forked from lix-project/lix-website
900 lines
21 KiB
JavaScript
900 lines
21 KiB
JavaScript
/**
|
|
* @license Fraction.js v4.2.1 20/08/2023
|
|
* https://www.xarg.org/2014/03/rational-numbers-in-javascript/
|
|
*
|
|
* Copyright (c) 2023, Robert Eisele (robert@raw.org)
|
|
* Dual licensed under the MIT or GPL Version 2 licenses.
|
|
**/
|
|
|
|
|
|
/**
|
|
*
|
|
* This class offers the possibility to calculate fractions.
|
|
* You can pass a fraction in different formats. Either as array, as double, as string or as an integer.
|
|
*
|
|
* Array/Object form
|
|
* [ 0 => <numerator>, 1 => <denominator> ]
|
|
* [ n => <numerator>, d => <denominator> ]
|
|
*
|
|
* Integer form
|
|
* - Single integer value
|
|
*
|
|
* Double form
|
|
* - Single double value
|
|
*
|
|
* String form
|
|
* 123.456 - a simple double
|
|
* 123/456 - a string fraction
|
|
* 123.'456' - a double with repeating decimal places
|
|
* 123.(456) - synonym
|
|
* 123.45'6' - a double with repeating last place
|
|
* 123.45(6) - synonym
|
|
*
|
|
* Example:
|
|
*
|
|
* let f = new Fraction("9.4'31'");
|
|
* f.mul([-4, 3]).div(4.9);
|
|
*
|
|
*/
|
|
|
|
(function(root) {
|
|
|
|
"use strict";
|
|
|
|
// Set Identity function to downgrade BigInt to Number if needed
|
|
if (typeof BigInt === 'undefined') BigInt = function(n) { if (isNaN(n)) throw new Error(""); return n; };
|
|
|
|
const C_ONE = BigInt(1);
|
|
const C_ZERO = BigInt(0);
|
|
const C_TEN = BigInt(10);
|
|
const C_TWO = BigInt(2);
|
|
const C_FIVE = BigInt(5);
|
|
|
|
// Maximum search depth for cyclic rational numbers. 2000 should be more than enough.
|
|
// Example: 1/7 = 0.(142857) has 6 repeating decimal places.
|
|
// If MAX_CYCLE_LEN gets reduced, long cycles will not be detected and toString() only gets the first 10 digits
|
|
const MAX_CYCLE_LEN = 2000;
|
|
|
|
// Parsed data to avoid calling "new" all the time
|
|
const P = {
|
|
"s": C_ONE,
|
|
"n": C_ZERO,
|
|
"d": C_ONE
|
|
};
|
|
|
|
function assign(n, s) {
|
|
|
|
try {
|
|
n = BigInt(n);
|
|
} catch (e) {
|
|
throw InvalidParameter();
|
|
}
|
|
return n * s;
|
|
}
|
|
|
|
// Creates a new Fraction internally without the need of the bulky constructor
|
|
function newFraction(n, d) {
|
|
|
|
if (d === C_ZERO) {
|
|
throw DivisionByZero();
|
|
}
|
|
|
|
const f = Object.create(Fraction.prototype);
|
|
f["s"] = n < C_ZERO ? -C_ONE : C_ONE;
|
|
|
|
n = n < C_ZERO ? -n : n;
|
|
|
|
const a = gcd(n, d);
|
|
|
|
f["n"] = n / a;
|
|
f["d"] = d / a;
|
|
return f;
|
|
}
|
|
|
|
function factorize(num) {
|
|
|
|
const factors = {};
|
|
|
|
let n = num;
|
|
let i = C_TWO;
|
|
let s = C_FIVE - C_ONE;
|
|
|
|
while (s <= n) {
|
|
|
|
while (n % i === C_ZERO) {
|
|
n/= i;
|
|
factors[i] = (factors[i] || C_ZERO) + C_ONE;
|
|
}
|
|
s+= C_ONE + C_TWO * i++;
|
|
}
|
|
|
|
if (n !== num) {
|
|
if (n > 1)
|
|
factors[n] = (factors[n] || C_ZERO) + C_ONE;
|
|
} else {
|
|
factors[num] = (factors[num] || C_ZERO) + C_ONE;
|
|
}
|
|
return factors;
|
|
}
|
|
|
|
const parse = function(p1, p2) {
|
|
|
|
let n = C_ZERO, d = C_ONE, s = C_ONE;
|
|
|
|
if (p1 === undefined || p1 === null) {
|
|
/* void */
|
|
} else if (p2 !== undefined) {
|
|
n = BigInt(p1);
|
|
d = BigInt(p2);
|
|
s = n * d;
|
|
|
|
if (n % C_ONE !== C_ZERO || d % C_ONE !== C_ZERO) {
|
|
throw NonIntegerParameter();
|
|
}
|
|
|
|
} else if (typeof p1 === "object") {
|
|
if ("d" in p1 && "n" in p1) {
|
|
n = BigInt(p1["n"]);
|
|
d = BigInt(p1["d"]);
|
|
if ("s" in p1)
|
|
n*= BigInt(p1["s"]);
|
|
} else if (0 in p1) {
|
|
n = BigInt(p1[0]);
|
|
if (1 in p1)
|
|
d = BigInt(p1[1]);
|
|
} else if (p1 instanceof BigInt) {
|
|
n = BigInt(p1);
|
|
} else {
|
|
throw InvalidParameter();
|
|
}
|
|
s = n * d;
|
|
} else if (typeof p1 === "bigint") {
|
|
n = p1;
|
|
s = p1;
|
|
d = C_ONE;
|
|
} else if (typeof p1 === "number") {
|
|
|
|
if (isNaN(p1)) {
|
|
throw InvalidParameter();
|
|
}
|
|
|
|
if (p1 < 0) {
|
|
s = -C_ONE;
|
|
p1 = -p1;
|
|
}
|
|
|
|
if (p1 % 1 === 0) {
|
|
n = BigInt(p1);
|
|
} else if (p1 > 0) { // check for != 0, scale would become NaN (log(0)), which converges really slow
|
|
|
|
let z = 1;
|
|
|
|
let A = 0, B = 1;
|
|
let C = 1, D = 1;
|
|
|
|
let N = 10000000;
|
|
|
|
if (p1 >= 1) {
|
|
z = 10 ** Math.floor(1 + Math.log10(p1));
|
|
p1/= z;
|
|
}
|
|
|
|
// Using Farey Sequences
|
|
|
|
while (B <= N && D <= N) {
|
|
let M = (A + C) / (B + D);
|
|
|
|
if (p1 === M) {
|
|
if (B + D <= N) {
|
|
n = A + C;
|
|
d = B + D;
|
|
} else if (D > B) {
|
|
n = C;
|
|
d = D;
|
|
} else {
|
|
n = A;
|
|
d = B;
|
|
}
|
|
break;
|
|
|
|
} else {
|
|
|
|
if (p1 > M) {
|
|
A+= C;
|
|
B+= D;
|
|
} else {
|
|
C+= A;
|
|
D+= B;
|
|
}
|
|
|
|
if (B > N) {
|
|
n = C;
|
|
d = D;
|
|
} else {
|
|
n = A;
|
|
d = B;
|
|
}
|
|
}
|
|
}
|
|
n = BigInt(n) * BigInt(z);
|
|
d = BigInt(d);
|
|
|
|
}
|
|
|
|
} else if (typeof p1 === "string") {
|
|
|
|
let ndx = 0;
|
|
|
|
let v = C_ZERO, w = C_ZERO, x = C_ZERO, y = C_ONE, z = C_ONE;
|
|
|
|
let match = p1.match(/\d+|./g);
|
|
|
|
if (match === null)
|
|
throw InvalidParameter();
|
|
|
|
if (match[ndx] === '-') {// Check for minus sign at the beginning
|
|
s = -C_ONE;
|
|
ndx++;
|
|
} else if (match[ndx] === '+') {// Check for plus sign at the beginning
|
|
ndx++;
|
|
}
|
|
|
|
if (match.length === ndx + 1) { // Check if it's just a simple number "1234"
|
|
w = assign(match[ndx++], s);
|
|
} else if (match[ndx + 1] === '.' || match[ndx] === '.') { // Check if it's a decimal number
|
|
|
|
if (match[ndx] !== '.') { // Handle 0.5 and .5
|
|
v = assign(match[ndx++], s);
|
|
}
|
|
ndx++;
|
|
|
|
// Check for decimal places
|
|
if (ndx + 1 === match.length || match[ndx + 1] === '(' && match[ndx + 3] === ')' || match[ndx + 1] === "'" && match[ndx + 3] === "'") {
|
|
w = assign(match[ndx], s);
|
|
y = C_TEN ** BigInt(match[ndx].length);
|
|
ndx++;
|
|
}
|
|
|
|
// Check for repeating places
|
|
if (match[ndx] === '(' && match[ndx + 2] === ')' || match[ndx] === "'" && match[ndx + 2] === "'") {
|
|
x = assign(match[ndx + 1], s);
|
|
z = C_TEN ** BigInt(match[ndx + 1].length) - C_ONE;
|
|
ndx+= 3;
|
|
}
|
|
|
|
} else if (match[ndx + 1] === '/' || match[ndx + 1] === ':') { // Check for a simple fraction "123/456" or "123:456"
|
|
w = assign(match[ndx], s);
|
|
y = assign(match[ndx + 2], C_ONE);
|
|
ndx+= 3;
|
|
} else if (match[ndx + 3] === '/' && match[ndx + 1] === ' ') { // Check for a complex fraction "123 1/2"
|
|
v = assign(match[ndx], s);
|
|
w = assign(match[ndx + 2], s);
|
|
y = assign(match[ndx + 4], C_ONE);
|
|
ndx+= 5;
|
|
}
|
|
|
|
if (match.length <= ndx) { // Check for more tokens on the stack
|
|
d = y * z;
|
|
s = /* void */
|
|
n = x + d * v + z * w;
|
|
} else {
|
|
throw InvalidParameter();
|
|
}
|
|
|
|
} else {
|
|
throw InvalidParameter();
|
|
}
|
|
|
|
if (d === C_ZERO) {
|
|
throw DivisionByZero();
|
|
}
|
|
|
|
P["s"] = s < C_ZERO ? -C_ONE : C_ONE;
|
|
P["n"] = n < C_ZERO ? -n : n;
|
|
P["d"] = d < C_ZERO ? -d : d;
|
|
};
|
|
|
|
function modpow(b, e, m) {
|
|
|
|
let r = C_ONE;
|
|
for (; e > C_ZERO; b = (b * b) % m, e >>= C_ONE) {
|
|
|
|
if (e & C_ONE) {
|
|
r = (r * b) % m;
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
function cycleLen(n, d) {
|
|
|
|
for (; d % C_TWO === C_ZERO;
|
|
d/= C_TWO) {
|
|
}
|
|
|
|
for (; d % C_FIVE === C_ZERO;
|
|
d/= C_FIVE) {
|
|
}
|
|
|
|
if (d === C_ONE) // Catch non-cyclic numbers
|
|
return C_ZERO;
|
|
|
|
// If we would like to compute really large numbers quicker, we could make use of Fermat's little theorem:
|
|
// 10^(d-1) % d == 1
|
|
// However, we don't need such large numbers and MAX_CYCLE_LEN should be the capstone,
|
|
// as we want to translate the numbers to strings.
|
|
|
|
let rem = C_TEN % d;
|
|
let t = 1;
|
|
|
|
for (; rem !== C_ONE; t++) {
|
|
rem = rem * C_TEN % d;
|
|
|
|
if (t > MAX_CYCLE_LEN)
|
|
return C_ZERO; // Returning 0 here means that we don't print it as a cyclic number. It's likely that the answer is `d-1`
|
|
}
|
|
return BigInt(t);
|
|
}
|
|
|
|
function cycleStart(n, d, len) {
|
|
|
|
let rem1 = C_ONE;
|
|
let rem2 = modpow(C_TEN, len, d);
|
|
|
|
for (let t = 0; t < 300; t++) { // s < ~log10(Number.MAX_VALUE)
|
|
// Solve 10^s == 10^(s+t) (mod d)
|
|
|
|
if (rem1 === rem2)
|
|
return BigInt(t);
|
|
|
|
rem1 = rem1 * C_TEN % d;
|
|
rem2 = rem2 * C_TEN % d;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
function gcd(a, b) {
|
|
|
|
if (!a)
|
|
return b;
|
|
if (!b)
|
|
return a;
|
|
|
|
while (1) {
|
|
a%= b;
|
|
if (!a)
|
|
return b;
|
|
b%= a;
|
|
if (!b)
|
|
return a;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Module constructor
|
|
*
|
|
* @constructor
|
|
* @param {number|Fraction=} a
|
|
* @param {number=} b
|
|
*/
|
|
function Fraction(a, b) {
|
|
|
|
parse(a, b);
|
|
|
|
if (this instanceof Fraction) {
|
|
a = gcd(P["d"], P["n"]); // Abuse a
|
|
this["s"] = P["s"];
|
|
this["n"] = P["n"] / a;
|
|
this["d"] = P["d"] / a;
|
|
} else {
|
|
return newFraction(P['s'] * P['n'], P['d']);
|
|
}
|
|
}
|
|
|
|
var DivisionByZero = function() {return new Error("Division by Zero");};
|
|
var InvalidParameter = function() {return new Error("Invalid argument");};
|
|
var NonIntegerParameter = function() {return new Error("Parameters must be integer");};
|
|
|
|
Fraction.prototype = {
|
|
|
|
"s": C_ONE,
|
|
"n": C_ZERO,
|
|
"d": C_ONE,
|
|
|
|
/**
|
|
* Calculates the absolute value
|
|
*
|
|
* Ex: new Fraction(-4).abs() => 4
|
|
**/
|
|
"abs": function() {
|
|
|
|
return newFraction(this["n"], this["d"]);
|
|
},
|
|
|
|
/**
|
|
* Inverts the sign of the current fraction
|
|
*
|
|
* Ex: new Fraction(-4).neg() => 4
|
|
**/
|
|
"neg": function() {
|
|
|
|
return newFraction(-this["s"] * this["n"], this["d"]);
|
|
},
|
|
|
|
/**
|
|
* Adds two rational numbers
|
|
*
|
|
* Ex: new Fraction({n: 2, d: 3}).add("14.9") => 467 / 30
|
|
**/
|
|
"add": function(a, b) {
|
|
|
|
parse(a, b);
|
|
return newFraction(
|
|
this["s"] * this["n"] * P["d"] + P["s"] * this["d"] * P["n"],
|
|
this["d"] * P["d"]
|
|
);
|
|
},
|
|
|
|
/**
|
|
* Subtracts two rational numbers
|
|
*
|
|
* Ex: new Fraction({n: 2, d: 3}).add("14.9") => -427 / 30
|
|
**/
|
|
"sub": function(a, b) {
|
|
|
|
parse(a, b);
|
|
return newFraction(
|
|
this["s"] * this["n"] * P["d"] - P["s"] * this["d"] * P["n"],
|
|
this["d"] * P["d"]
|
|
);
|
|
},
|
|
|
|
/**
|
|
* Multiplies two rational numbers
|
|
*
|
|
* Ex: new Fraction("-17.(345)").mul(3) => 5776 / 111
|
|
**/
|
|
"mul": function(a, b) {
|
|
|
|
parse(a, b);
|
|
return newFraction(
|
|
this["s"] * P["s"] * this["n"] * P["n"],
|
|
this["d"] * P["d"]
|
|
);
|
|
},
|
|
|
|
/**
|
|
* Divides two rational numbers
|
|
*
|
|
* Ex: new Fraction("-17.(345)").inverse().div(3)
|
|
**/
|
|
"div": function(a, b) {
|
|
|
|
parse(a, b);
|
|
return newFraction(
|
|
this["s"] * P["s"] * this["n"] * P["d"],
|
|
this["d"] * P["n"]
|
|
);
|
|
},
|
|
|
|
/**
|
|
* Clones the actual object
|
|
*
|
|
* Ex: new Fraction("-17.(345)").clone()
|
|
**/
|
|
"clone": function() {
|
|
return newFraction(this['s'] * this['n'], this['d']);
|
|
},
|
|
|
|
/**
|
|
* Calculates the modulo of two rational numbers - a more precise fmod
|
|
*
|
|
* Ex: new Fraction('4.(3)').mod([7, 8]) => (13/3) % (7/8) = (5/6)
|
|
**/
|
|
"mod": function(a, b) {
|
|
|
|
if (a === undefined) {
|
|
return newFraction(this["s"] * this["n"] % this["d"], C_ONE);
|
|
}
|
|
|
|
parse(a, b);
|
|
if (0 === P["n"] && 0 === this["d"]) {
|
|
throw DivisionByZero();
|
|
}
|
|
|
|
/*
|
|
* First silly attempt, kinda slow
|
|
*
|
|
return that["sub"]({
|
|
"n": num["n"] * Math.floor((this.n / this.d) / (num.n / num.d)),
|
|
"d": num["d"],
|
|
"s": this["s"]
|
|
});*/
|
|
|
|
/*
|
|
* New attempt: a1 / b1 = a2 / b2 * q + r
|
|
* => b2 * a1 = a2 * b1 * q + b1 * b2 * r
|
|
* => (b2 * a1 % a2 * b1) / (b1 * b2)
|
|
*/
|
|
return newFraction(
|
|
this["s"] * (P["d"] * this["n"]) % (P["n"] * this["d"]),
|
|
P["d"] * this["d"]
|
|
);
|
|
},
|
|
|
|
/**
|
|
* Calculates the fractional gcd of two rational numbers
|
|
*
|
|
* Ex: new Fraction(5,8).gcd(3,7) => 1/56
|
|
*/
|
|
"gcd": function(a, b) {
|
|
|
|
parse(a, b);
|
|
|
|
// gcd(a / b, c / d) = gcd(a, c) / lcm(b, d)
|
|
|
|
return newFraction(gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]), P["d"] * this["d"]);
|
|
},
|
|
|
|
/**
|
|
* Calculates the fractional lcm of two rational numbers
|
|
*
|
|
* Ex: new Fraction(5,8).lcm(3,7) => 15
|
|
*/
|
|
"lcm": function(a, b) {
|
|
|
|
parse(a, b);
|
|
|
|
// lcm(a / b, c / d) = lcm(a, c) / gcd(b, d)
|
|
|
|
if (P["n"] === C_ZERO && this["n"] === C_ZERO) {
|
|
return newFraction(C_ZERO, C_ONE);
|
|
}
|
|
return newFraction(P["n"] * this["n"], gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]));
|
|
},
|
|
|
|
/**
|
|
* Gets the inverse of the fraction, means numerator and denominator are exchanged
|
|
*
|
|
* Ex: new Fraction([-3, 4]).inverse() => -4 / 3
|
|
**/
|
|
"inverse": function() {
|
|
return newFraction(this["s"] * this["d"], this["n"]);
|
|
},
|
|
|
|
/**
|
|
* Calculates the fraction to some integer exponent
|
|
*
|
|
* Ex: new Fraction(-1,2).pow(-3) => -8
|
|
*/
|
|
"pow": function(a, b) {
|
|
|
|
parse(a, b);
|
|
|
|
// Trivial case when exp is an integer
|
|
|
|
if (P['d'] === C_ONE) {
|
|
|
|
if (P['s'] < C_ZERO) {
|
|
return newFraction((this['s'] * this["d"]) ** P['n'], this["n"] ** P['n']);
|
|
} else {
|
|
return newFraction((this['s'] * this["n"]) ** P['n'], this["d"] ** P['n']);
|
|
}
|
|
}
|
|
|
|
// Negative roots become complex
|
|
// (-a/b)^(c/d) = x
|
|
// <=> (-1)^(c/d) * (a/b)^(c/d) = x
|
|
// <=> (cos(pi) + i*sin(pi))^(c/d) * (a/b)^(c/d) = x
|
|
// <=> (cos(c*pi/d) + i*sin(c*pi/d)) * (a/b)^(c/d) = x # DeMoivre's formula
|
|
// From which follows that only for c=0 the root is non-complex
|
|
if (this['s'] < C_ZERO) return null;
|
|
|
|
// Now prime factor n and d
|
|
let N = factorize(this['n']);
|
|
let D = factorize(this['d']);
|
|
|
|
// Exponentiate and take root for n and d individually
|
|
let n = C_ONE;
|
|
let d = C_ONE;
|
|
for (let k in N) {
|
|
if (k === '1') continue;
|
|
if (k === '0') {
|
|
n = C_ZERO;
|
|
break;
|
|
}
|
|
N[k]*= P['n'];
|
|
|
|
if (N[k] % P['d'] === C_ZERO) {
|
|
N[k]/= P['d'];
|
|
} else return null;
|
|
n*= BigInt(k) ** N[k];
|
|
}
|
|
|
|
for (let k in D) {
|
|
if (k === '1') continue;
|
|
D[k]*= P['n'];
|
|
|
|
if (D[k] % P['d'] === C_ZERO) {
|
|
D[k]/= P['d'];
|
|
} else return null;
|
|
d*= BigInt(k) ** D[k];
|
|
}
|
|
|
|
if (P['s'] < C_ZERO) {
|
|
return newFraction(d, n);
|
|
}
|
|
return newFraction(n, d);
|
|
},
|
|
|
|
/**
|
|
* Check if two rational numbers are the same
|
|
*
|
|
* Ex: new Fraction(19.6).equals([98, 5]);
|
|
**/
|
|
"equals": function(a, b) {
|
|
|
|
parse(a, b);
|
|
return this["s"] * this["n"] * P["d"] === P["s"] * P["n"] * this["d"]; // Same as compare() === 0
|
|
},
|
|
|
|
/**
|
|
* Check if two rational numbers are the same
|
|
*
|
|
* Ex: new Fraction(19.6).equals([98, 5]);
|
|
**/
|
|
"compare": function(a, b) {
|
|
|
|
parse(a, b);
|
|
let t = (this["s"] * this["n"] * P["d"] - P["s"] * P["n"] * this["d"]);
|
|
|
|
return (C_ZERO < t) - (t < C_ZERO);
|
|
},
|
|
|
|
/**
|
|
* Calculates the ceil of a rational number
|
|
*
|
|
* Ex: new Fraction('4.(3)').ceil() => (5 / 1)
|
|
**/
|
|
"ceil": function(places) {
|
|
|
|
places = C_TEN ** BigInt(places || 0);
|
|
|
|
return newFraction(this["s"] * places * this["n"] / this["d"] +
|
|
(places * this["n"] % this["d"] > C_ZERO && this["s"] >= C_ZERO ? C_ONE : C_ZERO),
|
|
places);
|
|
},
|
|
|
|
/**
|
|
* Calculates the floor of a rational number
|
|
*
|
|
* Ex: new Fraction('4.(3)').floor() => (4 / 1)
|
|
**/
|
|
"floor": function(places) {
|
|
|
|
places = C_TEN ** BigInt(places || 0);
|
|
|
|
return newFraction(this["s"] * places * this["n"] / this["d"] -
|
|
(places * this["n"] % this["d"] > C_ZERO && this["s"] < C_ZERO ? C_ONE : C_ZERO),
|
|
places);
|
|
},
|
|
|
|
/**
|
|
* Rounds a rational numbers
|
|
*
|
|
* Ex: new Fraction('4.(3)').round() => (4 / 1)
|
|
**/
|
|
"round": function(places) {
|
|
|
|
places = C_TEN ** BigInt(places || 0);
|
|
|
|
/* Derivation:
|
|
|
|
s >= 0:
|
|
round(n / d) = trunc(n / d) + (n % d) / d >= 0.5 ? 1 : 0
|
|
= trunc(n / d) + 2(n % d) >= d ? 1 : 0
|
|
s < 0:
|
|
round(n / d) =-trunc(n / d) - (n % d) / d > 0.5 ? 1 : 0
|
|
=-trunc(n / d) - 2(n % d) > d ? 1 : 0
|
|
|
|
=>:
|
|
|
|
round(s * n / d) = s * trunc(n / d) + s * (C + 2(n % d) > d ? 1 : 0)
|
|
where C = s >= 0 ? 1 : 0, to fix the >= for the positve case.
|
|
*/
|
|
|
|
return newFraction(this["s"] * places * this["n"] / this["d"] +
|
|
this["s"] * ((this["s"] >= C_ZERO ? C_ONE : C_ZERO) + C_TWO * (places * this["n"] % this["d"]) > this["d"] ? C_ONE : C_ZERO),
|
|
places);
|
|
},
|
|
|
|
/**
|
|
* Check if two rational numbers are divisible
|
|
*
|
|
* Ex: new Fraction(19.6).divisible(1.5);
|
|
*/
|
|
"divisible": function(a, b) {
|
|
|
|
parse(a, b);
|
|
return !(!(P["n"] * this["d"]) || ((this["n"] * P["d"]) % (P["n"] * this["d"])));
|
|
},
|
|
|
|
/**
|
|
* Returns a decimal representation of the fraction
|
|
*
|
|
* Ex: new Fraction("100.'91823'").valueOf() => 100.91823918239183
|
|
**/
|
|
'valueOf': function() {
|
|
// Best we can do so far
|
|
return Number(this["s"] * this["n"]) / Number(this["d"]);
|
|
},
|
|
|
|
/**
|
|
* Creates a string representation of a fraction with all digits
|
|
*
|
|
* Ex: new Fraction("100.'91823'").toString() => "100.(91823)"
|
|
**/
|
|
'toString': function(dec) {
|
|
|
|
let N = this["n"];
|
|
let D = this["d"];
|
|
|
|
function trunc(x) {
|
|
return typeof x === 'bigint' ? x : Math.floor(x);
|
|
}
|
|
|
|
dec = dec || 15; // 15 = decimal places when no repetition
|
|
|
|
let cycLen = cycleLen(N, D); // Cycle length
|
|
let cycOff = cycleStart(N, D, cycLen); // Cycle start
|
|
|
|
let str = this['s'] < C_ZERO ? "-" : "";
|
|
|
|
// Append integer part
|
|
str+= trunc(N / D);
|
|
|
|
N%= D;
|
|
N*= C_TEN;
|
|
|
|
if (N)
|
|
str+= ".";
|
|
|
|
if (cycLen) {
|
|
|
|
for (let i = cycOff; i--;) {
|
|
str+= trunc(N / D);
|
|
N%= D;
|
|
N*= C_TEN;
|
|
}
|
|
str+= "(";
|
|
for (let i = cycLen; i--;) {
|
|
str+= trunc(N / D);
|
|
N%= D;
|
|
N*= C_TEN;
|
|
}
|
|
str+= ")";
|
|
} else {
|
|
for (let i = dec; N && i--;) {
|
|
str+= trunc(N / D);
|
|
N%= D;
|
|
N*= C_TEN;
|
|
}
|
|
}
|
|
return str;
|
|
},
|
|
|
|
/**
|
|
* Returns a string-fraction representation of a Fraction object
|
|
*
|
|
* Ex: new Fraction("1.'3'").toFraction() => "4 1/3"
|
|
**/
|
|
'toFraction': function(excludeWhole) {
|
|
|
|
let n = this["n"];
|
|
let d = this["d"];
|
|
let str = this['s'] < C_ZERO ? "-" : "";
|
|
|
|
if (d === C_ONE) {
|
|
str+= n;
|
|
} else {
|
|
let whole = n / d;
|
|
if (excludeWhole && whole > C_ZERO) {
|
|
str+= whole;
|
|
str+= " ";
|
|
n%= d;
|
|
}
|
|
|
|
str+= n;
|
|
str+= '/';
|
|
str+= d;
|
|
}
|
|
return str;
|
|
},
|
|
|
|
/**
|
|
* Returns a latex representation of a Fraction object
|
|
*
|
|
* Ex: new Fraction("1.'3'").toLatex() => "\frac{4}{3}"
|
|
**/
|
|
'toLatex': function(excludeWhole) {
|
|
|
|
let n = this["n"];
|
|
let d = this["d"];
|
|
let str = this['s'] < C_ZERO ? "-" : "";
|
|
|
|
if (d === C_ONE) {
|
|
str+= n;
|
|
} else {
|
|
let whole = n / d;
|
|
if (excludeWhole && whole > C_ZERO) {
|
|
str+= whole;
|
|
n%= d;
|
|
}
|
|
|
|
str+= "\\frac{";
|
|
str+= n;
|
|
str+= '}{';
|
|
str+= d;
|
|
str+= '}';
|
|
}
|
|
return str;
|
|
},
|
|
|
|
/**
|
|
* Returns an array of continued fraction elements
|
|
*
|
|
* Ex: new Fraction("7/8").toContinued() => [0,1,7]
|
|
*/
|
|
'toContinued': function() {
|
|
|
|
let a = this['n'];
|
|
let b = this['d'];
|
|
let res = [];
|
|
|
|
do {
|
|
res.push(a / b);
|
|
let t = a % b;
|
|
a = b;
|
|
b = t;
|
|
} while (a !== C_ONE);
|
|
|
|
return res;
|
|
},
|
|
|
|
"simplify": function(eps) {
|
|
|
|
eps = eps || 0.001;
|
|
|
|
const thisABS = this['abs']();
|
|
const cont = thisABS['toContinued']();
|
|
|
|
for (let i = 1; i < cont.length; i++) {
|
|
|
|
let s = newFraction(cont[i - 1], C_ONE);
|
|
for (let k = i - 2; k >= 0; k--) {
|
|
s = s['inverse']()['add'](cont[k]);
|
|
}
|
|
|
|
if (Math.abs(s['sub'](thisABS).valueOf()) < eps) {
|
|
return s['mul'](this['s']);
|
|
}
|
|
}
|
|
return this;
|
|
}
|
|
};
|
|
|
|
if (typeof define === "function" && define["amd"]) {
|
|
define([], function() {
|
|
return Fraction;
|
|
});
|
|
} else if (typeof exports === "object") {
|
|
Object.defineProperty(exports, "__esModule", { 'value': true });
|
|
Fraction['default'] = Fraction;
|
|
Fraction['Fraction'] = Fraction;
|
|
module['exports'] = Fraction;
|
|
} else {
|
|
root['Fraction'] = Fraction;
|
|
}
|
|
|
|
})(this);
|