The installer will error out if a user's shell configuration includes any mention of ~nix-profile~, even if this is in a comment. This change is designed to do the bare minimum to ignore lines beginning with a `#`.
In particular, drop the "build-" and "gc-" prefixes which are
pointless. So now you can say
nix build --no-sandbox
instead of
nix build --no-build-use-sandbox
The current behaviour modifies the first writeable file from amongst
.bash_profile, .bash_login and .profile. So .bash_profile (if it is
writable) would be modified even if a user has already sourced nix.sh
in, say, .profile.
This commit introduces a new environment variable,
NIX_INSTALLER_NO_MODIFY_PROFILE. If this is set during installation,
then the modifications are unconditionally skipped.
This is useful for users who have a manually curated set of dotfiles
that they are porting to a new machine. In such scenarios, nix.sh is
already sourced at a place where the user prefers. Without this
change, the nix installer would insist on modifying .bash_profile if
it exists.
This commit also add documentations for both the current behaviour and
the new override.
Currently, man has issues finding man pages for Nix-installed
application (also, `nix-env --help` doesn't work). The issue is caused
by custom `$MANPATH` set by my system. That makes man use it instead of
searching in default location.
Either of next lines workaround the issue:
```sh
unset MANPATH
export MANPATH=$HOME/.nix-profile/share/man:$MANPATH
```
This patch adds the later line to the `nix-profile.sh` if user has
`MANPATH` set. (Not clearing `MANPATH` as that would be disrespect of
user's preferences.)
As a side-effect, host's man might find man pages installed by Nix.
This is primarily to subsume the functionality of the
copy-from-other-stores substituter. For example, in the NixOS
installer, we can now do (assuming we're in the target chroot, and the
Nix store of the installation CD is bind-mounted on /tmp/nix):
$ nix-build ... --option substituters 'local?state=/tmp/nix/var&real=/tmp/nix/store'
However, unlike copy-from-other-stores, this also allows write access
to such a store. One application might be fetching substitutes for
/nix/store in a situation where the user doesn't have sufficient
privileges to create /nix, e.g.:
$ NIX_REMOTE="local?state=/home/alice/nix/var&real=/home/alice/nix/store" nix-build ...
Nix sometimes outputs a warning message like this:
```
directory /nix does not exist; creating it by running ‘?? using sudo
```
... when it really meant to output something that looked like this:
```
directory /nix does not exist; creating it by running 'mkdir -m 0755 /nix && chown gabriel /nix' using sudo
```
The reason why is due to some bizarre behavior in Bash where it will translate anything of the form `$x’` to `??`, leading to the incorrect warning message. I don't know what is the origin of this Bash behavior, but the easiest fix is to just use ASCII quotes instead of unicode quotes.
Just wasted a couple hours chasing shadows because the nix store got
corrupted and there was no indication of that anywhere.
Since an install is one-time only, might as well verify. Optimization
showed that the copied files aren't read-only; fixed that as well.
Also, use /bin/sh since there's a good chance that this script will be
run on systems without /bin/bash
This is currently only used by the Hydra queue runner rework, but like
eff5021eaa it presumably will be useful
for the C++ rewrite of nix-push and
download-from-binary-cache. (@shlevy)
The `set -e` at the top of the script causes the installation to fail to
complete if the shell profile is not writeable. Checking file existence
only is not enough.
The --insecure flag to curl tells curl not to bother checking if the TLS
certificate presented by the server actually matches the hostname
requested, and actually is issued by a trusted CA chain. This almost
entirely negates any benefit from using TLS in the first place.
This removes the --insecure flag to ensure we actually have a secure
connection to the intended hostname before downloading binaries.
Manually tested locally within a dev-shell; was able to download
binaries from https://cache.nixos.org without issue.
[Note: --insecure was only used for fetching NARs, whose integrity is
verified by Nix anyway using the hash from the .narinfo. But if we can
fetch the .narinfo without --insecure, we can also fetch the .nar, so
there is not much point to using --insecure. --Eelco]
Some benchmarking suggested this as a good value. Running
$ benchmark -f ... -t 25 -- sh -c 'rm -f /nix/var/nix/binary-cache*; nix-store -r /nix/store/x5z8a2yvz8h6ccmhwrwrp9igg03575jg-nixos-15.09.git.5fd87e1M.drv --dry-run --option binary-caches-parallel-connections <N>'
gave the following mean elapsed times for these values of N:
N=10: 3.3541
N=20: 2.9320
N=25: 2.6690
N=30: 2.9417
N=50: 3.2021
N=100: 3.5718
N=150: 4.2079
Memory usage is also reduced (N=150 used 186 MB, N=25 only 68 MB).
Closes#708.
This makes that option even more insecure, by also not checking the SSL host.
But without this parameter, one can still get SSL errors even when
"verify-https-binary-caches" is false, which is unexpected IMO.
This reverts commit 76f985b92d. We
shouldn't mess with $MANPATH, because on some "man" implementations
(like NixOS'), the default value on $MANPATH is derived from $PATH. So
if you set $MANPATH, you lose the default locations.
This is not strictly needed for integrity (since we already include
the NAR hash in the fingerprint) but it helps against endless data
attacks [1]. (However, this will also require
download-from-binary-cache.pl to bail out if it receives more than the
specified number of bytes.)
[1] https://isis.poly.edu/~jcappos/papers/cappos_mirror_ccs_08.pdf
In some cases the bash builtin command "cd" can print the variable $CWD
to stdout. This caused the install script to fail while copying files
because the source path was wrong.
Fixes#476.
We only need to sign the store path, NAR hash and references (the
"fingerprint"). Everything else is irrelevant to security. For
instance, the compression algorithm or the hash of the compressed NAR
don't matter as long as the contents of the uncompressed NAR are
correct.
(Maybe we should include derivers in the fingerprint, but they're
broken and nobody cares about them. Also, it might be nice in the
future if .narinfos contained signatures from multiple independent
signers. But that's impossible if the deriver is included in the
fingerprint, since everybody will tend to have a different deriver for
the same store path.)
Also renamed the "Signature" field to "Sig" since the format changed
in an incompatible way.
Sodium's Ed25519 signatures are much shorter than OpenSSL's RSA
signatures. Public keys are also much shorter, so they're now
specified directly in the nix.conf option ‘binary-cache-public-keys’.
The new command ‘nix-store --generate-binary-cache-key’ generates and
prints a public and secret key.
It moves runHook to a later position in the rcfile. After that we are
able to set the PS1 environment-variable for a nix-shell environment
e.g.:
# turn the color of the prompt to blue
shellHook = ''
export PS1="\n\[\033[1;34m\][\u@\h:\w]$\[\033[0m\] ";
'';
‘--run’ is like ‘--command’, except that it runs the command in a
non-interactive shell. This is important if you do things like:
$ nix-shell --command make
Hitting Ctrl-C while make is running drops you into the interactive
Nix shell, which is probably not what you want. So you can now do
$ nix-shell --run make
instead.
So you can have a script like:
#! /usr/bin/env nix-shell
#! nix-shell script.nix -i python
import prettytable
x = prettytable.PrettyTable(["Foo", "Bar"])
for i in range(1, 10): x.add_row([i, i**2])
print x
with a ‘script.nix’ in the same directory:
with import <nixpkgs> {};
runCommand "dummy" { buildInputs = [ python pythonPackages.prettytable ]; } ""
(Of course, in this particular case, using the ‘-p’ flag is more
convenient.)
This allows scripts to fetch their own dependencies via nix-shell. For
instance, here is a Haskell script that, when executed, pulls in GHC
and the HTTP package:
#! /usr/bin/env nix-shell
#! nix-shell -i runghc -p haskellPackages.ghc haskellPackages.HTTP
import Network.HTTP
main = do
resp <- Network.HTTP.simpleHTTP (getRequest "http://nixos.org/")
body <- getResponseBody resp
print (take 100 body)
Or a Perl script that pulls in Perl and some CPAN packages:
#! /usr/bin/env nix-shell
#! nix-shell -i perl -p perl perlPackages.HTMLTokeParserSimple perlPackages.LWP
use HTML::TokeParser::Simple;
my $p = HTML::TokeParser::Simple->new(url => 'http://nixos.org/');
while (my $token = $p->get_tag("a")) {
my $href = $token->get_attr("href");
print "$href\n" if $href;
}
Note that the options to nix-shell must be given on a separate line
that starts with the magic string ‘#! nix-shell’. This is because
‘env’ does not allow passing arguments to an interpreter directly.
Apparently, turning on utf8 encoding on stderr changes its flushing
behaviour, causing sendReply to not send anything.
http://hydra.nixos.org/build/13944384
This makes things more efficient (we don't need to use an SSH master
connection, and we only start a single remote process) and gets rid of
locking issues (the remote nix-store process will keep inputs and
outputs locked as long as they're needed).
It also makes it more or less secure to connect directly to the root
account on the build machine, using a forced command
(e.g. ‘command="nix-store --serve --write"’). This bypasses the Nix
daemon and is therefore more efficient.
Also, don't call nix-store to import the output paths.
If derivation declares multiple outputs and first (default) output
if not "out", then "nix-instantiate" calls return path with output
names appended after "!". Than suffix must be stripped before
ant path checks are done.
This allows you to easily set up a build environment containing the
specified packages from Nixpkgs. For example:
$ nix-shell -p sqlite xorg.libX11 hello
will start a shell in which the given packages are present.
The flag ‘--check’ to ‘nix-store -r’ or ‘nix-build’ will cause Nix to
redo the build of a derivation whose output paths are already valid.
If the new output differs from the original output, an error is
printed. This makes it easier to test if a build is deterministic.
(Obviously this cannot catch all sources of non-determinism, but it
catches the most common one, namely the current time.)
For example:
$ nix-build '<nixpkgs>' -A patchelf
...
$ nix-build '<nixpkgs>' -A patchelf --check
error: derivation `/nix/store/1ipvxsdnbhl1rw6siz6x92s7sc8nwkkb-patchelf-0.6' may not be deterministic: hash mismatch in output `/nix/store/4pc1dmw5xkwmc6q3gdc9i5nbjl4dkjpp-patchelf-0.6.drv'
The --check build fails if not all outputs are valid. Thus the first
call to nix-build is necessary to ensure that all outputs are valid.
The current outputs are left untouched: the new outputs are either put
in a chroot or diverted to a different location in the store using
hash rewriting.
The tarball can now be unpacked anywhere. The installation script
uses "sudo" to create /nix if it doesn't exist. It also fetches the
nixpkgs-unstable channel.
NAR info files in binary caches can now have a cryptographic signature
that Nix will verify before using the corresponding NAR file.
To create a private/public key pair for signing and verifying a binary
cache, do:
$ openssl genrsa -out ./cache-key.sec 2048
$ openssl rsa -in ./cache-key.sec -pubout > ./cache-key.pub
You should also come up with a symbolic name for the key, such as
"cache.example.org-1". This will be used by clients to look up the
public key. (It's a good idea to number keys, in case you ever need
to revoke/replace one.)
To create a binary cache signed with the private key:
$ nix-push --dest /path/to/binary-cache --key ./cache-key.sec --key-name cache.example.org-1
The public key (cache-key.pub) should be distributed to the clients.
They should have a nix.conf should contain something like:
signed-binary-caches = *
binary-cache-public-key-cache.example.org-1 = /path/to/cache-key.pub
If all works well, then if Nix fetches something from the signed
binary cache, you will see a message like:
*** Downloading ‘http://cache.example.org/nar/7dppcj5sc1nda7l54rjc0g5l1hamj09j-subversion-1.7.11’ (signed by ‘cache.example.org-1’) to ‘/nix/store/7dppcj5sc1nda7l54rjc0g5l1hamj09j-subversion-1.7.11’...
On the other hand, if the signature is wrong, you get a message like
NAR info file `http://cache.example.org/7dppcj5sc1nda7l54rjc0g5l1hamj09j.narinfo' has an invalid signature; ignoring
Signatures are implemented as a single line appended to the NAR info
file, which looks like this:
Signature: 1;cache.example.org-1;HQ9Xzyanq9iV...muQ==
Thus the signature has 3 fields: a version (currently "1"), the ID of
key, and the base64-encoded signature of the SHA-256 hash of the
contents of the NAR info file up to but not including the Signature
line.
Issue #75.
This reverts commit 194e3374b8.
Checking the command line for GC roots means that
$ nix-store --delete $path
will fail because $path is now a root because it's mentioned on the
command line.
Ever since SQLite in Nixpkgs was updated to 3.8.0.2, Nix has randomly
segfaulted on Darwin:
http://hydra.nixos.org/build/6175515http://hydra.nixos.org/build/6611038
It turns out that this is because the binary cache substituter somehow
ends up loading two versions of SQLite: the one in Nixpkgs and the
other from /usr/lib/libsqlite3.dylib. It's not exactly clear why the
latter is loaded, but it appears to be because WWW::Curl indirectly loads
/System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation,
which in turn seems to load /usr/lib/libsqlite3.dylib. This leads to
a segfault when Perl exits:
#0 0x00000001010375f4 in sqlite3_finalize ()
#1 0x000000010125806e in sqlite_st_destroy ()
#2 0x000000010124bc30 in XS_DBD__SQLite__st_DESTROY ()
#3 0x00000001001c8155 in XS_DBI_dispatch ()
...
#14 0x0000000100023224 in perl_destruct ()
#15 0x0000000100000d6a in main ()
...
The workaround is to explicitly load DBD::SQLite before WWW::Curl.
nix-shell with the --command flag might be used non-interactively, but
if bash starts non-interactively (i.e. with stdin or stderr not a
terminal), it won't source the script given in --rcfile. However, in
that case it *will* source the script found in $BASH_ENV, so we can use
that instead.
Also, don't source ~/.bashrc in a non-interactive shell (detectable by
checking the PS1 env var)
Signed-off-by: Shea Levy <shea@shealevy.com>