It turns out that in multi-user Nix, a builder may be able to do
ln /etc/shadow $out/foo
Afterwards, canonicalisePathMetaData() will be applied to $out/foo,
causing /etc/shadow's mode to be set to 444 (readable by everybody but
writable by nobody). That's obviously Very Bad.
Fortunately, this fails in NixOS's default configuration because
/nix/store is a bind mount, so "ln" will fail with "Invalid
cross-device link". It also fails if hard-link restrictions are
enabled, so a workaround is:
echo 1 > /proc/sys/fs/protected_hardlinks
The solution is to check that all files in $out are owned by the build
user. This means that innocuous operations like "ln
${pkgs.foo}/some-file $out/" are now rejected, but that already failed
in chroot builds anyway.
...where <XX> is the first two characters of the derivation.
Otherwise /nix/var/log/nix/drvs may become so large that we run into
all sorts of weird filesystem limits/inefficiences. For instance,
ext3/ext4 filesystems will barf with "ext4_dx_add_entry:1551:
Directory index full!" once you hit a few million files.
So if a path is not garbage solely because it's reachable from a root
due to the gc-keep-outputs or gc-keep-derivations settings, ‘nix-store
-q --roots’ now shows that root.
For example, given a derivation with outputs "out", "man" and "bin":
$ nix-build -A pkg
produces ./result pointing to the "out" output;
$ nix-build -A pkg.man
produces ./result-man pointing to the "man" output;
$ nix-build -A pkg.all
produces ./result, ./result-man and ./result-bin;
$ nix-build -A pkg.all -A pkg2
produces ./result, ./result-man, ./result-bin and ./result-2.
This flag causes paths that do not have a known substitute to be
quietly ignored. This is mostly useful for Charon, allowing it to
speed up deployment by letting a machine use substitutes for all
substitutable paths, instead of uploading them. The latter is
frequently faster, e.g. if the target machine has a fast Internet
connection while the source machine is on a slow ADSL line.
I.e. do what git does. I'm too lazy to keep the builtin help text up
to date :-)
Also add ‘--help’ to various commands that lacked it
(e.g. nix-collect-garbage).
With this flag, if any valid derivation output is missing or corrupt,
it will be recreated by using a substitute if available, or by
rebuilding the derivation. The latter may use hash rewriting if
chroots are not available.
This operation allows fixing corrupted or accidentally deleted store
paths by redownloading them using substituters, if available.
Since the corrupted path cannot be replaced atomically, there is a
very small time window (one system call) during which neither the old
(corrupted) nor the new (repaired) contents are available. So
repairing should be used with some care on critical packages like
Glibc.
Output names are now appended to resulting GC symlinks, e.g. by
nix-build. For backwards compatibility, if the output is named "out",
nothing is appended. E.g. doing "nix-build -A foo" on a derivation
that produces outputs "out", "bin" and "dev" will produce symlinks
"./result", "./result-bin" and "./result-dev", respectively.
optimiseStore() now creates persistent, content-addressed hard links
in /nix/store/.links. For instance, if it encounters a file P with
hash H, it will create a hard link
P' = /nix/store/.link/<H>
to P if P' doesn't already exist; if P' exist, then P is replaced by a
hard link to P'. This is better than the previous in-memory map,
because it had the tendency to unnecessarily replace hard links with a
hard link to whatever happened to be the first file with a given hash
it encountered. It also allows on-the-fly, incremental optimisation.
We can't open a SQLite database if the disk is full. Since this
prevents the garbage collector from running when it's most needed, we
reserve some dummy space that we can free just before doing a garbage
collection. This actually revives some old code from the Berkeley DB
days.
Fixes#27.
environment of the given derivation in a format that can be sourced
by the shell, e.g.
$ eval "$(nix-store --print-env $(nix-instantiate /etc/nixos/nixpkgs -A pkg))"
$ NIX_BUILD_TOP=/tmp
$ source $stdenv/setup
This is especially useful to reproduce the environment used to build
a package outside of its builder for development purposes.
TODO: add a nix-build option to do the above and fetch the
dependencies of the derivation as well.
‘nix-store --export’.
* Add a Perl module that provides the functionality of
‘nix-copy-closure --to’. This is used by build-remote.pl so it no
longer needs to start a separate nix-copy-closure process. Also, it
uses the Perl API to do the export, so it doesn't need to start a
separate nix-store process either. As a result, nix-copy-closure
and build-remote.pl should no longer fail on very large closures due
to an "Argument list too long" error. (Note that having very many
dependencies in a single derivation can still fail because the
environment can become too large. Can't be helped though.)
the contents of any of the given store paths have been modified.
E.g.
$ nix-store --verify-path $(nix-store -qR /var/run/current-system)
path `/nix/store/m2smyiwbxidlprfxfz4rjlvz2c3mg58y-etc' was modified! expected hash `fc87e271c5fdf179b47939b08ad13440493805584b35e3014109d04d8436e7b8', got `20f1a47281b3c0cbe299ce47ad5ca7340b20ab34246426915fce0ee9116483aa'
All paths are checked; the exit code is 1 if any path has been
modified, 0 otherwise.
This should also fix:
nix-instantiate: ./../boost/shared_ptr.hpp:254: T* boost::shared_ptr<T>::operator->() const [with T = nix::StoreAPI]: Assertion `px != 0' failed.
which was caused by hashDerivationModulo() calling the ‘store’
object (during store upgrades) before openStore() assigned it.
because it defines _FILE_OFFSET_BITS. Without this, on
OpenSolaris the system headers define it to be 32, and then
the 32-bit stat() ends up being called with a 64-bit "struct
stat", or vice versa.
This also ensures that we get 64-bit file sizes everywhere.
* Remove the redundant call to stat() in parseExprFromFile().
The file cannot be a symlink because that's the exit condition
of the loop before.