builtins'. */
char code[] =
#include "primops/derivation.nix.gen.hh"
// the parser needs two NUL bytes as terminators; one of them
// is implied by being a C string.
"\0";
eval(parse(code, sizeof(code), foFile, derivationNixPath, "/", staticBaseEnv), *vDerivation);
}
}