#include "eval.hh"
#include "parser.hh"
#include "hash.hh"
#include "util.hh"
#include "store-api.hh"
#include "derivations.hh"
#include "globals.hh"

#include <cstring>


#define LocalNoInline(f) static f __attribute__((noinline)); f
#define LocalNoInlineNoReturn(f) static f __attribute__((noinline, noreturn)); f


namespace nix {
    

std::ostream & operator << (std::ostream & str, Value & v)
{
    switch (v.type) {
    case tInt:
        str << v.integer;
        break;
    case tBool:
        str << (v.boolean ? "true" : "false");
        break;
    case tString:
        str << "\"";
        for (const char * i = v.string.s; *i; i++)
            if (*i == '\"' || *i == '\\') str << "\\" << *i;
            else if (*i == '\n') str << "\\n";
            else if (*i == '\r') str << "\\r";
            else if (*i == '\t') str << "\\t";
            else str << *i;
        str << "\"";
        break;
    case tPath:
        str << v.path; // !!! escaping?
        break;
    case tNull:
        str << "true";
        break;
    case tAttrs:
        str << "{ ";
        foreach (Bindings::iterator, i, *v.attrs)
            str << (string) i->first << " = " << i->second << "; ";
        str << "}";
        break;
    case tList:
        str << "[ ";
        for (unsigned int n = 0; n < v.list.length; ++n)
            str << v.list.elems[n] << " ";
        str << "]";
        break;
    case tThunk:
    case tCopy:
        str << "<CODE>";
        break;
    case tLambda:
        str << "<LAMBDA>";
        break;
    case tPrimOp:
        str << "<PRIMOP>";
        break;
    case tPrimOpApp:
        str << "<PRIMOP-APP>";
        break;
    default:
        throw Error("invalid value");
    }
    return str;
}


string showType(Value & v)
{
    switch (v.type) {
        case tInt: return "an integer";
        case tBool: return "a boolean";
        case tString: return "a string";
        case tPath: return "a path";
        case tAttrs: return "an attribute set";
        case tList: return "a list";
        case tNull: return "null";
        case tLambda: return "a function";
        case tPrimOp: return "a built-in function";
        case tPrimOpApp: return "a partially applied built-in function";
        default: throw Error(format("unknown type: %1%") % v.type);
    }
}


EvalState::EvalState()
    : sWith(symbols.create("<with>"))
    , sOutPath(symbols.create("outPath"))
    , sDrvPath(symbols.create("drvPath"))
    , sType(symbols.create("type"))
    , sMeta(symbols.create("meta"))
    , sName(symbols.create("name"))
    , baseEnv(allocEnv(128))
    , baseEnvDispl(0)
    , staticBaseEnv(false, 0)
{
    nrEnvs = nrValuesInEnvs = nrValuesInLists = nrValues = 0;
    nrEvaluated = recursionDepth = maxRecursionDepth = 0;
    deepestStack = (char *) -1;

    createBaseEnv();
    
    allowUnsafeEquality = getEnv("NIX_NO_UNSAFE_EQ", "") == "";
}


EvalState::~EvalState()
{
    assert(recursionDepth == 0);
}


void EvalState::addConstant(const string & name, Value & v)
{
    staticBaseEnv.vars[symbols.create(name)] = baseEnvDispl;
    baseEnv.values[baseEnvDispl++] = v;
    string name2 = string(name, 0, 2) == "__" ? string(name, 2) : name;
    (*baseEnv.values[0].attrs)[symbols.create(name2)] = v;
}


void EvalState::addPrimOp(const string & name,
    unsigned int arity, PrimOp primOp)
{
    Value v;
    v.type = tPrimOp;
    v.primOp.arity = arity;
    v.primOp.fun = primOp;
    staticBaseEnv.vars[symbols.create(name)] = baseEnvDispl;
    baseEnv.values[baseEnvDispl++] = v;
    string name2 = string(name, 0, 2) == "__" ? string(name, 2) : name;
    (*baseEnv.values[0].attrs)[symbols.create(name2)] = v;
}


/* Every "format" object (even temporary) takes up a few hundred bytes
   of stack space, which is a real killer in the recursive
   evaluator.  So here are some helper functions for throwing
   exceptions. */

LocalNoInlineNoReturn(void throwEvalError(const char * s))
{
    throw EvalError(s);
}

LocalNoInlineNoReturn(void throwEvalError(const char * s, const string & s2))
{
    throw EvalError(format(s) % s2);
}

LocalNoInlineNoReturn(void throwEvalError(const char * s, const string & s2, const string & s3))
{
    throw EvalError(format(s) % s2 % s3);
}

LocalNoInlineNoReturn(void throwTypeError(const char * s))
{
    throw TypeError(s);
}

LocalNoInlineNoReturn(void throwTypeError(const char * s, const string & s2))
{
    throw TypeError(format(s) % s2);
}

LocalNoInlineNoReturn(void throwTypeError(const char * s, const Pos & pos, const string & s2))
{
    throw TypeError(format(s) % pos % s2);
}

LocalNoInlineNoReturn(void throwTypeError(const char * s, const Pos & pos))
{
    throw TypeError(format(s) % pos);
}

LocalNoInlineNoReturn(void throwAssertionError(const char * s, const Pos & pos))
{
    throw AssertionError(format(s) % pos);
}

LocalNoInline(void addErrorPrefix(Error & e, const char * s))
{
    e.addPrefix(s);
}

LocalNoInline(void addErrorPrefix(Error & e, const char * s, const string & s2))
{
    e.addPrefix(format(s) % s2);
}

LocalNoInline(void addErrorPrefix(Error & e, const char * s, const Pos & pos))
{
    e.addPrefix(format(s) % pos);
}

LocalNoInline(void addErrorPrefix(Error & e, const char * s, const string & s2, const string & s3))
{
    e.addPrefix(format(s) % s2 % s3);
}


void mkString(Value & v, const char * s)
{
    v.type = tString;
    v.string.s = strdup(s);
    v.string.context = 0;
}


void mkString(Value & v, const string & s, const PathSet & context)
{
    mkString(v, s.c_str());
    if (!context.empty()) {
        unsigned int n = 0;
        v.string.context = new const char *[context.size() + 1];
        foreach (PathSet::const_iterator, i, context) 
            v.string.context[n++] = strdup(i->c_str());
        v.string.context[n] = 0;
    }
}


void mkPath(Value & v, const char * s)
{
    v.type = tPath;
    v.path = strdup(s);
}


Value * EvalState::lookupVar(Env * env, const VarRef & var)
{
    for (unsigned int l = var.level; l; --l, env = env->up) ;
    
    if (var.fromWith) {
        Bindings::iterator j = env->values[0].attrs->find(var.name);
        if (j == env->values[0].attrs->end())
            throwEvalError("undefined variable `%1%'", var.name);
        return &j->second;
    } else
        return &env->values[var.displ];
}


Value * EvalState::allocValues(unsigned int count)
{
    return new Value[count]; // !!! check destructor
}


Env & EvalState::allocEnv(unsigned int size)
{
    nrEnvs++;
    nrValuesInEnvs += size;
    Env * env = (Env *) malloc(sizeof(Env) + size * sizeof(Value));
    return *env;
}


void EvalState::mkList(Value & v, unsigned int length)
{
    v.type = tList;
    v.list.length = length;
    v.list.elems = allocValues(length);
    nrValuesInLists += length;
}


void EvalState::mkAttrs(Value & v)
{
    v.type = tAttrs;
    v.attrs = new Bindings;
}


void EvalState::mkThunk_(Value & v, Expr * expr)
{
    mkThunk(v, baseEnv, expr);
}


void EvalState::cloneAttrs(Value & src, Value & dst)
{
    mkAttrs(dst);
    foreach (Bindings::iterator, i, *src.attrs)
        mkCopy((*dst.attrs)[i->first], i->second);
}


void EvalState::evalFile(const Path & path, Value & v)
{
    startNest(nest, lvlTalkative, format("evaluating file `%1%'") % path);

    Expr * e = parseTrees[path];

    if (!e) {
        e = parseExprFromFile(*this, path);
        parseTrees[path] = e;
    }
    
    try {
        eval(e, v);
    } catch (Error & e) {
        addErrorPrefix(e, "while evaluating the file `%1%':\n", path);
        throw;
    }
}


struct RecursionCounter
{
    EvalState & state;
    RecursionCounter(EvalState & state) : state(state)
    {
        state.recursionDepth++;
        if (state.recursionDepth > state.maxRecursionDepth)
            state.maxRecursionDepth = state.recursionDepth;
    }
    ~RecursionCounter()
    {   
        state.recursionDepth--;
    }
};


void EvalState::eval(Env & env, Expr * e, Value & v)
{
    /* When changing this function, make sure that you don't cause a
       (large) increase in stack consumption! */

    /* !!! Disable this eventually. */
    RecursionCounter r(*this);
    char x;
    if (&x < deepestStack) deepestStack = &x;
    
    //debug(format("eval: %1%") % *e);

    checkInterrupt();

    nrEvaluated++;

    e->eval(*this, env, v);
}


void EvalState::eval(Expr * e, Value & v)
{
    eval(baseEnv, e, v);
}


bool EvalState::evalBool(Env & env, Expr * e)
{
    Value v;
    eval(env, e, v);
    if (v.type != tBool)
        throwTypeError("value is %1% while a Boolean was expected", showType(v));
    return v.boolean;
}


void Expr::eval(EvalState & state, Env & env, Value & v)
{
    abort();
}


void ExprInt::eval(EvalState & state, Env & env, Value & v)
{
    mkInt(v, n);
}


void ExprString::eval(EvalState & state, Env & env, Value & v)
{
    mkString(v, s.c_str());
}


void ExprPath::eval(EvalState & state, Env & env, Value & v)
{
    mkPath(v, s.c_str());
}


void ExprAttrs::eval(EvalState & state, Env & env, Value & v)
{
    state.mkAttrs(v);

    if (recursive) {
        /* Create a new environment that contains the attributes in
           this `rec'. */
        Env & env2(state.allocEnv(attrs.size() + inherited.size()));
        env2.up = &env;

        unsigned int displ = 0;
        
        /* The recursive attributes are evaluated in the new
           environment. */
        foreach (Attrs::iterator, i, attrs) {
            Value & v2 = (*v.attrs)[i->first];
            mkCopy(v2, env2.values[displ]);
            mkThunk(env2.values[displ++], env2, i->second);
        }

        /* The inherited attributes, on the other hand, are
           evaluated in the original environment. */
        foreach (list<VarRef>::iterator, i, inherited) {
            Value & v2 = (*v.attrs)[i->name];
            Value * v3 = state.lookupVar(&env, *i);
            mkCopy(v2, *v3);
            mkCopy(env2.values[displ++], *v3);
        }

    }

    else {
        foreach (Attrs::iterator, i, attrs) {
            Value & v2 = (*v.attrs)[i->first];
            mkThunk(v2, env, i->second);
        }

        foreach (list<VarRef>::iterator, i, inherited) {
            Value & v2 = (*v.attrs)[i->name];
            mkCopy(v2, *state.lookupVar(&env, *i));
        }
    }
}


void ExprLet::eval(EvalState & state, Env & env, Value & v)
{
    /* Create a new environment that contains the attributes in this
       `let'. */
    Env & env2(state.allocEnv(attrs->attrs.size() + attrs->inherited.size()));
    env2.up = &env;

    unsigned int displ = 0;

    /* The recursive attributes are evaluated in the new
       environment. */
    foreach (ExprAttrs::Attrs::iterator, i, attrs->attrs)
        mkThunk(env2.values[displ++], env2, i->second);

    /* The inherited attributes, on the other hand, are evaluated in
       the original environment. */
    foreach (list<VarRef>::iterator, i, attrs->inherited)
        mkCopy(env2.values[displ++], *state.lookupVar(&env, *i));

    state.eval(env2, body, v);
}


void ExprList::eval(EvalState & state, Env & env, Value & v)
{
    state.mkList(v, elems.size());
    for (unsigned int n = 0; n < v.list.length; ++n)
        mkThunk(v.list.elems[n], env, elems[n]);
}


void ExprVar::eval(EvalState & state, Env & env, Value & v)
{
    Value * v2 = state.lookupVar(&env, info);
    state.forceValue(*v2);
    v = *v2;
}


void ExprSelect::eval(EvalState & state, Env & env, Value & v)
{
    Value v2;
    state.eval(env, e, v2);
    state.forceAttrs(v2); // !!! eval followed by force is slightly inefficient
    Bindings::iterator i = v2.attrs->find(name);
    if (i == v2.attrs->end())
        throwEvalError("attribute `%1%' missing", name);
    try {            
        state.forceValue(i->second);
    } catch (Error & e) {
        addErrorPrefix(e, "while evaluating the attribute `%1%':\n", name);
        throw;
    }
    v = i->second;
}


void ExprOpHasAttr::eval(EvalState & state, Env & env, Value & v)
{
    Value vAttrs;
    state.eval(env, e, vAttrs);
    state.forceAttrs(vAttrs);
    mkBool(v, vAttrs.attrs->find(name) != vAttrs.attrs->end());
}


void ExprLambda::eval(EvalState & state, Env & env, Value & v)
{
    v.type = tLambda;
    v.lambda.env = &env;
    v.lambda.fun = this;
}


void ExprApp::eval(EvalState & state, Env & env, Value & v)
{
    Value vFun;
    state.eval(env, e1, vFun);
    Value vArg;
    mkThunk(vArg, env, e2); // !!! should this be on the heap?
    state.callFunction(vFun, vArg, v);
}


void EvalState::callFunction(Value & fun, Value & arg, Value & v)
{
    if (fun.type == tPrimOp || fun.type == tPrimOpApp) {
        unsigned int argsLeft =
            fun.type == tPrimOp ? fun.primOp.arity : fun.primOpApp.argsLeft;
        if (argsLeft == 1) {
            /* We have all the arguments, so call the primop.  First
               find the primop. */
            Value * primOp = &fun;
            while (primOp->type == tPrimOpApp) primOp = primOp->primOpApp.left;
            assert(primOp->type == tPrimOp);
            unsigned int arity = primOp->primOp.arity;
                
            /* Put all the arguments in an array. */
            Value * vArgs[arity];
            unsigned int n = arity - 1;
            vArgs[n--] = &arg;
            for (Value * arg = &fun; arg->type == tPrimOpApp; arg = arg->primOpApp.left)
                vArgs[n--] = arg->primOpApp.right;

            /* And call the primop. */
            primOp->primOp.fun(*this, vArgs, v);
        } else {
            Value * v2 = allocValues(2);
            nrValues += 2;
            v2[0] = fun;
            v2[1] = arg;
            v.type = tPrimOpApp;
            v.primOpApp.left = &v2[0];
            v.primOpApp.right = &v2[1];
            v.primOpApp.argsLeft = argsLeft - 1;
        }
        return;
    }
    
    if (fun.type != tLambda)
        throwTypeError("attempt to call something which is neither a function nor a primop (built-in operation) but %1%",
            showType(fun));

    unsigned int size =
        (fun.lambda.fun->arg.empty() ? 0 : 1) +
        (fun.lambda.fun->matchAttrs ? fun.lambda.fun->formals->formals.size() : 0);
    Env & env2(allocEnv(size));
    env2.up = fun.lambda.env;

    unsigned int displ = 0;

    if (!fun.lambda.fun->matchAttrs)
        env2.values[displ++] = arg;

    else {
        forceAttrs(arg);
        
        if (!fun.lambda.fun->arg.empty())
            env2.values[displ++] = arg;

        /* For each formal argument, get the actual argument.  If
           there is no matching actual argument but the formal
           argument has a default, use the default. */
        unsigned int attrsUsed = 0;
        foreach (Formals::Formals_::iterator, i, fun.lambda.fun->formals->formals) {
            Bindings::iterator j = arg.attrs->find(i->name);
            if (j == arg.attrs->end()) {
                if (!i->def) throwTypeError("function at %1% called without required argument `%2%'",
                    fun.lambda.fun->pos, i->name);   
                mkThunk(env2.values[displ++], env2, i->def);
            } else {
                attrsUsed++;
                mkCopy(env2.values[displ++], j->second);
            }
        }

        /* Check that each actual argument is listed as a formal
           argument (unless the attribute match specifies a `...').
           TODO: show the names of the expected/unexpected
           arguments. */
        if (!fun.lambda.fun->formals->ellipsis && attrsUsed != arg.attrs->size())
            throwTypeError("function at %1% called with unexpected argument", fun.lambda.fun->pos);
    }

    try {
        eval(env2, fun.lambda.fun->body, v);
    } catch (Error & e) {
        addErrorPrefix(e, "while evaluating the function at %1%:\n", fun.lambda.fun->pos);
        throw;
    }
}


void EvalState::autoCallFunction(const Bindings & args, Value & fun, Value & res)
{
    forceValue(fun);

    if (fun.type != tLambda || !fun.lambda.fun->matchAttrs) {
        res = fun;
        return;
    }

    Value actualArgs;
    mkAttrs(actualArgs);

    foreach (Formals::Formals_::iterator, i, fun.lambda.fun->formals->formals) {
        Bindings::const_iterator j = args.find(i->name);
        if (j != args.end())
            (*actualArgs.attrs)[i->name] = j->second;
        else if (!i->def)
            throwTypeError("cannot auto-call a function that has an argument without a default value (`%1%')", i->name);
    }

    callFunction(fun, actualArgs, res);
}


void ExprWith::eval(EvalState & state, Env & env, Value & v)
{
    Env & env2(state.allocEnv(1));
    env2.up = &env;

    state.eval(env, attrs, env2.values[0]);
    state.forceAttrs(env2.values[0]);

    /* If there is an enclosing `with', copy all attributes that don't
       appear in this `with'. */
    if (prevWith != -1) {
        Env * env3 = &env;
        for (unsigned int l = prevWith; l; --l, env3 = env3->up) ;

        foreach (Bindings::iterator, i, *env3->values[0].attrs) {
            Bindings::iterator j = env2.values[0].attrs->find(i->first);
            if (j == env2.values[0].attrs->end())
                (*env2.values[0].attrs)[i->first] = i->second; // !!! sharing
        }
    }
        
    state.eval(env2, body, v);
}


void ExprIf::eval(EvalState & state, Env & env, Value & v)
{
    state.eval(env, state.evalBool(env, cond) ? then : else_, v);
}

    
void ExprAssert::eval(EvalState & state, Env & env, Value & v)
{
    if (!state.evalBool(env, cond))
        throwAssertionError("assertion failed at %1%", pos);
    state.eval(env, body, v);
}

    
void ExprOpNot::eval(EvalState & state, Env & env, Value & v)
{
    mkBool(v, !state.evalBool(env, e));
}


void ExprOpEq::eval(EvalState & state, Env & env, Value & v)
{
    Value v1; state.eval(env, e1, v1);
    Value v2; state.eval(env, e2, v2);
    mkBool(v, state.eqValues(v1, v2));
}


void ExprOpNEq::eval(EvalState & state, Env & env, Value & v)
{
    Value v1; state.eval(env, e1, v1);
    Value v2; state.eval(env, e2, v2);
    mkBool(v, !state.eqValues(v1, v2));
}


void ExprOpAnd::eval(EvalState & state, Env & env, Value & v)
{
    mkBool(v, state.evalBool(env, e1) && state.evalBool(env, e2));
}


void ExprOpOr::eval(EvalState & state, Env & env, Value & v)
{
    mkBool(v, state.evalBool(env, e1) || state.evalBool(env, e2));
}


void ExprOpImpl::eval(EvalState & state, Env & env, Value & v)
{
    mkBool(v, !state.evalBool(env, e1) || state.evalBool(env, e2));
}


void ExprOpUpdate::eval(EvalState & state, Env & env, Value & v)
{
    Value v2;
    state.eval(env, e1, v2);
    state.forceAttrs(v2);
        
    state.cloneAttrs(v2, v);
        
    state.eval(env, e2, v2);
    state.forceAttrs(v2);
    
    foreach (Bindings::iterator, i, *v2.attrs)
        (*v.attrs)[i->first] = i->second; // !!! sharing
}


void ExprOpConcatLists::eval(EvalState & state, Env & env, Value & v)
{
    Value v1; state.eval(env, e1, v1);
    state.forceList(v1);
    Value v2; state.eval(env, e2, v2);
    state.forceList(v2);
    state.mkList(v, v1.list.length + v2.list.length);
    /* !!! This loses sharing with the original lists.  We could use a
       tCopy node, but that would use more memory. */
    for (unsigned int n = 0; n < v1.list.length; ++n)
        v.list.elems[n] = v1.list.elems[n];
    for (unsigned int n = 0; n < v2.list.length; ++n)
        v.list.elems[n + v1.list.length] = v2.list.elems[n];
}


void ExprConcatStrings::eval(EvalState & state, Env & env, Value & v)
{
    PathSet context;
    std::ostringstream s;
        
    bool first = true, isPath = false;
    Value vStr;

    foreach (vector<Expr *>::iterator, i, *es) {
        state.eval(env, *i, vStr);

        /* If the first element is a path, then the result will also
           be a path, we don't copy anything (yet - that's done later,
           since paths are copied when they are used in a derivation),
           and none of the strings are allowed to have contexts. */
        if (first) {
            isPath = vStr.type == tPath;
            first = false;
        }
            
        s << state.coerceToString(vStr, context, false, !isPath);
    }
        
    if (isPath && !context.empty())
        throwEvalError("a string that refers to a store path cannot be appended to a path, in `%1%'", s.str());

    if (isPath)
        mkPath(v, s.str().c_str());
    else
        mkString(v, s.str(), context);
}


void EvalState::forceValue(Value & v)
{
    if (v.type == tThunk) {
        ValueType saved = v.type;
        try {
            v.type = tBlackhole;
            eval(*v.thunk.env, v.thunk.expr, v);
        } catch (Error & e) {
            v.type = saved;
            throw;
        }
    }
    else if (v.type == tCopy) {
        forceValue(*v.val);
        v = *v.val;
    }
    else if (v.type == tApp)
        callFunction(*v.app.left, *v.app.right, v);
    else if (v.type == tBlackhole)
        throwEvalError("infinite recursion encountered");
}


void EvalState::strictForceValue(Value & v)
{
    forceValue(v);
    
    if (v.type == tAttrs) {
        foreach (Bindings::iterator, i, *v.attrs)
            strictForceValue(i->second);
    }
    
    else if (v.type == tList) {
        for (unsigned int n = 0; n < v.list.length; ++n)
            strictForceValue(v.list.elems[n]);
    }
}


int EvalState::forceInt(Value & v)
{
    forceValue(v);
    if (v.type != tInt)
        throwTypeError("value is %1% while an integer was expected", showType(v));
    return v.integer;
}


bool EvalState::forceBool(Value & v)
{
    forceValue(v);
    if (v.type != tBool)
        throwTypeError("value is %1% while a Boolean was expected", showType(v));
    return v.boolean;
}


void EvalState::forceAttrs(Value & v)
{
    forceValue(v);
    if (v.type != tAttrs)
        throwTypeError("value is %1% while an attribute set was expected", showType(v));
}


void EvalState::forceList(Value & v)
{
    forceValue(v);
    if (v.type != tList)
        throwTypeError("value is %1% while a list was expected", showType(v));
}


void EvalState::forceFunction(Value & v)
{
    forceValue(v);
    if (v.type != tLambda && v.type != tPrimOp && v.type != tPrimOpApp)
        throwTypeError("value is %1% while a function was expected", showType(v));
}


string EvalState::forceString(Value & v)
{
    forceValue(v);
    if (v.type != tString)
        throwTypeError("value is %1% while a string was expected", showType(v));
    return string(v.string.s);
}


string EvalState::forceString(Value & v, PathSet & context)
{
    string s = forceString(v);
    if (v.string.context)
        for (const char * * p = v.string.context; *p; ++p) 
            context.insert(*p);
    return s;
}


string EvalState::forceStringNoCtx(Value & v)
{
    string s = forceString(v);
    if (v.string.context)
        throwEvalError("the string `%1%' is not allowed to refer to a store path (such as `%2%')",
            v.string.s, v.string.context[0]);
    return s;
}


bool EvalState::isDerivation(Value & v)
{
    if (v.type != tAttrs) return false;
    Bindings::iterator i = v.attrs->find(sType);
    return i != v.attrs->end() && forceStringNoCtx(i->second) == "derivation";
}


string EvalState::coerceToString(Value & v, PathSet & context,
    bool coerceMore, bool copyToStore)
{
    forceValue(v);

    string s;

    if (v.type == tString) {
        if (v.string.context) 
            for (const char * * p = v.string.context; *p; ++p) 
                context.insert(*p);
        return v.string.s;
    }

    if (v.type == tPath) {
        Path path(canonPath(v.path));

        if (!copyToStore) return path;
        
        if (nix::isDerivation(path))
            throwEvalError("file names are not allowed to end in `%1%'", drvExtension);

        Path dstPath;
        if (srcToStore[path] != "")
            dstPath = srcToStore[path];
        else {
            dstPath = readOnlyMode
                ? computeStorePathForPath(path).first
                : store->addToStore(path);
            srcToStore[path] = dstPath;
            printMsg(lvlChatty, format("copied source `%1%' -> `%2%'")
                % path % dstPath);
        }

        context.insert(dstPath);
        return dstPath;
    }

    if (v.type == tAttrs) {
        Bindings::iterator i = v.attrs->find(sOutPath);
        if (i == v.attrs->end())
            throwTypeError("cannot coerce an attribute set (except a derivation) to a string");
        return coerceToString(i->second, context, coerceMore, copyToStore);
    }

    if (coerceMore) {

        /* Note that `false' is represented as an empty string for
           shell scripting convenience, just like `null'. */
        if (v.type == tBool && v.boolean) return "1";
        if (v.type == tBool && !v.boolean) return "";
        if (v.type == tInt) return int2String(v.integer);
        if (v.type == tNull) return "";

        if (v.type == tList) {
            string result;
            for (unsigned int n = 0; n < v.list.length; ++n) {
                result += coerceToString(v.list.elems[n],
                    context, coerceMore, copyToStore);
                if (n < v.list.length - 1
                    /* !!! not quite correct */
                    && (v.list.elems[n].type != tList || v.list.elems[n].list.length != 0))
                    result += " ";
            }
            return result;
        }
    }
    
    throwTypeError("cannot coerce %1% to a string", showType(v));
}


Path EvalState::coerceToPath(Value & v, PathSet & context)
{
    string path = coerceToString(v, context, false, false);
    if (path == "" || path[0] != '/')
        throwEvalError("string `%1%' doesn't represent an absolute path", path);
    return path;
}


bool EvalState::eqValues(Value & v1, Value & v2)
{
    forceValue(v1);
    forceValue(v2);

    /* !!! Hack to support some old broken code that relies on pointer
       equality tests between attribute sets.  (Specifically,
       builderDefs calls uniqList on a list of attribute sets.)  Will
       remove this eventually. */
    if (&v1 == &v2) return true;

    if (v1.type != v2.type) return false;

    switch (v1.type) {

        case tInt:
            return v1.integer == v2.integer;

        case tBool:
            return v1.boolean == v2.boolean;

        case tString:
            /* !!! contexts */
            return strcmp(v1.string.s, v2.string.s) == 0;

        case tPath:
            return strcmp(v1.path, v2.path) == 0;

        case tNull:
            return true;

        case tList:
            if (v2.type != tList || v1.list.length != v2.list.length) return false;
            for (unsigned int n = 0; n < v1.list.length; ++n)
                if (!eqValues(v1.list.elems[n], v2.list.elems[n])) return false;
            return true;

        case tAttrs: {
            if (v2.type != tAttrs || v1.attrs->size() != v2.attrs->size()) return false;
            Bindings::iterator i, j;
            for (i = v1.attrs->begin(), j = v2.attrs->begin(); i != v1.attrs->end(); ++i, ++j)
                if (!eqValues(i->second, j->second)) return false;
            return true;
        }

        /* Functions are incomparable. */
        case tLambda:
        case tPrimOp:
        case tPrimOpApp:
            return false;

        default:
            throwEvalError("cannot compare %1% with %2%", showType(v1), showType(v2));
    }
}


void EvalState::printStats()
{
    char x;
    bool showStats = getEnv("NIX_SHOW_STATS", "0") != "0";
    Verbosity v = showStats ? lvlInfo : lvlDebug;
    printMsg(v, "evaluation statistics:");
    printMsg(v, format("  expressions evaluated: %1%") % nrEvaluated);
    printMsg(v, format("  stack space used: %1% bytes") % (&x - deepestStack));
    printMsg(v, format("  max eval() nesting depth: %1%") % maxRecursionDepth);
    printMsg(v, format("  stack space per eval() level: %1% bytes") % ((&x - deepestStack) / (float) maxRecursionDepth));
    printMsg(v, format("  environments allocated: %1% (%2% bytes)")
        % nrEnvs % (nrEnvs * sizeof(Env)));
    printMsg(v, format("  values allocated in environments: %1% (%2% bytes)")
        % nrValuesInEnvs % (nrValuesInEnvs * sizeof(Value)));
    printMsg(v, format("  values allocated in lists: %1% (%2% bytes)")
        % nrValuesInLists % (nrValuesInLists * sizeof(Value)));
    printMsg(v, format("  misc. values allocated: %1% (%2% bytes) ")
        % nrValues % (nrValues * sizeof(Value)));
    printMsg(v, format("  symbols in symbol table: %1%") % symbols.size());
}


}